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End effects in the dynamical problem of magneto-elasticity
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IN THIS PAPER we derive spatial decay bounds for the solutions of the linear dynamical
problem of magneto-elasticity in a semi-infinite cylindrical region. For the forward-
in-time problem we prove that an energy expression is bounded from above by a
decaying exponential of a quadratic polynomial of the distance. We derive a spatial
decay estimate for the backward-in-time problem as well. The proof works only if
the cross-section is a finite union of rectangles with axes parallels to Oz2 and Owxs.
As a conclusion we consider the extension of the preceding bound to the heat
conduction case.
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1. Introduction

IN RECENT YEARS much attention has been directed to the study of end effects
damping in several thermomechanical situations. The history and development
of this question is explained in the work of HORGAN and KNOWLES [9] and has
been periodically updated by HORGAN [7,8]. We may also recall the book of
AMES and STRAUGHAN [1] where the energy method is extensively used. Here,
we are interested in the coupling of elastic effects and magnetic effects. As far as
the author knows, there are no contributions made to the study of spatial decay
in the dynamical problem of magneto-elasticity. In this paper we derive spatial
decay bounds for the solutions of the linear dynamical problem of magneto-
elasticity in a semi-infinite cylindrical region. For the forward-in-time problem
we prove that an energy expression is bounded above by a decaying exponential
of a quadratic polynomial of the distance. We derive a spatial decay estimate for
the backward in time problem as well. The proof works only if the cross-section
is a finite union of rectangles with axes parallels to Ozs and Ozjs. The class of
cylinders satisfying this condition is wide. We recall that a condition of this kind
was imposed in the recent work of MUNOz-RIVERA and RACKE [14].

A derivation of the equations and recent papers on magneto-thermo-elasticity
and isothermal magneto-elasticity can be found in [2,4, 13, 14, 16, 22|
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This paper can be considered as an extension of the method proposed in the
study of several linear thermoelastic problems such as those in [17-20] and/or
nonlinear viscoelasticity problems as those in [21].

This paper is of interest from the mechanical and mathematical viewpoints.
Spatial estimates for the forward and backward-in-time problems of the magneto-
elasticity have not been studied at present. The boundary conditions of the
magnetic field (see (2.3)) put forward a new mathematical difficulty to work
with. In this paper we see how to overcome it when the cross-section is a finite
union of rectangles with axes parallels to Oz and Oz3.

The plan of the paper is the following: In Sec. 2 we obtain our spatial decay
estimate for the forward-in-time problem. To this end we prove that a certain
energy measure of the solutions satisfies a one-dimensional partial differential
inequality. Comparison arguments applied to this one-dimensional partial differ-
ential equation allow us to obtain our estimate. Section 3 is devoted to the study
of the backward-in-time problem. A spatial decay estimate is obtained along
time-spatial lines. The extension of these arguments to the heat conduction case
is sketched in the last section.

In this article we use the summation an differentiation conventions. Summa-
tion over repeated indices is assumed and the differentiation with respect to the
direction zj is denoted by , k. Letters in boldface stand for vectors.

2. Forward-in-time problem

We consider an initial boundary value problem for the linear magneto-elasti-
city. The linear partial differential equations that govern the magneto-elasticity
in the case of isotropic and homogeneous material are (see [5]):

(2.1) puy — pAu — (A + p)Vdivu — o[V x h] x H =0,

(2.2) Bh,— Ah— BV x [v x H] = 0.

Here u is the displacement, v = u; is the velocity and h the magnetic field;
H = (H,0,0) is a (known) constant magnetic field and A, u, p, @, B are positive
constants.

We study the system (2.1)-(2.2) in the semi-infinite cylinder R = (0,00) x D,
where D is a union of finite number of rectangles parallel to the z9 and z3 axes
(see Fig.1).

The boundary conditions are

(2.3) u=0,hn=0, [Vxh]lxn=0, on (0,00) x3dD t > 0.
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X,

Fig. 1.

Here and from now on, let n be the exterior normal vector to the boundary
at regular points. The initial conditions are

(2.4) u(x,0) = v(x,0) = h(x,0) =0 in R.

Though we could impose wider asymptotic conditions, in order to make calcu-
lations easier we assume that

(2.5) u, v, h, Vu, Vh — 0 uniformly as z; — oo, as :':1_3.

To complete the problem we should impose boundary conditions on the part of
the boundary {0} x D for all . But our analysis does not require the explicit
knowledge of these conditions. Existence and uniqueness results for this problem
could be obtained by means of semigroups methods in a similar way as in [16].
We do not consider this question here.

Now, we obtain a spatial decay estimate of the solutions of the linear problem
(2.1)-(2.5). From (2.3)2, we see that hona+hang = 0 and then hy 1n2+h3 113 = 0.
On the other hand, (2.3)3 implies that

(2.6) hygno + hyang = hono + ha1n3, haang = hozna, h3ong = h 3na,

on(0,00) x 9D t > 0.
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If we calculate h;2hina + h; shins we have

(2.7) h,‘lghiﬂg o ot h;‘,3h;‘n3
= hy(h12n2 + hy3n3) + ha(hoong + hasng) + ha(hsana + haang)
= hy(he,1n2 + h3,1n3) + ha(ho2na + ho gng) + ha(hsane + hasns),

on (0,00) x @D,

for all £ > 0. But we know that hy 119+ h3 1n3 = 0. As we are assuming that the
boundary of D consists of segments parallel to the axes, we obtain that either
ng = 0 or ng = 0. If we assume (for instance) that ng = 0, then hy = 0 and
ha3 = 0 on the segment and then hzs = 0 on the segment. When ny; = 0, we
may repeat the arguments and obtain

(2.8) highing + hizhing =0, on (0,00) X @D, t > 0.

It will be useful to define the matrix (oy;) by:

(2.9) o1 = pupy + (A + p)ujj, 012 = puye, 013 = puy 3,
(210) g21 = puz + O!Hh.Q, 092 = U292 + ()\ i ,u)uja- = ath, g3 = fiU2 3,

(2.11) 031 = pua,; + aHhs, o3 = puzy, 033 = puzs + (A + p)u;; — aHhy.
Then equation (2.1) can be written as
Oijj = Pli.

We now define a function that plays a fundamental role in this section.

{
(2.12) Kizt) = — / / [ouvi+ %hf,lhi]dads.
0 D(z)

Here D(z) denotes the cross-section at a distance z from the origin; it has the
same form as the domain D. The function K(z,t) results from the vector field

(8]

B

(¢4

B

o
(Uil”ﬂs'-l- hiyhi, oiovi + hi,Ehéa0£3vi+Bhi,3}li)-
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Thus, in view of conditions (2.8), the divergence theorem implies that

1
K(z+ h,t) — K(2,t) = -3 f (pvivi + pu juig + (A + p)ugug; + ahih;) dv

R(z+h,z)
t
f / h; J h{ J dvds,
0

R(z+h,z)

tle

where

R(z+ h,z) ={x € R,z <z < z+ h}.
The asymptotic condition (2.5) implies that for finite time
(2.13) zlLr& K(z1) =0

Using the divergence theorem we obtain that

1
(2.14) K(z,t) = = / (pvivi + pu; juij + (A + p)uiiug; + ahihi)dv

2
R(z)
L
+%/ / hg,jhg,jdvds.

0 R(z)

Here R(z) denotes the sub-region of R of the points that are at a distance greater
than z from the plane z; = 0.
Now, we define

(2.15) Bz ) = / K(p, t)dp.
2
It follows that
OF
(2.16) r ke -K(z,t),
and that

PE 1
(2.17) F ¥ / pUiv; + P jui + (A + p)uiiugj + ahihi)da

D(z)
1
+%/ / hi,jhg,j dads.

0 D(z)
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From the definition of the functions K and E we also obtain that

(2.18) %E = - / [Uil'vi 05 %hz‘.lhi]dv-
R(z)

It is worth remarking that

(219) / hih,-‘ldvz —% / hihida.
R(z) D(z)
Our next step is to estimate the time derivative of E in terms of the first

two spatial derivatives of E. Using repeatedly the arithmetic-geometric mean
inequality we can compute two positive constants A;, As such that

(2.20) |/a,:w,;dv[ﬁ%(/aﬂo“dv+/'u,-v,-dv)

R(z) R(z) R(z)

<A (A p,a,H,p) / (pvivi + pug juij + (A + p)uuy; + ahihy) dv

R(z)
OE
S HAl('\)u1a1Hip)'5'z_s

and

1 9°E
(2.21) 3 [ Ghitida< a@ . (A=)
D(z)

From (2.15)-(2.21) we obtain the inequality:

OE oF PE
=AW T
ot — A4 oz + 4 0z2

From inequality (2.22) and after the change of variable

(2.22)

(2.23) w(z,t) = exp(bat — b12)E(z,1),
where
A

(224) bl = '27121 b'z = b?AZs
we obtain the inequality

ow 9w

i =X
(2.25) 5 = Az 522
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Taking into account the asymptotic behaviour of the solutions, and using com-
parison arguments similar to those used in the work of HORGAN et al. [10,11],
we obtain the estimate (see also [17,18])

4
(226) Blz,t) < explbrz — bat) sup (e (ba) E0,9)] (s
t
\—3/2 N i ds
/(t_“’) exp_4A2(t‘—S) 2
0

Some algebraic manipulations on the right-hand side of the estimate (2.26)
(see [10,11,17,18]), allow us to obtain the following estimate:

B 2
(2.27) B(z,1) < %lexp(blz -7 T
where
(2.28) B(t) = (4tAy)'/? exp(—bat) sup (exp(bgs]E{s,O]).
0<s<t

Thus, we have proved:

THEOREM 1. Let (uj, h;i) be a solution of the problem determined by the sys-
tem of equations (2.1), (2.2), boundary conditions (2.8) and initial conditions
(2.4) such that the asymptotic condition (2.5) is satisfied. Then, the function E
defined in (2.15) satisfies the estimate (2.28).

3. Backward-in-time problem

In this section, we obtain spatial decay estimates for the backward-in-time
problem. This kind of questions are relevant from a mechanical point of view
when we want to have some information about what happened in the past by
means of the information that we have at this moment. Thus, we study the
system determined by (2.1) (which is independent of the direction of time) and
the backward-in-time version of Eq. (2.2). That is

(3.1) ph;+ Ah— BV x [v x H] = 0.
In this section, we deal with non-homogeneous initial conditions

(3.2) u(x,0) = u’(x), v(x,0) = v’(x), h(x,0)=h%x),
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and the boundary conditions (2. 3). We assume that

(83
(33) / (,O’Ug‘Ui + pug jug g+ (/\ + ,tl)uai‘iuj_j + ahih; + Bhi'jhi'j) dv < o0,
R

for all ¢ >0,
and that

i (8]
(34) lim / (ﬂ‘vi'vf + pui jui g + (A + p)uiiugj + ahihi + Bhi,jhi,j) da = 0,
D(z)

for all ¢ > 0.

We consider the function
(3.8) F.(z,1) //exp(ws —(pvivi + pui juij

+ (A + ,u)ui‘,-uj_j + ahih;) + %hidhi‘j)d'uds.

After a use of the divergence theorem, it follows that

t

(3.6) Fo(z,1t) =f / exp(ws)(oijv; — %hg‘lh,-)dads

0 D(z)

1
=5 / (pvdv] + pud jud; + (A + p)ul luJ ; +ahihl) dv
R(z)

2
R(z)

1
+= / exp(wt) (pvivi + pui juij + (A + p)uiiu; j + ahih;) dv.

Several uses of the arithmetic-geometric mean inequality allow us to obtain two
positive constants By, B3 (that depend on A, u, @, 8, H, p,w) such that

(3.7) [ / exp(ws)(oi1v; — —h 1hi) dads < BQE

0z
0 D(z)
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and
1 OF,
(3.8) 3 [ exp(wt)(pviv; + pugjuij + (A + u)ui'inJ + ahih;) dv < B;;—aT.
R(z)

It follows that

OF, F,
—-Bgi + 331-— - S(2),

\3:4) Fe 0z ot

IA

where

(3.10) S(z) = % / (pv? V0 + pVul.Vu® + (A + p)(divu®)? + ah®.h%) dv.

R(z)

This inequality has been studied previously ( see [3,6,12]). Thus, we may con-
clude the estimate

2 B - zZ2— 2 i zZ2—2p
(3.11) Fw(z,t) -+ S(z)(l exp( B )) < F,(z0,10) exp( B, ),
that is satisfied along the line

B B
(3.12) 2+ pt=n+ gjtu, >

We note that (3.11) implies

(313) Ju(zt) +5(2)(1-exp (- Z57))

< exp(wto)Jw (20, to) exp ( e ;220)'

where

t
w
14) ety = [ [ (Gl + ey
0

R(z)

[0

+ (/\ -+ ,u,)u,-,,-uj_j -} ah,’h,’) + 3

hihig) dvds,
that is satisfied along the line (3.12).

http://rcin.org.pl



254 R.QUINTANILLA

4. Magneto-thermo-elasticity

In this section, we sketch how to extend the previous results to the case of
magneto-thermo-elasticity. In this section the system of equations is:

(4.1) pu g — pAu — (A + p)Vdiva — o[V x h] x H+ V8 = 0,

(4.2) 04— kAG + ydivv = 0,

and Eq. (2.2) as well. Here 0 is the temperature measured with respect to a uni-
form reference temperature in the reference configuration, and « is an arbitrary
real number.

For the forward-in-time problem we supplement the boundary and the initial
conditions (2. 3), (2.4) with homogeneous boundary and initial conditions on the
temperature

(4.3) 0(x,0) =0, xe R and 0(x,t) =0, x€ (0,00) x 9D,

and supplement the asymptotic condition (2.5) with

(4.4) 8,V60 — 0 uniformly as z; = oo as 31'3.
If we define

t
(4.5) Ky(z,t) = K(z,1) »/ / k@ 16 dads.

0 D(z)

It follows that

1
(4.6) Kp(z,t) = 5 / (pvivi + puijuij + (A + puigu; + 6% + ah;h;) dv

R(z)
t
e / / (k()? -+ %h’f\_}htj) dvds.
0 R(z)
If we define
(4.7) Ey(z,t) = /Kg(p,t) dp,
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we may obtain an inequality of type (2.22), but now the parameters A; and A,
(and consequently b; and by) may also depend on k and -. Estimates of type
(2.26), (2.28) can also be obtained in this case.

For the backward-in-time problem we assume the initial conditions (3.2) and
we can supplement them by non-homogeneous initial conditions on the temper-
ature 6. The analysis starts by assuming conditions similar to (3.3) and (3.4)
and considering the function

t
(4.8) Gu(z,t) = / / exp{ws)(%(pvivi + pi i+ (A + p)ugiug
0 R(z)

+ ahih; + 6%) + %m,jhi,j 4 k&_iﬂ,,-) dvds.

Two estimates similar to (3.11) and (3.13) can be obtained. The parameters
B», By also depend on the new constitutive constants v and k.
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