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On nonlinear waves in elastic conductors under a magnetic field

S. CHAKRABORTY

St. Xauvier’s College
30 Park Street, Calcutta 700016, India

A STUDY OF THE BEHAVIOR of magneto-elastic waves in a nonlinear isotropic elastic
conductor by applying the method of multiple scales and perturbation has been made
for a general displacement wave, under the action of an arbitrarily directed, uniform
magnetic field. While in the case of transverse magnetic field the shock the waves are
formed, it has been shown here that, under an oblique magnetic field, the wave is
distorted without the formation of shocks.

1. Introduction

THE STUDY OF ONE-DIMENSIONAL waves in nonlinear elastic media were inves-
tigated by many authors such as NAYFEH [1], LARDNER [2,3]. They considered
longitudinal and transverse waves and examined the growth of amplitude and
formation of shock waves, using the methods of perturbation and multiple scales.
MAUGIN [4] considered the effect of a bias magnetic field on the problems of prop-
agation of harmonic waves in hyperelastic dielectrics and in perfectly conducting
nonlinear elastic conductor. HEFNI et al. [5] have studied general one-dimensional
bulk waves in a non-linear magneto-elastic conductor. They considered both the
linear and nonlinear waves from the general formulation of the constitutive equa-
tions. CHAKRABORTY |[6] recently considered the problem of distortion of waves
in a nonlinear magneto-elastic conductor wherein it has been shown that shock
waves may be formed in a traveling wave signal, depending on the elastic co-
efficients and the magnetic field, the direction of the bias magnetic field being
transverse to the direction of the wave propagation. In the present paper we
consider the bias magnetic field to have an arbitrary direction. The method of
perturbation and multiple scales have been used. Equations of motion of differ-
ent orders have been obtained. Several particular cases have been considered.
For the bias magnetic field oblique to the direction of wave propagation, it is
seen here that no shocks are formed.
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2. Basic equations

Maxwell’s equations of the electromagnetic field in which the displacement
current has been neglected are, in the usual notations, the following:

divB =0,
divD = p,,
(2.1)
curlH = J,
curlE + B¢ = 0,

(pe is the electrostatic charge density). The constitutive equations of the medium
are taken as

B = uH,
(22)
D=cE

while Ohm’s law in the generalized form is

(2.3) J=0[E+u, x B]

du
o being the electrical conductivity, uy (E 5) being velocity of the material

point of the medium.

The motion of the medium is governed by the stress equations of motion by
including the Lorentz force of electromagnetic origin:

; 0%u; :

(24) Lijsj‘f'(JXB)i:pOW;& 3=1}2=3:
o is the mass per unit volume in the undeformed state and L;; is the PloLA-
KIRCHHOFF tensor derived from the strain energy W per unit volume [BLAND
(7)], given by

oW

(2.5) Lij= 5.~
i,

i,j=1,23.

The expression for W for a nonlinear elastic solid is taken in the form

1
(2.6) W= M +Gh+ al} + LI, +vI,

where A, G correspond to elastic constants in the linear theory, and a,f,y
are higher order elastic coefficients, I, I, I3 are the three independent strain-
invariants given by

(2.7) L =ey, Ip=ejjey, I3=ejeper, 14,5,k=12,3,
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while the strain tensor e;; in terms of displacement u;(z1, 2, z3,t) is given by

1 5 is
(2.8) eij = (5) (uij + uji + uk itk g) , $,5.k=1,2.3.

The term J x B in (2.4) is the Lorentz force per unit volume due to the magnetic
field B and the current density J.
2.1. Formulation

The displacement wave travels in the z; direction and the medium is acted
upon by a uniform bias magnetic field HY in an arbitrary direction. Let us choose
the zp-axis such that H? lies in the z,2; plane (this is always possible whatever
would be the direction of HY). Hence we have

(2.9) H® = (H}, H),0).

The perturhed magnetic field is

(2.10) H=H%+h
where
(2.11) h = (h1, ha, hg).

For a spatially one-dimensional problem, we write equation (2.10) as

(2.12) H = H,, H,, Hy
and
(2.13) H; = H? + h; (z1,¢,) i=1,2,3.

The displacement components (u;, us, u3) are functions of z; and time ¢ only.
The equations of motion (2.4) are simplified to

a &%,

14 L =g, i=123.
(2.14) ol t@xBli=pag, =123
From Egs. (2.5) and (2.6),
ow oI, i oW I, +8W ol
6I1 aul.] 812 81&1‘1 3I3 3u1‘1

= (A + 3al? + ﬁfz) (14+wu,1) + (G +BI) (2e11 (1+u1,1))

(2.15) Ly =

+ v [(3¢f) + 3edp + 3et;) (1+u1a )],
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ow
(216) Loy = W = (/\Il Nl 3&’.{12 + ﬁfg) ug] + (G + 611) (26111&2.1 + 2812]
1

3
== [38?1 + 36’%2 + 38?3 + (E) 611] ug 1,

(217) Lz = (AL + 3al? + BL2) uzy + (G + BL) (1+ 2en1) ua,

3
iy [(38%1 + 38%2 =+ 36%3) -+ 5811] uz 1.

The Lorentz force - components in our problem reduce to

(2.18) (J x B), = —phghay — p (HS + ha) + ha,1,
(2.19) (J x B)y=p (HYho + hihay),
(2:20) (J x B); =phsy (HY +h1),

where

(2.21) hy, = g—f: . h3) = g%:‘-.

For a perfectly conducting solid, we get from equations (2.1)4 and (2.3):
(2.22) %h = curl (u; x H)

But curl (u; x H) in our problem has the components

0, ulmHg — uhhg,l -+ 'u.gul.Hl + “2eh1=,

(2.23)
U3!:1H1 + u3th1:1 — u[,h:;,l
where
2
(2.24) uy, = sl O uy etc.

Bt " T Btoy
From Maxwell’s equation (2.1); and the component of (2.22), we get

ohy ohy
(2.25) =0 and —

Fr i
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We conclude from (2.25) that
(2.26) hy =0.

For applying the method of perturbation, parameter € is used to denote the
order of magnitude of the displacement. We also use the slowness parameters
&, n defined by

(2.27) £ =exmy, n=¢€x.
The displacement components can now written as
(228} Uy (xl 1 t) = €U0 (Il 3 tl 6! 7})
= Eguél (xl,t, ‘fs ﬂ) 24 83“'1'2 {3"1! t,&, 7?) + 0 (54) 3
i=1,2,3.

Since the magnetic perturbation arises from the motion, ho, hy are of the order
of €. We write

(229) 'h'ﬂ ($11t) = EhaU (‘Tl)tagan)
+ Elzh'ctl (mlvta {)ﬂ) T Eah‘ﬂ? (.'II\, tv{! 7}'} +0 (54)
a= 2;3-.

As a consequence of the introduction of the slowness garameters &, n as variables

in the functions uyp,u1; etc., the partial derivative iy in the equations (2.1) to
1
(2.21) is to be replaced by the operator
J d d
2.30 e
(2.30) 8J¢1+66§+£ o

Substituting in (2.22) the expressions from equations (2.23), (2.28) and (2.29)
and equating the terms with different powers of €, on integrating w.r.t. time, we
obtain

(2.31) hao = —uioH3 + u20,, H}

(2.32) hoy = —HJuyy,, — Huyo, + Hiugo, + H{uay,

+H3/(Uloaulozl)mdi—ff?f(ﬂlnl‘uzo,l)mdi
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(2.33)  hop = —H{wia,, + Hjun, + Hlugs, + Hiug, + Hius, + f Fdt

where
F = —uyq,,, ha1 — haotr1,,, — haottioe + u20,,,
— ha1,, w10, — w11, hoo,, — hoogtro,,
2.34) hag = HY
(2. 130 = L17U30,,
0 0 0
(2.35) hs, = ——h301£10¢1 + H1u30.§ + H1“31.—; + Hl /u;gnu;;gmdt,

(236) }?‘321 = H?“:m“, 5 7 Hll:]u?n?g:l + H?u31;£

= (u11,h30)z, — (v10,h30)¢ — (w10.h31),, -

On substituting from equations (2.15) to (2.20), (2.28) to Eq.(2.35) in each
of the three equations of (2.14), and then equating the coofficients of €, e? and ¢*
on both sides, we get the following equations:

P
(2.37) 0(e) : Diuio = 5 o,
(238) 0(62) : Dyuyp — Daugy = Pmm,l{ 1 P?“'Zﬂzlg + 1,
P
(2.39) 0(e) : Dauzo = 5 t1os,
(2.40) 0(62} : Dougy — Dauyy = P2“20=1z o7 P3ulﬂ:1£ + 13,
P. P
(2.41) 0(53) : Dotigy = Pg‘u?l:l{ 7k Pguz[}xw i ?311!11:1ﬁ o ?211.2(}“

2
— c3(ug0 w0, + u10,, 21, + U10,U20,, + Y11, U20;, )z,

P: P
- ?3 (w105, + %12,,,,) — ?3 / (wi0,w10,, ), At + ﬂ%f (ﬂw;uzuxl)zledt

0
5 pHj Fodt—& 2 3 2

5 z ¢y (u20., Uyp,, + Uz, + U3p, U20., | -
PO 1 1 1 )
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(2.42)

(2.43)

where

(2.44)

(2.45)

(2.46)

(2.47)
(2.48)

(2.49)

(2.50)

(2.52)

O(E) . DQUg{) — 0,

0(¢?) : Daugy = —Paugo, , + T3,

02 9%
Dl i (Ci i {12) 6.‘1:131:1 6159’
& 9?
— 2 S ——— — S—
D = (% + 1) 5250 ~ 7"
62
D; =
P=-2 (cf + a%) .
P=-2(c+ af) .
P3 = 2a;ay,
== (2c§ + 2c§ — a%) U10,, ¥10;,2, — (c§ — a?)

’ (“2"::::“2“:: + u:’-0,,1,,1‘*“‘-30,1) —aja (uln,lrluze,, e ¢ Uio:,uzu,m)

+af [ (wonno.,),,,,dt - a2 [ (o, ), db

B 2
T3 = af (u10,,,,430,, + U30,,., 10,,) — €3 (w10, uso,, )
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Ty = —c} (“10:11*2021)1, o “1“2/(“10:”10=1) dt

I

2
+01/(ul{}{u20x1)xw]dt,

T)

2
+a1/(u1o,usoxl)rmdt.
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(2.53) & =(A+28)/p: =5/,
(2.54) = (A+2G+ 8+ 37/2)/,00’
(2.55) (ﬁz{M2+G+ﬁa+3ﬁ+3ﬂ@m
(2.56) G=rH [, g=nH [

Here ¢;, ¢ are the P and S wave velocities in linear elasticity, while a;,a; are
the Alfven wave velocities. We know that ¢; > ¢9 while a; and ay are much less
than ¢o. We consider the cases :

CASE 1. a1 # 0,a # 0. This occurs when the magnetic field H? is oblique
i.e. it has non-zero components H{’ and Hg. From equations (2.37), (2.39) and
(2.41) we notice that uyg and ugp satisfy two coupled equations while ugg satisfies
a single equation. For linear wave solutions in the form

(257] uyg = Ay exp [1k (I = Vt)] 3

(2.58) ugg = Aogg exp [ik (:L‘ - Vt)] .

(2.59) uzg = Aszp exp I:ik (I — ‘\;’C% 1= a%t)] ;

the velocity V is a solution of the biquadratic equation
(2.60) Vi-V2(+cE+al+a) + (F +ad) (E+al) —ada3 =0

The two solutions, say Vi, Vs, are given by
(2.61) Vi2 = [(Cf + & +a} + ﬂzz")/2

+ 5((.‘:% +ai - -a2+ 4&%:1%) ]

Since ¢? > ¢, it is possible that ¢ + a3 > c3 + a?. Then we get from (2.61) the
bounds for V3, V5 :

(2.62) E+a2 < V< +ad+aa
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and
(2.63) & +al —ajay < V§ <k +dd

One effect of the oblique magnetic field is therefore that there exist two possible
waves, one travelling with velocity greater than \/(:21 + a%, while the other has
the velocity less than \/c% + a.lz.

To assess the nonlinear wave components we notice that wu;;,us; here are
involved in two equations (2.38) and (2.40). A comparison of these equations
with the case treated in [6] shows that distortion of the wave

(2.64) uip = Ao (€,7) e¥@119),

(2.65) ugy = Agg (£,1) e¥@ 1)

with distance takes place, but no shock is formed since V; or Vo are different
from \/Ezl +ag and \/3 +a§1. We therefore conclude that the presence of an
oblique magnetic field prevents the formation of shock in the propagation of a
magnetoelastic wave.

CASE 2. @) =0, a2 # 0, i.e. HY =0, HJ # 0. This case has been treated
by Chakraborty [6] in which the possibility of a shock for a longitudinal wave
was studied in detail.

CASE 3. a2 =0, a1 # 0, ie, Hg =:{); H? # 0. In this case the longitudinal
wave ujg is a purely elastic one, while the transverse wave ugg travels with
1
velocity (c% + a%)2 Taking ujp = 111 = uj2 = ugg = 0, i.e. assuming that no
elastic longitudinal wave propagates, equation (2.41) gives, ignoring the slowness
parameter £ as it has no effect here,

(2.66) Dy = Ppuzons, = (o, )
On substituting in (2. 66)

(2.67) ug = G (6,1n)

with

(2.68) 9=t—$1/1/(§+a¥,
(2.69) ¢ = t+:€1/\/c§+a%
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being a solution of equation (2.39) for a progressive transverse wave, equation
(2.66) becomes

\/og + a? 3 r:ﬁ 2
2.7 = -4 - ;
(2.70) U220 5 Gon + i@y af)z G5Goe

Integrating (2.70) w. r. t. 6, we get
2

: V€t ay 1 Cj 3
(2.71) Upgy = ——2—LGp + ——2—G3.
’ 2 T 4(@vat)

In order to be sure that integration of (2.71) w. r. t. ¢ gives an equation that
keeps ugo finite, we get the secular equation

2
(2.72) M2 G L O gt

. 4(c3+a})’

Differentiating (2.72) w. r. t. # and putting Gy = g, we get the equation

(2.73) gn — Mig’g; =0
where
2

(2.74) M, = —3"“—5 :

2(c3 +a})*
The solution of (2.73) corresponding to the initial condition
(2.75) 9(6,0)=m ()
(2.76) 9(8,m) =m(61)

where 6 is given by (WHITHAM [8])
(2.77) 60, = 0 + Mym? (6,) n.

Equation (2.77) shows that the magneto elastic quasi-transverse wave is distorted
and shock waves are possible under suitable initial condition (LARDNER |[3]).

3. Conclusion

The effect of a bias magnetic field acting obliquely to the direction of a wave
propagating in a nonlinear elastic medium is to prevent the shock formation of
waves with displacement in its plane.
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