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The plane single crystal under off-axis uniaxial tension
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THE TENSILE BEHAVIOUR of a rigid-plastic single crystal obeying Schmid’s law with
isotropic hardening is investigated for an off-axis tensile test in one of its symme-
try planes (plane single crystal). Identification of the active slip systems allows the
determination of the plastic spin and the resulting evolution of the crystallographic
directions. This results in the description of the tensile behaviour-stress and strain
response, onset of instability - depending upon the initial orientation of the crystal
and the hardening law.
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Notations
F  deformation gradient tensor
P plastic transformation tensor
R lattice rotation tensor
L  velocity gradient tensor
D  strain-rate tensor
W rotation rate-tensor
D  strain-rate tensor rotated in the crystallographic configuration
W  rotation rate-tensor rotated in the crystallographic configuration
T  Cauchy stress tensor
T  Cauchy stress tensor rotated in the crystallographic configuration
N* the s* “pseudo slip” system %* shear strain rate on the “pseudo slip” system(s)

http://rcin.org.pl



224 A. CHENAOUI, F. SIDOROFF, M. DARRIEULAT, A. Hiul

7*  resolved shear stress on the “pseudo slip” system (s)
Te  critical resolved shear stress
Y accumulated slip
1o initial resolved shear stress H, A, n hardening material constants
zy,T2, 3  space coordinates in the laboratory frame
Ty, Tz, T3 space coordinates in the crystallographic frame
2} orientation of the tensile axis
o tensile stress
£  tensile strain
77 transverse strain
¢  shear strain
o' stress at the onset of necking
g’ strain at the onset of necking

1. Introduction

ANISOTROPIC PLASTICITY at large strain is an important problem for many
engineering applications and in particular, for deep drawing and metal forming.
The anisotropy of the behaviour and its evolution as well as plastic instability
are some important features to be described and it is now well understood that
the plastic spin is an essential issue to be dealt with.

From a macroscopic point of view, the plastic spin can be either a priori
defined from the deformation (kinematic rotating frame [1]) or a posteriori pos-
tulated from the evolution equation (plastic spin [2]). It has, for example, re-
cently been shown in [3] that the plastic spin and the initial orientation play a
very essential role for instability analysis in an orthotropic material with Hill’s
quadratic criterion and Loret’s plastic spin equation [4].

From a microscopic point of view however, the plastic spin directly follows
from the evolution of the crystallographic directions, which in turn results from
crystallographic glide along the active systems of each grain. The mechanics
of single crystal therefore should play an important part in understanding the
plastic spin and its influence upon anisotropy evolution and plastic instability.

The purpose of the present work is to investigate this question in the special
case of the off-axis tensile behaviour of a fcc single crystal in one of its symmetry
planes (100) or (110). As shown in [5-7], the behaviour of the real 3D crystal
can in this case be described through a two-dimensional model: the plane single
crystal.

A rigid-plastic model with isotropic hardening will be used and attention will
be focussed on the dependence of the tensile behaviour and of the necking limit
according to Considére’s criterion [8] upon the initial orientation of the crystal
and the hardening law.
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2. Mechanical framework

2.1. Plane single crystal

A single crystal is a three-dimensional anisotropic material. In general, a two
dimensional strain state will result in a three dimensional stress and vice versa.
This difficulty is usually skipped by considering some fictitious two-dimensional
crystal (double slip model [9-11]).

However, if the 3D single crystal is considered in one of its symmetry plane,
then plane stress and plane strain are compatible resulting in a true two-dimensio-
nal model: “The plane single crystal” which is defined by the kinematical equa-
tions:

(2.1) F=RP, BP L= 41N,

where F, P and R respectively, denote the deformation gradient, the plastic
transformation and the lattice rotation tensors, while N¥ is the plane pseudo-slip
system, defined in the crystallographic (isoclinic) configuration, which represents
the symmetric contribution of two symmetric systems to P P~ ([5-6] and [12]).

The velocity gradient L, strain rate D = (L)° and rotation rate W = (L)
then result as

(2.2) L=FF! = RRT +RPP'R7,
(2.3) D=RTDR =Y 4 (&)

; m
(2.4) W=R"WR = RTR + ) #(N*)*,

where suffices ( )5 and () respectively, denote the symmetric and skew-symmetric
part of any tensor, and where a superimposed bar denotes tensors rotated in the
crystallographic configuration.

In the following, attention will be focussed on rate-independent plasticity
(Schmid’s law)

(25) 20 if =71, ¥=0 if |rf|<7, <0 if 7°=-7,

where 7, is the critical resolved shear stress, and 7* is the resolved shear stress
defined as

(2.6) P =TuNy T=R"IR,
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with T being the usual Cauchy stress tensor as observed in the laboratory frame
and T the corresponding tensor in the crystallographic configuration.

In this work the uniform isotropic hardening will be assumed with the same
7. for all systems. The hardening rule is taken as

(2-?) g = Tc[:”,

where
g T
5= ¢l and 7= [ a
g 0

Two cases will be considered in the following:
- linear hardening

(2.8) e =7(1+ H7),

- nonlinear power law hardening

(2.9) e=m(l+4(H)")

where 79 is the initial resolved shear and H, A and n are material constants.
In this plane case, the rotation R and the stress tensor T are respectively
given by

cos(f) sin(6) 0

R = —sin(@) cos(@) 0 |,
0 0 i
SRR ERD)
(2.10) RFR=6]|-100|,
0 0 0
or T 0
B = T g9 0 3
g @ 0
with the following relations:
Th = 4! 302 4 Z ;G’z cos(28) — 7sin(26),
(2.11) = 71 ;“2 — 22 cos(26) + sin(26),
Ti2 = & ; L sin(26) + 7 cos(20).
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For a fcc single crystal there are 12 systems associated to the planes {111}
and directions <110>. This 3D single crystal gives rise to two plane single crys-
tals corresponding to a plane stress and strain state in the {100} and {110}
planes, respectively. We shall therefore restrict our attention to these two cases,
respectively denoted by Pfccl and Pfec2 (plane fcc) single crystals. The crystal-
lographic frame (Z; , 2, Z3) is chosen
for Pfccl : Z; = [100], Zp = [010], Z3 = [001],
for Pfcc2 : ; = [001], Zo = [110], 3 = [110].

The corresponding pseudo-slip systems are summarized in Table 1 (Pfcc 2 mo-
del) and Table 2 (Pfccl model) and the Reader is referred to Refs. [5-7] for further
details.

It should be noted that the Pfcc2 single crystal presented here has recently
been used by [13-15] for the bicrystal investigation in (110) channel die compres-
sion.

Table 1. Pfcc2 single crystal

System (s) Resolved shear 7° Pseudo-slip N
T2 -1
1 = — N = —[ ]
V3 V3
Ty — V2T L, [ -2 0 ]
2 B S 2 S e N = —
i 2V/3 23 1 0
3 " T2 +V2Tn N = r 2 b I
2v/3 2./3 18 %0)
4 T2 + ﬁ(Tu —ng) = 1 [ /2 9
4 T = N = —
2V3 03| -1 -2
5 T2 — \/E{Tn *Taa) —5 ) -2 2
5 T = N = —
2V3 23l -1 V2

2.2. Off-axis tensile test

Our attention is focussed here on off-axis tensile test [16], where the Cauchy
stress T and the deformation gradient F are given, in the laboratory frame
(T] 3 L2, $3)1 by

g et ite 0
(2.12) T=|0 00| F=|0 e 0
8. 0 eietn)
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Table 2. Pfccl single crystal

System (s) Resolved shear 7* Pseudo-slip N
: B T“J;?z N = %[ _11 —11 ]
3 73=T22\;§T]2 -N*:!:%[ ? (1)
4 ol THJETQ N = %[ é —01
5 i Tu\;ETzz N° = %[ ? _01
6 46 = Tu\*/-éfn ﬁf':%[ i :i
The strain components €, n and ¢ are given by
m=d, e, (=),

where (ho,dp) and (h,d) respectively, denote the initial and the current length
and width of specimen, and where £ is the rotation of the final section (Fig. 1).

?
T
7
NI A, =y
= o 4
R N
X 2
e hy — » -’f &
<+ h \* —
o
FiGc. 1. Off-axis uniaxial tensile test.

The tensile direction z; is taken in the crystallographic plane
viously defined.
The lattice angle 0 is the angle between the z; tensile direction

(%1, Tg) pre-

and the fixed

lattice orientation #;. The strain rate D and rotation rate W are obtained from
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Eq. (2.12) as

(2.13) Du=¢, Dn=19, Dia=Wy= %Eg_",
or in terms of the rotated tensor D introduced in Eq. (2.3)

D Dyy Dy — D _
g = 1 e 4 il 22 c0s(260) + Dia sin(26),

2 2
(2.14) 7= Du ;’D” i ;Dﬂ cos(20) — Dy sin(26),

¢ = 2e(n—¢) {—21—1# sin(20) + Dy cos(?ﬁ)} 2

where D;; are given from 4* by Eq. (2.3) and Table 1 (resp. table 2) for Pfcc2
(resp. Pfccl) single crystal.
Similarly, by combining Eqgs. (2.4), (2.6), (2.10) and (2.13), the lattice spin

equation and the rotated stress tensor T can be expressed as
W, [T = 3
(2.15) W12=9+§¥’?3{N152—N251}v

(2.16) Th = =(1+cos(20)), Tpn = %{1 —cos(20)), T2 = %sin(?ﬂ).

| Q

3. The Pfcc 2 single crystal
3.1. System activity

According to Eq. (2.16) and Table 1, the resolved shear stresses 7° are given by
(3.1) = () o,

where the functions f*(6) are respectively defined by

£1(0) = 5 {sin(20)},

£2(6) = 4—\1/—5 { — V2 + sin(20) — V2 005(29)} ,
(3.2) £3(0) = 4% { V2 +5in(26) + V2 cos(26)} ,

£i(0) = ﬁ { sin(20) +2v2 cos(26)} ,

£50) = :;—13 { sin(20) — 22 cos(ze)} .
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For a given @, there will usually be one active system corresponding to the
maximum absolute value of the five quantities f* defined in relation (3.2). The
corresponding system activity is described as a function of # in Table 3 with
tg(260,) = 2v/2. The tensile stress now follows as a function of 8 by

Te

Table 3. System activity for the Pfec2 single erystal

Active system Activity conditions Slip rates
0
g =1 and ° =+ >0
w2 -0,
gt ™=r and ** =+ >0
R w/2
4~ = -7 and 7' = -7 ¥4 <0
/246,
ar P=-r and P*=-7. 4°<0
\ b

. g . & s
The corresponding curve — is represented in Fig. 2.
Te

3,7
33 b
L 35}
Tc
25 |
2,] L A A
0 45 90 135 180

di
FiG. 2. The Pfcc2 versus Tg versus the crystal orientation 6.
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3.2. Lattice rotation

Once the active system is known, the kinematical analysis directly proceeds
from the relations (2.3) and (2.15). Since the system (1) is never active, these
equations are reduced to

1 : ; i .
Dy, =%{’)’3+’)’4 ”75_72},

S Do == {1~ 11},

1
Dio =—={¥* +¥* +4* +4°},
12 4\/:;{’? W 7}

W |
3.5 Wi =0 - — {34* + 3y° — 42 — 4°}.
(3.5) 12 4\/5{'7 e = ’T}

For instance, if the active system is the system (3), the Eq. (3.4) becomes

= 1 = = 1
3.6 Du=—%x%% Dpn=0 Dip=—=4,
( ) 1 \/6’)’ 22 12 4\/3

which give from Eq. (2. 14)

3.7 ¥ = j—,
with the same function f3(6) as in Eq. (3.2)3

Using Eqs. (2.13), (2. 14), (3.5) and (3. 6), the component W, can be written
as
cos(20) — v2sin(26) .
43 f3(0) '

(3.8) o %e(s—m L

Combining Egs. (3.7) and (3. 8), the evolution Eq. (3.5) gives g = o as

pr
do  g*(0)

‘3'9) d= = ey

where

(3.10) *(0) = 4-%{ 1 - Vasin(20) + cos(20)} .
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The other cases are analyzed in a similar way. More generally, we obtain for each
active system (s)

(3.11) i
@ _ g0
i &~ 7O

where the functions f*(f) are defined in Egs. (3.2) and ¢*(0) are respectively,
defined by

1 - ?r
g% (0) = T { 1+ V2 sin(20) + cos(29)} . 0<6< 5 0,
ﬂm:ﬁ {1— V2sin(20) + cos(za)}, g-e,,gagg-,
(3.13) ) 4 ' ? e
g (0) = WE { -3 —2V/25in(26) + cos(?Q)} . <6< -~ + 0p,
g°(0) = iy 2] {2\/2_sin(20) + cos(260) — 3} i +0,<0<m
44/3 } 2 P =

de :
Fic. 3. The Pfcc 2 plastic spin T Yersus the crystal orientation 6.

s e D) ol : : 2
The function 7 8 represented in Fig. 3. The lattice rotation evolution,
from its initial value g, directly follows from this curve. For instance, if 0 < 6y
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< Og (tg(&E) = —\}—5), j—g is positive so that @ increases and tends to the stable

orientation €, while if 8 < 6y < 7/2,  decreases toward the same stable
orientation. Similar results are obtained for 7/2 < 6y < w. This evolution is
represented in Fig. 4.

170

/ 110°
115 g

60 \ 30"

_//_ 50
5 1 L

0,0 0,5 1,0 1,5
E

FiG. 4. The Pfcc 2 lattice spin versus the strain e, for various values of initial orientation 8g.

3.3. Stress and strain response
The stress response o(e) directly follows as

e 7e(%)
(3.14) o(e) —‘ 0]

where # and % are obtained, as a function of ¢, through the integration of the
df

expression (3.11) and (3.12) of i_:- and %

This response is illustrated in Figs. 5a-b (linear hardening) and Figs. 6a-b
(power law), for various values of 6p. It can be seen that, depending on the
crystal orientation and on the hardening rule, the tensile response ¢ may be an
increasing or decreasing function of € (a negative or a positive hardening). Neg-
ative hardening however will decrease when the mechanical hardening increases.
This is illustrated in Fig. 7 which for linear hardening shows the angular region
corresponding to tensile negative hardening as a function of the hardening pa-
rameter H. In particular, negative hardening disappears for H ~ 0.4 which is a
rather high value.

Similarly, for the strain, the corresponding differential system, which by in-
tegration gives n and ( in terms of €, is easily obtained from Egs. (2.14), (3.4),
(3.11) and (3.12).
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The corresponding evolution, which in fact does not depend on the hardening,
is plotted in Figs.8a-b for different values of 6y. These results illustrate clearly
the effect of rotation on the single crystal behaviour.

5,0
(@
88°
| e
9
T 30°
30 F
=
2,0 . .
0,0 0,5 1,0 1,5

2 1 i
0,0 0,5 1,0 1,5

FiG. 5. The Pfcc2 tensile response ¢ versus the strain £, for various values of initial
orientation #p and with linear hardening. (a) when H = 0.1 (b) when H = 1.
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Fia. 6. The Pfcc 2 tensile response o versus the strain £, for various values of initial
orientation f; and with power law hardening. (a) when A =1 and n = 0.2, (b) when A =1
and n = 0.8

[235)
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0,0 02 0,4

FiG. 7. The Pfcc 2 angular region (H,#p) corresponding to tensile negative hardening as a
function of hardening parameter H for linear law.

0,5
0,3
0,1

-0,1

0,05
(b) 60°and 120°

0,05 30°and 150°

0,25 . .
0,0 0,5 10 1,8

Fi1G. 8. The Pfcc?2 strain response for various values of initial orientation; (a) the shear ¢
versus the strain €, (b) the transverse strain 7 versus the strain e.

[236]
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4. Plastic instability
4.1. Considére’s analysis

We are now interested in the necking instability which may occur during a
tensile test. Considére’s necking criterion is used [8], which associates necking to
the maximum of the tensile force P = So = Spoe™¢ (plastic incompressibility),
leading to the following criterion:

(4.1)

Q=
51§
I
[

d
In this relation o is given by Eq. (3. 14), while d_z is calculated, for each active

system (s), from the activation condition (2.5)
(4.2) o° = sgn(f°)7e,

where sgn(x) is the sign of the scalar quantity x.
Using Eq. (3.1), this gives

df*g* | sdo _ 5y d7e

rovidin ég as:
- for linear hardening (Eq. (2.8))

do  Hry—0*
(4.3) Es'g‘ - "("”f—)?

- for nonlinear hardening (Eq. (2.9))

do _nAr (3)"7' -0

de (F*)2 ’

where the function ¥*(6, o) is defined by

(4.4)

4(0,0) = g“%o.

For a given tensile test the stress 0! and strain ¢!, corresponding to the onset

of necking, are then easily deduced from the criterion introduced in Eq. (4.1).
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4.2, Applications

The values of o/ and €/, as a function of the initial orientation 6y and for
different cases of hardening, are represented in Figs.9a-b and 10a-b.

This illustrates the combined effect of hardening and orientation on necking.
It should be noted that in agreement with Fig. 7, necking can happen from the
very beginning (¢! = 0). The corresponding region in the (6y, H)-plane (for linear
hardening) is represented in Fig. 11.

[s]
T
0 A L A
0 45 90 135 180
)
12
9
ol
T
0 ¢
3 A A A
0 45 90 135 180

FiG. 9. The Pfcc2 tensile stress o' at the onset of necking versus the initial orientation o
(a) linear hardening, (b) power law hardening when A = 1.
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(a)
T H=
gl 10
D's - Hw.l
00 . A R
0 45 90 135 180

o.n — A A
0 as % 135 120
)

Fi1G. 10. The Pfcc?2 tensile strain &’ at the onset of necking versus the initial orientation o;
(a) linear hardening, (b) power law hardening when A = 1,

135 |

B8y 90
45
el =0
o '
0,0 03 0,6 09

FiG. 11. The Pfcc 2 initial orientation as function of linear hardening parameter H
corresponding to &’ = 0.

239]
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5. The Pfcc1 behaviour

Similar analysis can be performed in the Pfccl case and the corresponding
results (Figs. 12-16 and Tabl.4 ) are presented below without further details.

25

24

23

21 F

6

o : ;
Fic. 12. The Pfce1l — versus the crystal orientation 6.
Te

1,0
0,5 |
9 g0 fgommmmemmee e G wmmmmee
de
05 f
-1'0 A L s A
0 15 3 4 60 75 9

6

Fic. 13. The Pfcc1 plastic spin g versus the crystal orientation .
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0°
10
2
8 35°
o
6}
4}
2 L i
0,0 05 1.0 1.5

FiG. 14. The Pfcc 1 tensile response o versus the strain ¢, for various values of initial
orientation #g. Linear hardening when H = 1.

6
(a)
on
s -
2
35°
4 F
18
i)
3
2 i :
0,0 0,5 1,0 1,5

FiG. 15. The Pfcc1 tensile response o versus the strain €, for various values of initial
orientation fp. Power law hardening with A = 1: (a) when n = 0.2; (b) when n = 0.8.

[241]
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(a)

0,7
(b)

0,6

0,4

L3

By

F1G. 16. The Pfcc 1 tensile stress o (a) and strain €’ (b) at the onset of necking versus the
initial orientation fp, for linear hardening with H = 1.

Table 4. System activity for the Pfcel single crystal

Active system Activity conditions  Slip rates

0
2% =7 and 7= 1 a* >0

B4 w/4
3t =1 and 7 =1 a* >0

w2

[242)
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6. Conclusions

A f.c.c. single crystal undergoing stress in one of its symmetry planes {110} or
{100} retains this element of symmetry throughout the deformation. Taking
advantage of the consequent simplifications, a fully analytical investigation of
the plastic behaviour is possible in the case of large strain deformations.

In the present paper, the case of the off-axis uniaxial tension of a rigid plastic
crystal is presented. Double slip is activated from the onset on symmetric slip
systems, leading to a case of “plane deformation” that can actually be observed in
real crystals. Strain hardening is taken as isotropic, but with various hypotheses.
The rotation of the crystal with respect to the tensile axis is calculated, and
stability is put in evidence when the tension is performed along the < 112 >
direction (plane of symmetry {110}) or the < 001 > direction (plane of symmetry
{100}) . The possibility of softening is put in evidence for specific ranges of the
initial orientation. The dependence of the threshold of strain localisation on
a combination of crystal rotation and strain hardening effects is shown in the
simple case of Considére’s criterion.

This study completes previous investigations on the simple shear and the
torsion in similar symmetry conditions, aiming at a full understanding of the
two-dimensional behaviour of crystals.
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