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Integrity conditions for elastic-plastic damaged solids subjected
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INTEGRITY CONDITIONS for elastic-plastic, isotropically damaged solids with isotropic
and kinematic strain hardening as subjected to cyclic loading, are in question. It is
assumed that the damage process is coupled with the process of plastic deformation.
The shakedown conditions are assumed to be satisfied. A new sufficient condition for
shakedown accounting for a mixed isotropic and kinematic hardening is developed.
The problem of evaluating limit yield-condition arguments is reduced to a min-max
problem. In the case of plain strain, the problem is equivalent to a hyperbolic equation
in partial derivatives of the second order. A method for computing the purely elastic
damaged response of the solid to the prescribed loading program is proposed. The
limit yield condition with specified arguments makes it possible to obtain upper and
lower estimates for the local actual limit values of the damage parameter admitted by
the yield condition for the given loading program. The estimates lead to necessary and
sufficient conditions of integrity. The proposed method is illustrated by an example.

1. Introduction

UNDER CERTAIN CONDITIONS, irreversible changes in the material of elastic-
plastic damaged solids subjected to cyclic loading vanish after a period of adap-
tation, and the solid experiences only elastic deformation starting from some time
on. One says in this case that the solid adapted (shook down) to the prescribed
loading program; in other words, the deformation process reached a stationary
(post-adaptation) stage. If the damage and plastic deformation processes are
coupled, then the values of damage and internal parameters at this stage do not
change. These values and the corresponding yield surface will be referred to as
the limiting ones.

The shakedown theory provides us with the means to predict directly, i.e.
without a detailed computation of the deformation path, whether the solid will
adapt itself to the prescribed cyclic loading program or not. This gives us a
chance to establish the estimates of the damage parameters limiting value. Re-
views of the modern achievements in the shakedown theory are available in [1-4].
Presently the question of extension of the shakedown theory to damaged elastic-
plastic solids is topical.
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HacHEM! and WEICHERT extended the Melan theorem to elastic-plastic
isotropically damaged solids with unlimited [5] and limited [6] linear kinematic
strain-hardening. SIEMASZKO [7] developed a method of step-by-step inadapta-
tion analysis for elastic-plastic structures subjected to repeated loading, which
accounts for nonlinear isotropic strain hardening, developing of damage, and
nonlinear geometrical effects. PoLI1zzoTTO, BORINO and FuscHl [8] included
the damage variable into a set of internal variables, and developed an elastic-
plastic damaged material model with associated constitutive relations and non-
linear elasticity. Employing the D-stability principle introduced by them, they
extended the static Melan shakedown theorem to this model. The theorem was
also extended to the elastic damaged material model as well.

DRruYANOV and ROMAN [9] extended the Melan theorem to the model of
damaged elastic-plastic solids with isotropic and isotropic-like strain hardening.

All known extensions of the Melan theorem to elastic plastic solids with
isotropic damage can be formulated as follows: if there exists a time-independent
field of effective residual stress tensor p(x), which satisfies the yield inequality
®(a%(x,t), +p(x), x(x,t)) < 0 from some time on, then the total plastic dissi-
pation and damage parameter are bounded. Here ®(0, x) is the yield function,
G is the effective stress tensor, x denotes the strain hardening parameter, and
oF is the effective stress tensor representing the current, purely elastic response
of the solid to the prescribed loading program.

Obviously, even if the conditions of the extended Melan theorem are satisfied,
a damaged elastic plastic solid can fail due to accumulation of damage because
the conditions of local integrity may be violated. For example, in the case of
isotropic damage, the limit value of the damage parameter may exceed its critical
value, and the solid will collapse before the plastic deformation process ceases.

To establish the conditions of integrity, FENG and YU [10, 11| supposed that
the state of damage is described by a scalar quantity connected with the plas-
tic strain tensor. They introduced a damage factor as a local average of this
quantity, and assumed that the safety of structures subjected to cyclic loading is
guaranteed, if the damage factor is less than its critical value. Assuming a piece-
wise linear yield condition, they reduced the computation of an upper bound
for the damage factor to a problem of mathematical programming. Besides, a
method of obtaining a lower bound was developed.

HacHEMI and WEICHERT [6,12], WEICHERT and HACHEMI [13] employed
the model of elastic plastic damaged material by Lemaitre [14] and the General-
ized Standard Material Model approach (HALPHEN and NGUYEN [15]) to derive
upper bounds for the accumulated plastic strain and damage parameter. As a
result, they reduced the problem of determining of the safety factor to a problem
of mathematical programming. A numerical method capable of controlling the
current value of the damage parameter was also developed.
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A method to find lower estimates of the limit value of isotropic damage
parameter was developed in DRUYANOV and ROMAN [16].

Thus, the fulfillment of the shakedown conditions is only a necessary condi-
tion for the safety of solids subjected to cyclic loading. To assure their safety,
the condition of local integrity at every point of the solids has to be satisfied.

Hence, a problem appears: for the prescribed loading program, to derive the
conditions of shakedown and upper and lower estimates to the limit value of
damage parameter at every point of the solid, and based on them to set a priori
conditions of integrity. Below, a method to solve this problem is proposed.

In the main body of the paper, the method is developed for elastic plastic
solids with isotropic damage and isotropic strain hardening. Then the method is
extended to solids with both kinematic and isotropic strain hardening.

The method is based on the assumption that the shakedown conditions are
fulfilled. Therefore, for the sake of completeness, a novel sufficient shakedown
condition accounting for kinematic strain hardening additionally to the isotropic
one is proposed in Appendix 1.

A shakedown condition for structures of elastic-perfectly plastic materials
with linear kinematic hardening was formulated by MELAN, as early as in 1938
[17]. A mixed linear kinematic-isotropic hardening was considered by MAIER
and NovATI [18]. Other early extensions are available in the book by KoniG
[19]. STEIN et al. [20] showed how the shakedown theorems can be extended
to material models with nonlinear kinematic hardening. POLIZZOTTO et al. ex-
tended the shakedown theory to a material model with dual internal variables
and a thermodynamic potential [21]. Static and kinematic approaches to shake-
down conditions for the generalized standard material model with limited kine-
matic/isotropic hardening was considered by NGUYEN and PHAM [22].

The quality of the obtained estimation depends on the degree of strain hard-
ening. The less is the strain hardening, the better is the quality.

An example of application of the developed method is given.

2. Constitutive relations. Extended Melan theorem

The elastic-plastic isotropic damage material models by LEMAITRE [14] and
Ju 23] are employed as a basis for the formulation of constitutive relations.
The formulation is incomplete: only the relations which are employed in the
subsequent argumentation are formulated.

The damage and strain hardening are taken as isotropic. Thermal fluxes and
inertia forces are neglected. The components of the total strain tensor (&) are
assumed small, so that € can be decomposed into plastic (&) and elastic (&?)
parts: e=¢f+¢€P.
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The Hooke law is expressed by the equation € = C;' : 6, @ = o/(1 — A)
where A is the damage parameter, Cy is the initial fourth-rank elastic stiffness
tensor,0and o are the tensors of effective and nominal stresses respectively, and
(C: g)ij = Cyjkiext- The current (damaged) value of the elastic stiffness tensor
is C=Cy (1 - A4).

It is assumed that 0< A < A <1 where A, is the critical value of the damage
parameter, i. e. the material preserves its local integrity until A<A..

The plastic strain rate tensor is supposed to obey to the associated flow rule:
&7 = A3®/05, A\B(G,x)=0, A >0, B(d,x) <0 where ®(d,x) = ( is the yield
function, A is the plastic multiplier, and ¥ is the strain-hardening parameter.

The yield function is assumed to be strictly convex in the argument o, and the
inequality ®(0,x)<0 corresponds to the interior of the yield surface ®(o,x)=0
in the effective stress space @. Consequently, if ®(0,x)=0 and ®(&,x)<0 where
o is an effective virtual stress, then (o — &) : P > 0.

Let & = i——.;(x—t) where & is the nominal virtual stress, and A(x,t) is the
actual value of the d;.mage parameter. Then the last inequality becomes
(2.1) (c0—6): P >0.

The unloading process is assumed purely elastic with the current damage
value of the elastic stiffness tensor C=Cgy(1 — A).

The damage process is assumed to be coupled with the process of plastic
deformation, i.e. the damage can develop only if the plastic deformation process
is in progress.

It is supposed that the hardening is limited, i.e. there exists a material con-
stant x* such that 0< x < x*. The constant x* corresponds to the state of
hardening saturation. See also [6].

There are two concurring growing parameters in elastic-plastic damaged
solids: the parameter of isotropic strain hardening x, and the parameter of soften-
ing Aughe first increases the yield surface, the second diminishes it. It is assumed
that in the interval 0< x < x* the material is stable, i.e. all the subsequent yield
surfaces corresponding to increasing values of x and A comprise the previous
ones. In other words, this means that in the interval 0< y < x*the rate of strain
hardening surpasses the rate of damage growth.

Thus, if there exists a field of virtual stress o(x,t) that satisfies the inequality

o(x,t)
(22 o (220 ) <o
forany t > t; where Ag = xo= 0 are the initial values of A and y, then theinequality
o(x,t)
(2.3) P (m,x(x,t)) <0
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is valid for any to >0 until x < x*, where A(x,t) and x(x,t) are the actual
_ G(x,t)
= 1= A0
in the interior of the current yield surface for t>0. Consequently, due to the
assumption of material stability, inequality (2.1) preserves its format for t >0
and xo < x < x*.

Now with inequality (2. 1) in hand, it is possible to extend the Melan theorem
to the chosen material model [24]. The extended theorem can be formulated as
follows.

If there exists a virtual stationary stress field ¥(x) such that the fictitious
virtual decomposition & = s®(x, t) + #(x) satisfies inequality (2.2) at a time
to, then the structure under consideration shakes down, i.e. the plastic strain
rate tensor tends to zero: €’ — 0, and the total plastic dissipation is bounded:
W<w*<oo, where W is the total plastic dissipation, and w* is a number.

This condition is not only sufficient, but also necessary for shakedown.

Here sP(x,t) represents the fictitious actual purely elastic response of the
structure to the actual value of the load and for the time-independent value of
the damage parameter Ag(x) equal to its initial value (the value corresponding
to the time ty), and £(x) is a fictitious virtual time-independent stress.

More specifically, s®(x,t) is computed for the initial (given) value of the elastic
stiffness tensor C=Cgq(1 — Ag(x)), whereas, in contrast to it, the actual elastic
response o (x,?) is computed for the current (damaged) value of the elastic
stiffness tensor C=Cg(1 — A) where A(x,t) is the current value of the damage
parameter.

As the initial values of the damage and hardening parameters (Ag, xo) should
be given, the computation of s¥ does not cause any principal difficulties.

values of A and x. This inequality shows that the stress o(t) is

3. Features of the post-adaptation stage under cyclic loading

In conditions of cyclic loading, the features of the post-adaptation stage pro-
vide us with the possibility to obtain directly, i.e. without detailed investigation
of the loading path, a relation between limit values of the residual stress tensor
and the damage parameter.

If the condition of the extended Melan theorem is satisfied, i.e. if there exists
a stationary residual stress tensor p(x) such that the stress & = o®(x, t) + p(x)
satisfies inequality (2.2) for any ¢ >0, then the structure shakes down, i.e. even-
tually the deformation process reaches the post-adaptation stage.

Time-independent values of the residual stress tensor p,, the damage parame-
ter Ay and the hardening parameter x, are characteristic for the post-adaptation
stage of the deformation process, if it exists. These values and the corresponding
yield surface will be called hereafter the limit ones.
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At the post-adaptation stage, the representative actual stress point in the
effective stress space ¢ reaches the limit yield surface repeatedly, but the stress
does not cause plastic deformation and damage, and the limit yield surface does
not change. This is possible, if either some parts of the stress path o are placed
on the yield surface (neutral loading), or the stress path touches it at some
isolated points. In particular, this is valid at the time instants t* corresponding
to the beginning of unloading. These time points will be named the departure
instants.

At the departure instants the effective stress satisfies the equation of the yield
surface, therefore the following relation is valid:

= =o( 2L 1)) =0

The stress point cannot escape from the yield surface. According to the as-
sumption, (<0 for the stress points situated in the interior of the yield surface,
and (=0 for the points of it. Hence, the departure points are the points of abso-
lute maximum of the yield function ¢ = ® (o(t),x) with respect to t [25].

However, due to cyclic nature of loading, the yield function can have several
points of local maxima in the elastic region of the deformation process. These
points are situated in the interior of the yield surface.

This statement is valid for the departure instants during the whole defor-
mation process. At the post-adaptation stage, the quantities p, x and A do not
change in time. To account for this property, it is necessary to return to the nom-
inal stress tensor, and to employ the known decomposition o(x,t)=0c"(x,t)+p.

Consequently, at the departure instants equation (3. 1) can be represented as

E .
62 (9 =¢6) =8 (R - nylen ) =0
The function

of(x, t)

3.4 o(x)=——F—— — :

(3.4) (0 = T A g ~ M

determines the the stress path at the point x of the solid, in the stress space &.
Due to cyclic nature of the loading, stress path (3.4) has a number of apexes,

which are specified by the loading program. It is supposed, as it usually is, that

¢ is a non-decreasing function of effective stress tensor. Therefore the local and
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absolute extrema of the yield function correspond to the apexes of the stress
path (3.4).

Hereafter only the post-adaptation stage is considered, so the subscript “s”
is omitted.

At the post-adaptation stage, the stress path reaches the yield surface at one,
two or more points. The event, when the stress path reaches the yield surface at
a single point corresponds to one-sided loading and a deformation of the same
sign. This is the event of ratcheting. This paper is, however, devoted to Low
Cycle Fatigue. In this case the stress path reaches the yield surface at least at
two points. At these points the yield function reaches its absolute maximum
value equal to zero, i.e. these values of the yield function are equal to each other.
To model this situation, it is necessary to require that the absolute maximums
of the yield function should be minimal. As a result, the following specification
of equation (3.2) is arrived at:

o (x, t(x))

{m(x) = min max( (x) = minmax@( r

A -1 (x),x) =0.

n n. it

The above min-max problem should be solved for fixed values of x, A and .

The variables 1, A and p are connected by the relation p = (1 — A)n. Since
A is fixed, the minimum of the function max ¢ should be found with respect to
p. The residual stress tensor p should satisfy the equilibrium equations V - p=0,
and the boundary conditions p-v=0 at the part of the solid surface S, where
tractions are prescribed. Here, V is the vector with components d/dx;, v is the
unit vector of the external normal to Sy, and a-b = a;b;.

REMARK 1. The equilibrium equations can be satisfied by means of intro-
ducing the Airy functions, which are defined by the min-max problem at the
left-hand side of (3.5). The application of these functions to the problem of
plane strain/stress of linear elasticity is widely known [26]. In the case of plane
strain and the von Mises yield condition, the application of the Airy functions re-
duces the min-max problem (3.5) to a boundary-value problem for a hyperbolic
equation in partial derivatives of the second order (Appendix 2).

The solution of the min-max problem provides us with the values (m(x),
N (X)=pm /(1 — A) and t*(x) at every point of the solid under consideration as
a function of A and x. It exists if the yield function { = ®(@o, x) is convex in &
for any admissible values of A and .

There could be more than one solution of equation (3. 5) with different values
of N, corresponding to different shifts of the stress path in the case, when the
stress path has more than two apexes. This situation is shown in Fig. 1 where a
triangular stress path ABC is considered, as an example. Three solutions of the
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min-max problem can be obtained in this case by such shifts of the triangle ABC
which result in adjoining one of the sides AB, BC or CA to the yield surface.
Consequently, in the case under consideration three solutions to Eq.(3.5) are
possible.

Fra. L.

Equation (3.5) establishes a dependence between x and A. This dependence
defines the diameter of yield surface because changes in both xy and A trans-
form the yield surfaces similarly. Notice that different solutions of (3.5) lead to
different dependences, i.e. to the yield surfaces of different diameters.

Consider the von Mises yield condition for example. Its equation can have
the form as ® = f (o) — (1 — A) K(x)=0 where x(x) is the yield stress. The
quantity (1 — A)x(x) defines the radius of the von Mises cylinder. If f (o) is
fixed, then the radius is fixed as well.

Let us fix a pair (A,x) satisfying (3.5). The quantity n,, specifies a certain
position of the stress path (3.4) with respect to the yield surface defined by the
pair (A, x). Simultaneously n,, provides a minimal value to the function max.
As min max ( is equal to zero, a change in 1, provides a positive value to max ¢,
i.e. it shifts the stress path in such a way that at least one of its apexes falls
outside the limit yield surface.

In the case when the stress path has only two apexes placed at the limit
yield surface, Eq.(3.5) leads to such a position of the stress path that these
apexes coincide with the opposite ends of the chord of the maximal length,
whose direction coincides with the direction of the corresponding chord of the
stress path (Fig.1).
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Hence, in the classical case, when the applied load ranges between two values,
the solution to equation (3.5) is unique.

If there are more than one solution to equation (3.5), the solution resulting
in the best estimates, i.e. in the maximal lower estimate, and in the minimal
upper estimate, should be chosen.

4. Estimating the limit value of the damage parameter and conditions
of integrity

It is assumed in the subsequent argumentation that the conditions of shake-
down are satisfied.

Equation (3. 5) depends on the function o (x,t*) which represents the current
damaged, purely elastic response of the solid to the prescribed loading program.
This function satisfies the system of the linear elasticity equations with Hook's
law ¢P = C~!: o® where C=Cy (1 — A), for the boundary conditions corre-
sponding to the departure instants ¢*. Obviously, the value of A at ¢t = ¢* is
unknown in advance.

To overcome this deficiency, the following method is proposed. At the de-
parture instant t* the function o®(x,t*) + p,,x satisfies the yield condition. Here
Pm =Nm(1—A). This property gives us the possibility of computing o at t = t*
directly, i.e. without a detailed investigation of the deformation process, by means
of resolving the boundary-value problem for the system of the elasticity equations
supplemented with the equations C=Cgy (1 — A) and (3. 5) for the correspond-
ing boundary conditions. The solution of this system for fixed values of A and
x provides us with the values of *(x) and n,, (x,t*), aside from o®(x,t*).

For known t*(x), Nm (x,t*) and o®(x,t*), equation (3.5) defines A as a func-
tion of x at every point of the solid at the time instant ¢t*. Because A is a non-
decreasing function of t, its values at ¢ = t* are the limit values of A admitted
by the yield function under the prescribed loading program.

Suppose for definiteness that (,, is a monotonic function of A. Then the
extremal values of x (xo and xt*) define the extremal limit values (bounds)
of A admitted by the yield function and possible under the prescribed loading
program: Apin and Apax.

Hence, to determine the bounds for A, it is necessary to set subsequently
X = Xxo, and x = x*. Then the above-mentioned system of equations becomes
definite, and defines the unknown variables t*(x), N, (x,t*) and ot*E(x,t*) and
the bounds Apin and Apax..

As a result, the following estimate for the limit values of A at every point of
the solid is obtained.

(4.1) Amin (x) < Ax < Apax(x).
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This estimate provides us with the necessary and sufficient conditions of local
integrity for the given loading program: Apnjn <A, and Apac<A,, respectively. If
Amax<A., the local integrity is not violated. On the other hand, if Apin > A,
then the solid looses its local integrity.

The quality of the estimation depends on the difference § = Apax — Amin >0.
The less is § the better is the quality; otherwise, the lower is the degree of strain
hardening, the better is the quality.

The condition of overall integrity could be formulated as follows: the solid
saves its overall integrity, if the maximal value of the upper estimate over the
solid is less than the critical value of the damage parameter. It is supposed that
the necessary condition of overall integrity coincides with that of local integrity:
if the necessary condition of local integrity is violated, then the condition of
overall integrity is violated as well.

5. Accounting for kinematic strain hardening.

In this section, the developed method is extended to material models with
kinematic strain hardening, and additionally to the isotropic one.

Let BeP denote the back-stress tensor. It is assumed that the state of sat-
uration exists for the kinematic strain hardening, i.e. the values of back-stress
components are bounded by a material constant §*: |3;;| < B*.

The yield surface equation is written as ®(o — fx) = 0. The variables B(&P)
and x(&P) define the position and size of the yield surface.

Suppose that the solid under consideration shakes down to the prescribed
loading program. All the arguments given in Secs.3, 4 remain valid. The only
difference is in the definition of n which becomes (see (3.3) for comparison)

(5.1) n=—r—rxt+l-4)p.

The method developed above proceeds from the assumption that the condi-
tions for shakedown are fulfilled. To extend it to kinematic strain hardening, a
new sufficient shakedown condition accounting for both the isotropic and kine-
matic strain hardening is proposed. The condition is based on the notion of the
depository surface.

The yield surface ®(o, x)=0 is assumed regular with the principal radii of cur-
vature R; greater than 3*. Under this condition, the surface ®(&, x)=0 “parallel”
to ®(0, x) =0 exists with the principal radii of curvature equal to R; — 3*. This
surface will be named the depository one. The depository surface ®(&,y) =0 is
in the interior of the yield surface ®(&, x) =0, and separated from it by a layer
of constant thickness equal to 3*.
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In certain respect, the depository is similar to the “reduced elastic domain”
[27], and the “sanctuary” [28].

Consider for example the von Mises yield surface. In the principal stress space
it is a circular cylinder of the radius og1/2/3 where oy is the yield stress of the
material in tension. The corresponding depository surface is also a cylinder of
the radius crs\/'Qﬁ - g3*.

Assume that the initial (at t=0) values of the damage and strain hardening
parameters are Ay = xp = 0. Suppose that there exists a stationary residual
stress field p such that the following inequality is valid for ¢ >0:

5 . (08 (x,t) + p(x)
(5.2) @( = )<0

at every point of the solid under consideration.

Under the above assumptions, the proposed theorem can be formulated as
follows: the total plastic dissipation is bounded from above, if there exists a
stationary field of residual stress p (x), such that the stress & = o®(x, t) + p (x)
satisfies inequality (5.2) for any t > tp.

The detailed proof of this theorem is presented in the Appendix. An example
of application of the theorem is given in the next section.

6. Example

Let us consider the structure shown in Fig. 2. The structure consists of three
rods of the same cross-sectional area S, and the same material. The rods 2, 3
are twice as long as that of rod 1: I3 = I3 = 2l;. The structure is loaded by a
variable force P(t) ranging in the interval —P; < P < P, P; < P, where P(t)
is a given function of time. The rods can bear only uniaxial tensile/compressive
deformation.

Due to the symmetry, the strains and stresses in rods 2 and 3 are identical:
€9 = €3, 09 = 03. The strains of rods 1 and 2 are connected by the relation:
£1 = 2e9. The stresses in the rods satisfy the equilibrium equation: o) + 209=p,
where p1 < p(t) <p2, p=P(t)/S, p1 =P /S, p:=Ps/S.

It is assumed that the damage process is coupled with the process of plastic
deformation, i.e. the damage can develop only if the plastic deformation process
is in progress. It is assumed also that the damage process starts simultaneously
with the process of plastic deformation, i.e. the damage threshold is small enough.

In the elastic undamaged state of =20% = p/2. Assume that rods 2, 3 remain
elastic, whereas rod 1 experiences plastic deformation accompanied by damage.
The yield condition of the rod 1 material is taken in the form: ® = |6 — B(eP)| —
k(x) =0, or

(6.1) @ =|o— (1 - A)B(E")| — (1 — A)w(x) =0
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Fic. 2.

where A is the current value of damage parameter in rod 1, o and &” are the
nominal stress and plastic deformation, 3(e”) is the back stress, x is the harden-
ing parameter, and () is the yield stress of undamaged material. The functions
K(x) is assumed to be limited: x(x) is a known increasing function of x for y<x*,
and k = k(x*)=const for x > x*. It is supposed that for —p; < p < p, the ma-
terial is stable, i.e. the effective yield stress & = (1 — A)k(x) is an increasing
function of time up to xy = x*.

The equation of the depository surface is: & = |a| — (1 — A)(k(x) — 8*) = 0.
Assume that e? = 8 = x = A =0 at t= 0. The purely elastic response of rod 1 is
equal to of = p(t)/2. Inequality (5.2) takes the form: & = l‘g + ,(3| < k(0) — B~
Consequently, the shakedown occurs, if £(0) — 8* —0.5p2 > p—«(0) + 8* +0.5p;.
This inequality leads to the requirement (p; + p2) < 4(x(0) — 8*). If the last
inequality is valid, then it is possible to find such p that (5. 2) would be satisfied.
Consequently, the last inequality defines the constraints to values of p; and p;
for which shakedown occurs.

During the damage process, the current value of the unloading Young’s mod-
ulus of rod 1 is: E = FEp(1 — A), where Ej is its undamaged value. At the same
time, according to the assumption, Young’s moduli of rods 2, 3 preserve their
initial value Ey. Thus the purely elastic response of the structure to the current
value of the load p(t), after the plastic-damage process in rod 1 has started, is

1 p 1 :
af: =0 (1 TR JE = a:? =55 A Thus, the current values of nominal
1 p 1
t an b tedas: oy =p (1 - —— =03 =Fs5—r
stresses can be represented as: oy = p A +p, 02=03 25 _ AP?

where p; and p; are the actual residual stresses in rods 1 and 2, 3, respectively.
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Since the residual stresses should be self-equilibrated, 2p2 = p; = p where p

is a new notation for p;.
1

Now the yield function of rod 1 can be rephrased as ® = |p (1 - m) e
6] — (1 — A)s(x) with 8 = p— (1 — A)B, where pAf are actual values, and with
6 instead for 7).

At the post-adaptation stage €, 4, x,A do not vary. Under fixed values of
6 and yx, the function ( = ® reaches its absolute maximum value under p = ps,

1 1
1 oy s > 0: - = b g el S | for S »
1fp(1 e )+9 > 0:max® = &3 = py (1 — )+9 (1-A)k(x)

However, if p (1 - ﬁ) + 6 < 0, the yield function reaches its absolute

maximum value under p = —p;: max ® = &, = p; (1_2 1&) Si
(1= A)x(x). The function max ® is minimum, if ®; = ®. This equation yields

0= —% (p2 —p1) (1 - ﬁ) The corresponding value of the yield function

1
is equaled to {;;, = min max { = 2 ;pQ (1” 2—A) ~ (1 = A)x ).
The equation (;, = 0 determines A as a function of x: A =2 — pﬁz_lﬁ"(' ;’)2_

Because x is not greater than x*, and x(x) is an increasing function of x,
then

P1+p2
(6.2) Apax = 2 2% ")

This equality establishes the upper bound for A-variation admitted by the
yield condition (6. 1) under the given amplitude of the force P. One can see from
(6.1) that the length of the yield segment at the o-axis is in the inverse relation
to the value of A. That is why the value of A is also in the inverse relation to
the quantity p; + p2 equaled to the amplitude of p: the larger is the amplitude,
the smaller is the range of admissible values of A.

On the other hand, the lower estimate for A is obtained for x=0

. REDY
(6.3) Amin = 2 27 (0)

If Anax < Ag, then rod 1 preserves its integrity. If Anin 2 A, the rod fails.

7. Concluding remarks

7.1. According to the developed method, the general algorithm of computing the
damage parameter estimates (bounds) can be sketched as follows. First of all,
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the shakedown conditions for the solid under consideration have to be verified.
The boundary-value problem for the system of elasticity equations supplemented
with equations (3.5) and C=Cy(1—A) should be resolved for the extremal values
of the strain hardening parameter and for the given boundary conditions. The
solution of this system provides the bounds to the limit value of the damage
parameter at every point of the solid under consideration. With the bounds in
hand, it is possible to examine fulfilling of the local conditions of integrity.

In order to derive the conditions for overall integrity, the maximal value of
the local upper bounds over the solid should be found and compared with the
damage parameter critical value.

7.2. Under certain conditions, the proposed method can be extended to events,
when the loading program is unknown as a function of time, and only the apexes
of the load trajectory are given. For example, let us consider a solid subjected to
a few repeated loads such that at any time point only one of the loads is active,
i.e. the loads are applied in turn. The frequency of the application of loads, and
the laws of their changing in time are unknown. It is possible that the loads are
applied accidentally. The developed method is applicable to such situations, if
only the maximal values of the loads are known.

Actually, at the time instant corresponding to the maximal value of a load,
the stress tensor components reach their extremal values because they are pro-
portional to the value of the load. Hence, for every separately taken load, the
yield function reaches its maximal value at the instances corresponding to the
load maximal values. Therefore the maximal values of the load can be taken as
the boundary conditions for the boundary-value problem outlined in Sec. 5.

8. Summary

The method for estimating the local limit value of damage parameter was
developed. The method is based on the relation between the damage and strain
hardening parameters resulting from the limit yield condition, in which the rest
of arguments is specified.

It was assumed that the material is linear-elastic during unloading, and the
damage process was coupled with the process of plastic deformation: the first
can be in progress, only if the second develops. The current stress tensor was
decomposed into purely elastic and residual parts. The dependence of the current
values of the elastic moduli on damage was taken into account.

The shakedown conditions were assumed to be fulfilled so that the post-
adaptation (limit) stage of deformation existed. Although the limit values of
damage and strain hardening parameters depend on the deformation path, and
thus they are unknown in advance; nevertheless it is known that they satisfy the
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equation expressing the limit yield condition at the time points when the stress
path reaches it. This equation was utilized to obtain upper and lower estimates
of the limit value of damage parameter admitted by the given yield condition
under the prescribed loading program. The problem was in a proper evaluating
the residual stress that is connected with a parameter 7.

The consideration was restricted by the requirement that the stress path
reached the limit yield surface at least at two apexes. This situation is charac-
teristic for the phenomenon of Low Cycle Fatigue. To model this situation, the
parameter h is defined by the solution of min-max problem (3.5).

A system of equations was set which enables direct evaluation of the purely
elastic, damaged response (o®) of the solid under consideration to the prescribed
loading program at the departure instants.

Once the parameter 1 and stress o have been specified, the limit yield
condition issues in a relation between the admissible limit values of the damage
and the strain hardening parameters. Because the strain hardening parameter
is assumed bounded, this relation makes it possible to obtain the minimal and
maximal limit values of the damage parameter. These values provide a priori
bounds for the local limit value of the damage parameter admitted by the yield
condition for the prescribed loading program.

The quality of the obtained estimate depends on strain hardening. The lower
is the strain hardening, the better is the quality.

If the solid under investigation shakes down, and the upper bound at a solid
point is less than the critical value of damage parameter (which is a material
parameter), then the solid preserves its integrity at the point under considera-
tion. This is a sufficient condition of local integrity. On the other hand, if the
lower bound is greater than the damage critical value, then the local integrity is
violated. This is a sufficient condition for local failure. It can be rephrased as a
necessary condition of local integrity.

If a solid has to preserve its overall integrity, the condition of the local in-
tegrity has to be fulfilled at every point of the solid. An alternative formulation
is as follows: a solid preserves its overall integrity, if the maximal value of the
upper bound for damage parameter over the solid is smaller than the critical
value of the damage parameter.

Appendix A. Sufficient shakedown condition accounting for kinematic
strain hardening

The proposed condition is valid for classical material models with the only
restriction: the kinematic strain hardening is bounded. Let B(eP) denote the
back-stress tensor. It is assumed that the state of saturation exists for the kine-
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matic strain hardening, i.e. the values of back-stress components are bounded
by a material constant * : |5;;| < 8°.

The yield surface equation is written as ®(o — B,x) = 0 where x is the
parameter of isotropic strain hardening. The parameters B&P and yeP define
position and size of the yield surface.

It is assumed that the yield function is strictly convex in the first argument
s= 0 — B, and the inequality ®(s,x)<0 corresponds to the interior of the yield
surface ®(s,x)=0. Consequently, if ®(s,x)=0, and ®(8,x)<0 where § = o — B,
then (s — 8) : €P > 0. This inequality results in inequality (2.1).

As previously, it is assumed that in the interval 0< x < x* the material is
stable, i.e. inequalities (2.2), (2.3) are valid. However, if the kinematic strain
hardening is taken into account, inequality (2.3) can be violated during the
deformation process because the stress o can fall out of the current yield surface
due to its shift caused by the back-stress.

In order to make inequality (2.1) valid in the case where the back-stress is
taken into account, it is necessary to modify condition (2.2). To that end, a
“depository” surface ®(&,x)=0 is introduced. Its interior will be named the de-
pository. This surface possesses the property that the requirement ®(6 —pBx)<0
is satisfied, if the inequality ®)(&,x) < 0 is valid.

According to the assumption, the values of the back-stress components are
bounded by a constant (*. Let use consider the case when the yield surface
®(0,x)=0 is regular with the principal radii of curvature R; greater than g*.
Under these conditions, the surface 'i'(c'r,x} = 0 “parallel” to ®(0, x)=0 can be
constructed with the principal radii of curvature equal to R; — 3*. This surface
is the depository one.

The surface ®(6 — Bx) = 0 results from ®(Gx) = 0 by the shift equal to B.
As |Bij| < B*, the depositary surface ®(0, x) = 0 is in the interior of the surface
®(o — Bx) = 0, or touches it. Therefore, if ®(&,x) < 0, then ®(& — Bx) < 0 as
well.

Assume that the initial (at ¢ = 0) values of the damage and hardening pa-
rameters are zero: Ag = xo = 0. Suppose that there exists a stationary residual
stress field p such that the following inequality is valid for ¢ >0:

E -
(A1) b (“ (’;’?;"("),XO) <0,

at every point of the volume V of the solid under consideration.

According to the assumed material stability, a current yield surface comprises
the previous ones. Analogously, a current depository surface also comprises the
previous ones. Consequently, the following inequality holds at the every point of
the volume V for any ¢ > tp
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(A2) b (“E(f"_‘zf{t’)“ ”,x(x,t)) <0,

Since the depository surfaces are in the interior of the corresponding yield sur-
faces, inequality (A.2) results in the inequality

B :
(A.3) b (“ (;‘Ltfﬁtxf’i’)‘"),s(x, & e t)) <0,

Combining the above arguments it is possible to conclude that, if the stress
o (x,t)= o (x,t)+p(x) satisfies inequality (A.1) everywhere in V for Ay = x0=0,
and for any ¢ >0, then inequality (A.3) is valid for any t > 0 where A(x,t), x(x,?)
and B(x,t) are actual values, and xo <x(#)< x*.

Hence, if condition (A.1) is valid, then inequality (2.3) holds in the case
where the back-stress is taken into account.

Inequalities (A.1), (A.3) are the extensions of inequalities (2.2), (2.3) ac-
counting for kinematic strain hardening.

Notice that although the virtual stress path o = &(x,t) is in the interior of
the depository surface, the actual stress path o=0(t,x) exits out of it.

Thus, if there exists a stationary field of residual stress p(x) such that the
virtual stress & = o®(x, t) + p(x) satisfies inequality (A.1), then inequality (2.3)
is valid.

Now repeating again the arguments developed in [22], it is possible to show
that in the case under consideration, the rate of plastic strain tends to zero, as
well as that the total plastic dissipation is bounded.

Under the above assumptions the proposed theorem can be formulated as
follows: the total plastic dissipation is bounded from above and the plastic rate
strain tensor tends to zero, if there exists a stationary field of residual stress
p(x), such that the stress & = o®(x,t) + p satisfies inequality (5.2) for any
t > tp where xo(x) is the initial (at ¢t = ¢3) value of the hardening parameter.

Obviously this condition for shakedown is not necessary, it is only sufficient.

Appendix B. Reduction of min-max problem (3.5) in the case of plane
strain.

Assume that A and y are fixed. Min-max problem (2.5) posses an additional
condition on the residual stress field at every point of the solid. It is shown
below that in the case of plane strain, min-max problem (3.5) is equivalent to a
boundary-value problem for a hyperbolic equation in partial derivatives.
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p(x)
1-A
of function max ¢ should be found with respect of p. Consequently, (2.5) can
be reshaped in the form

The tensor 7 is in proportion to p: n(x)= . As A is fixed, the minimum

£ o2 otrs S 5 OE(X1 t) 5 p(}() —
(B.1) m = min max ( = min 1nax<I>(—-————-———1 — 1;)((x)) = ().
p t p t

The minimum of the function max ¢ with respect to p should be found under
the constraints: V-p=0 and p v=0 at the part of the structure surface S, where
tractions are prescribed.

In the case of plane strain, the components of the stress tensor can be rep-
resented as: 013 = —Y,22, 092 = Y11, 012 = Y,12 where Y(x;,x2) is the stress
function, and comma denotes partial derivative [24].

Suppose for simplicity that the surface tractions are prescribed as the product
of a periodic function of time @(t) and a function of boundary coordinate ©(x).
Then the tensor o is also represented as the product: o® = @(t)r(x,xs).
The components of tensor r(x) are determined by the solution of the elastic
boundary-value problem under the surface traction 0(x). Below r is considered
as known.

Take, for example, the Mises yield function: ®(ox)=fox)-4k(x)? where
k(x) is the yield stress, and f(0)=(011 — 022)% +40%, >0. Then

(85 +p)(1 - A) = @*(t) f(r) + f(p) — 20(t)[(r11 — r22) (P11 — p22 + 4712P12)]-

Suppose that the function @(t) ranges between ¢; = ¢(t;) < 0 and
@2 = @(t3) > 0. The function f(6" + p) considered as a function of ¢ is
assumed to be convex below. Therefore it reaches its absolute maximal value
either at @ = ¢, or @ = 9, depending on the relation between the values of
quantities f(r), f(p),2[(r11 — r22)(611 — 022) + 4712012), which in turn depend
on the values of residual stress tensor components (p1; — p22) and p12. These
values of f(6® + p) are denoted by f; and f, correspondingly. The absolute
maximum value of f(&® + p) is minimal, if f{ = fo. This condition leads to the
equation (ry) —ro2)(p11 — p22) + 2riep12 = (@(t1) + @(t2)) f(r). Expressing the
components of the residual stress tensor through the stress function, we arrive at
the following equation in partial derivatives with respect of the stress function Y':

(r11 — r22)(Ys11 —Yi22) + 2r12Y,12 = (@(t1) + @(t2)) f (r).

This equation is of hyperbolic type. It has two orthogonal families of charac-
teristic lines, which coincide with the trajectories of shear stress of the tensor r.
The characteristic relations are:

it +¢2
4

PeSina — g, COSx = sin2a, p,;sina = sin 2a
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where £,n are the coordinates along the characteristic lines, « is the angle be-
tween the abscissa axis and the &-lines, and p=Y,,,g=Y,s.

Along the solid border S, where the traction is prescribed F; = —dg/ds,
Fy, = dp/ds where F; and F, are the components of the traction corresponding
to the z,y axes, and s is a coordinate along the border. Because F; = F, =0

along S, then at S, of boundary p, ¢ = const.

The solution of this boundary-value problem determines the p-field in the re-
gion of influence of the boundary conditions that is bordered by the S, - segment
of the solid boundary, and the characteristic lines originating from the ends of
the S, - segment.

The p-field in the rest of the solid is defined by the solution of the elastic
boundary-value problem under the condition of the contact stress continuity at
the interfacial boundary between the elastic and plastic parts, and the conditions
at the part of solid boundary where the displacement prescribed.
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