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Immersed boundary approach to stability equations for
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J. SZUMBARSKI

Institute of Aeronautics and Applied Mechanics,
Warsaw University of Technology,
24 Nowounejska St., 00-665 Warsaw

AN EFFICIENT NUMERICAL method for the linear stability equations of a spatially
periodic channel flow is presented. The method is based on global Fourier-Chebyshev
approximation of a disturbance velocity field. The physical flow domain is embedded
in a larger computational domain and the boundary conditions are re-formulated as
internal conditions imposed at immersed boundaries. The advantage of this approach
is an avoidance of domain mapping, leading to tremendous complication of governing
equations and to excessive computational cost. The results of numerical tests are
presented. Favorable convergence properties with respect to the length of the Fourier
expansions are demonstrated.

1. Introduction

DURING THE LAST two decades, a significant progress has been achieved in
understanding the dynamics of instability and transition in many kinds of shear
flows. A great deal of work in this area has been devoted to the analysis of
parallel flows, like the Cuette flow, plane Poiseuille flow or flow in a pipe (Hagen-
Poiseuille flow). The common feature of such flows is a very simple geometry of
boundaries of the low domain.

In the Ref. [1], FLORYAN investigated the problem of linear stability of shear
flows in the presence of surface roughness. Actually, the boundary irregularities
were “simulated” by a distributed surface transpiration. Thus, the flow bound-
aries were still straight lines and the author was able to apply directly a standard
Fourier-Chebyshev method. In later works [2] and [3], the flow in a channel with
corrugated walls has been investigated. The stability equations have been solved
in a transformed computational space by a Chebyshev-collocation method. The
transformation from the physical space (corrugated walls) to the computational
space (straight walls) has generated, however, a tremendously complicated form
of the governing equations. Most importantly, the stability equations in the trans-
formed space could not be cast in the reduced form, i.e. the form involving only
amplitude functions of the wall-normal velocity and vorticity components. There-
fore, the algebraic eigenvalue problems solved in [2] or [3] were typically two or
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more times larger than those for “simulated” roughness in [1], though using the
same number of Fourier modes to the represent the disturbance fields. Conse-
quently, the numerical difficulties in accurate determination of unstable modes
have been encountered.

The objective of this paper is to propose an alternative approach. Working
directly in a physical space gives an obvious advantage of dealing with a much
simpler and smaller set of equations. However, the use of a spectral method
based on global basic functions implies that the computational domain is a
Cartesian product of two intervals, i.e. the ranges of variation of the stream-
wise and the wall-normal coordinate. Consequently, the computational domain
of such a method is by default rectangular. On the other hand, the shape of the
actual low domain is not a rectangle — the lower and upper boundaries are wavy
lines (although the magnitude of the wall corrugation is assumed to be rather
small). Nevertheless, the formulation of the spectral method working directly in
the physical space is indeed possible. In the Ref. [4], SZUMBARSKI and FLORYAN
proposed a method based on the idea of immersed boundaries. The curvilinear
physical domain is embedded in a rectangular computational domain. The phys-
ical boundaries of the flow (walls of a channel) are located in the interior of the
computational domain and the conditions imposed on the velocity field at the
channel walls are enforced as internal conditions. The objective of this paper is
to demonstrate that the same approach can be used to obtain an effective and
accurate solution method in the linear stability analysis.

The paper is organized as follows. In the Sec. 2, the problem of the basic flow
determination is formulated mathematically and the numerical method is out-
lined. The presentation in that section follows closely the Ref. [4]. In the Sec. 3,
the equations of linear stability are formulated. Section 4 is devoted to detailed
description of the discretization of the stability equations using Chebyshev poly-
nomials. Section 5 presents the major idea of the paper, i.e. the implementation
of the original boundary conditions as the internal conditions in the extended
computational domain. In the Sec. 6, the structure of the generalized eigenvalue
problem obtained as a result of the spectral discretization is described. Finally,
the results of the convergence tests are provided in the Sec. 7. Some additional
technical issues are summarized in the Appendix.

2. Flow in a wavy channel

Consider the viscous flow in a plane channel with wavy boundaries. The walls
can assume arbitrary shapes described by y(x) and yy(x), where the subscript
L refers to the bottom wall and the subscript U refers to the upper wall of the
channel, respectively. The shape of the walls is assumed to be spatially periodic
and thus the functions yp(x) and yy(x) can be expressed in the form of the
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following Fourier expansions:
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yi(e) = (Ao)r + 5 3 (A exp(ikaz) +
k=1

B
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52" (Ax); exp(~ikaz,)
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(Ag)p exp(—ikaz)

b | =
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y(z) = (Ao)u + 5 3 (A)y exp(ikaz) +
k=1

tod

=1

where the wave number « characterizes the spatial period A; of the wall ge-
ometry, i.e. Ay = 2m/a. The coefficients (Ag)y, = -1 and (Ag)y = 1 define
y-coordinate of the middle lines of the wavy walls. The star superscript refers to
the complex conjugation.

One can define the vertical extent of the flow domain as the interval [Yz, Yy/],
where Y, = min yr(z) and Yy = max yy(z) .

T 1T, T A

Since we are mostly interested in small or moderate magnitudes of wall wavi-
ness, it is reasonable to represent the velocity and pressure fields as the sums of
the reference values, i.e. the values corresponding to the flow in a channel with
straight boundaries (the Poiseuille flow)

Vo (x) = [uo (2,9), vo (,9)] = [uo (y) , 0] = [1 - ¢?, 0],
po (x) = =2z/Re ,

(2.2)

and the modifications caused by the change of shapes of the boundaries, namely

Vo (x) = [u(z,y), v(z,y)] = Vo (x) + V1 (x)

(23) = [uU (y) ) 0] + [ul (.’L‘,y] U1 (may)]a

p(x) = po (x) +p1(x) .
It should be clear that for the wavy walls we have Y, < —1 and Yy > 1. Thus,
the formula (2.3) involves evaluation of the reference velocity parabolic profile
also at points located outside the original range [-1,1].
Substitution of the representation (2. 3) of the flow quantities into the Navier-
Stokes and continuity equations results in the following form of the governing
equations:

: 1
up Oy + uy deuy + vy Dug + vy Sym = —Bxpl e ﬁ (33;;,;1451 v ayyu[) )

1
(2.4) ug zv1 + 1wy Ozv1 + vy Oyvy = —dypy + Re (Ozzv1 + Oyyv1) ,

deuy + 6yU1 =0,
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where D stands for the differential operator d/dy, i.e. Duy = dug/dy. It is
convenient to formulate the problem in terms of the stream function of the
velocity modification defined as w; = 9, ¥, v; = —0;¥ . The following equation
can be derived:

> 1
(2.5) (ug0y + 0y ¥ Oy — ;¥ 8,) AW — D%uy 0,V = %AZ‘P,
where A denotes the Laplace operator. Since u; and v are periodic in & with

the period A\;=27/c, the stream function can be represented as

n=+o00

(2.6) T(z,y)= ), Baly) &

n=—0oo

where ®,, = ®*  in order for ®,, to be real. Inserting the expansion (2.6) into
the Eq. (2.5), and separating the Fourier harmonics, the following system of the
ordinary differential equations is obtained:
(2.7) [D2 - inaRe (uyDy, — D*w)] @,
k=+00
— i Re Z [k D®,,_ D@y — (n — k) @ D DO = 0,

k=—00

where D, = D? — n%a?®. The boundary conditions at the channel walls are
expressed in the following form:

o uo (yr (z)) + w1 (z,yL (z)) =0 and v (z,yL (z)) =0,
' ug (yu (2)) + w (2,90 () =0 and vy (z,yu (z)) = 0.

To obtain a complete formulation two additional conditions have to be im-
posed. The first one is simply the selection of the (constant) value of the stream
function at one of the walls. The choice of the second is, in essence, arbitrary, but
two possibilities are particularly important. We can prescribe the modification
of the volume flux or the modification of the average pressure gradient along the
channel. In this study, the first option is chosen and the additional conditions
have the following form:

29) o (yL (z)) + ¥ (z,yL (2)) = 0,
' Yo (yu () + ¥ (2,90 (2) =Q +gq,

where ¥, denotes the stream function which corresponds to the reference flow,

2 1
i.e. it is defined as Wo(y) = 3 + 9~ §y3. Symbol @ denotes the volume flux
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of the reference flow, namely

1
Q=/(l—.f12)dy= %—,
b

while symbol ¢ denotes the assumed modification of the volume flux. In the
remaining part of the paper we assume that the flow in a wavy channel preserves
the original volume flux, i.e. q = 0.

The numerical implementation of the conditions (2.8) and (2.9) is the key
problem in the numerical solution of the system (2.7). In the remaining part of
this section, we shall outline briefly the immersed boundary approach. Detailed
description and testing of the method can be found in [4].

First, we define the computational domain to be a rectangular region span-
ning in y-coordinate from Y to Yy. The extent of this region in x-coordinate
is simply one spatial period A; . Thus, the physical domain is embedded in the
computational one.

The next step is to represent the stream function in a form of truncated to
N leading Fourier modes

n=N
(2.10) T(z,y)m Y Daly) e
n=-—N

The formula (2. 10) defines the stream function in the whole computational do-
main. Since the physical domain forms a proper subset of the computational
one, the complement of the former is nonempty. In this area, the formula (2.10)
defines a certain “fictitious” flow field.

The corresponding finite-dimensional system of the ordinary differential equa-
tions for the amplitude functions ®,, n=0,1,..,N is discretized by introducing
Chebyshev representations of the unknown function ®,, as follows:

00 F

(2.11) On(y) = Y GiTi(y) =~ GiT;(y).

7=0 J=0

In the above formula, symbol T; denotes the polynomial obtained as a results
of composition of the j-th Chebyshev polynomial with the linear mapping trans-
forming the interval [Yz, Yy| into the interval [-1,1] (see Appendix A), and G7
stands for the unknown expansion coefficient. The Chebyshev representations
of the required derivatives D'® (with | up to [=4) can be determined using a
differentiation algorithm (see [5], also the Appendix A).

The n-th equation of the system (2.7) can be written in a general form as

(2.12) Eﬂ((f'(],(bl,..,q’;u)=0 for TI.=O,..,N.
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The substitution of the Chebyshev expansions (2.11) and their derivatives into
(2.12) gives the residual function

J
(2.13) Bo=Eu| Y. G ZG Tiss ,ZG?’Tj o =00 N
j=0 i

j=0

The problem is converted to an algebraic, nonlinear system by imposing the
orthogonality conditions

(214) (RIUTj)w:O! j:{))"l‘]_4! n=0,.,N.

The inner product used in (2. 14) is defined as follows:

Yir
/ e (2) d,

where the Chebyshev weight function w, along with other useful formulas, is
given in the Appendix A.

The discretization method described above can be viewed as a variant of the
Chebyshev-tau technique. The reader should note that the projection (2.14) is
carried out onto the linear subspace spanned by the Chebyshev polynomials with
the order of up to J — 4. The additional equations required to close the system
are due to the flow boundary conditions (2.8) and the volume flux modification
(2.9).

We shall describe briefly the treatment of the boundary conditions (a detailed
exposition can be found in [4]). The idea is to derive explicitly the forms of the
Fourier expansions of the velocity distribution along the wavy walls. Consider
an arbitrary line | := {(z,y) : y = f(z)} located entirely in the computational
domain (Y < f(z) < Yy), where the function f is periodic and it is expressed
as

(2.15) flz) = fo+ %El frexp(ikaz) + %kil fr exp(—ikaz.)

The velocity components, computed along the line [, are the z-periodic functions
and thus they can be expressed in terms of Fourier series as

w(z) = u(z, f(z)) Z e
(2.16)
v(z) = v(z, f(z Z Vi eRe,

n=—oo
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On the other hand, the same distributions can be obtained with the use of
the stream function, namely

N

w(z) = ulz, f(z)) Zue(f(z)) + Z D®,(f(z))em®

n=—N

N J

+ Z ZGH DT ma:.."

n==N j=0

(2.17)

Il
=
_—
8

ui(7) &) R —ia ) n ulflz))ene"

N o
=—ia Yy > nGT(f(z)) e,

n=-=N j=0

The need for the Fourier expansions of the Chebyshev polynomials and their
first derivative is apparent. We can write

(2.18) Z wJ t.lmz DTJ Z dj ikax

k=—00

The expansion coefficients in (2. 18) can be calculated, see Appendix A. Inserting
(2.18) into (2.17), and comparing the obtained Fourier coefficients with the
coefficients in (2. 16), we obtain

N J
(219) Up = Fyu + Z Zd}?; —m J y Vn=—la Z an wfriz me

m=—N j=0 m=-N j=0

In the above formula, F,, denotes the Fourier coefficient of the function ug(f(z)),
i.e. the velocity of the reference flow computed along the line [.

The expressions (2.19) are the bases for implementation of the boundary
conditions (2.8). It is necessary to apply them separately for each wall of the
channel, i.e. to set f(z) = yr(z) and f(z) = yy(z). A minor complication arises,
however. It has been shown in [4] that the value of the Fourier coefficient Vj
cannot be assumed independently. Instead, we have two equations corresponding
to the volume flux conditions (2.9). The final form of the algebraic equation
corresponding to (2.8) and (2.9) is the following:

N J
FEw+ X D (B )LUG;“ =0, N>n>0,

m=—N j=0
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N J

O Gr=0, Nzn>1,
m;NJg ( )LU J
N J
Ho)e+ 3 3 OPwh) =0

—N j=0
(2.20) e

(Ho)u+ Y, Y GPwh)y=Q+aq,
m=—N j=0

where the subscripts L and U mean that the formulas are to be applied to the
lower and the upper wall separately, (Hy)y and (Hy)y denote the coefficients of
the zero Fourier mode of the functions Wy(yr(z)) and ¥o(yy(z)). The precise
meaning of the above equations is the following. The first group of the equations
expresses the fact that N+1 leading Fourier modes of the boundary distribution
of the z-components of the flow velocity must vanish. The second group of the
equations plays the same role with respect to the y-component of the velocity
field. As we have already mentioned, the equation for the zero Fourier mode
is excluded, as it is actually satisfied automatically. The role of the two last
equations is to set the average values of the complete (the reference flow and the
modification) stream function at the channel boundaries.

The complete nonlinear system consists of the Eqs. (3.4) and (3.11). Itcan
be written in a form including the complex Chebyshev coefficients of the ampli-
tude function with only non-negative indices. Thus, its dimensionis (N +1) -
(K + 1). It can be solved efficiently using an algorithm, which takes advantage
of the particular structure of the equations. Such algorithm has been described
in details in [4].

3. The equations of linear stability

The complete velocity field of the flow in the channel with wavy walls is
z-periodic. For the sake of further convenience, the components of the velocity
will be expressed as the following Fourier expansions

(3.1) Ulsy) = Z U(y) exp(inazx), Z Fii (y) exp(inaz) .
n=—0o0 n=—0o
Clearly, we have Fj;™ = (F}})* and F;;™ = (F}})*, since both functions in
(3.1) are real.
The amplitude functions in (3. 1) can be expressed in terms of the amplitude
functions of the stream function, namely
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a9 Fj(y) = uo(y) + D®o(y), Fpy) = (F"(y))" = D@ply), n>0,
F(y) = (Fy"(y))" = —ina®s(y), n>0.

The linear analysis of stability of the flow defined by the formula (3. 1) and (3. 2)
consists in investigation of the response of the flow to a small disturbance. Such
analysis consists of four essential steps. In the first step, the class of admissible
disturbances should be defined. Secondly, the equations governing the dynamics
of admissible disturbances should be derived. As a result of this step, the eigen-
value differential problem is obtained. Thirdly, using appropriate discretization
procedure, the differential problem has to be transformed to a tractable algebraic
eigenvalue problem. Finally, the algebraic eigenvalue problem is to be solved in
order to determine the most “dangerous” forms of disturbances, their amplifica-
tion rates, critical Reynolds number and so on.

Since the main flow is z-periodic, the admissible form of a disturbance ve-
locity field in the linear stability theory is

(33)  v(t,z,y,2) Z (93 (v), 93" (v), 92 (v)] exp [i (tmz + Bz — ot)]

m= —00

where ¢, = d + ma and § is a (real) Floquet exponent. Thus, the admissible
disturbance is, in general, quasi-periodic in variable z.

Once the representation (3.3) is inserted into the linearized Navier-Stokes
equations (in the velocity-vorticity formulation) and into the continuity equation
then, after a rather lengthy algebra, the following equations are obtained:

Smg — _RQZ(Lmngm n_l_Lmngu —n+L$,ng'T——n

+M::,ng:|+n £ M;n,ng:wu an m+n) ,

(34) Q™(tmgly — Bg) + Ref - DFJg* = iRe Y | (NIP"g=" 4 Nungm—n

n=1

_I_N“r:q,n ny Km,n m+n K;n.n m+n _i_KEz.n m+n)’

stmge. + Dgy* +3807 =0, m=. —2,-1,0,1,2,...
The left-hand side operators appearing in the Eq. (3.4) are defined as

S™ = (D*—#2)* - iRe [(tmF2 ~0) (D* - &%) — txD?FY],
Q™ = D? — k2, —iRe (tmF - o),

(3.5)
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where k2, = t2, + (2. The operators (3.5) can be regarded as generalizations
of Orr-Sommerfeld and Squire operators. The operators in the right-hand side
of the equations are rather complicated and we skip their explicit form. For the
case n = 1, these operators have been presented by FLORYAN [1]. Besides, we will
further transform the Eq. (3.4) to obtain a more tractable form.

It is well known that the equations of linear stability of a parallel flow can be
converted into the equations for wall-normal components of velocity and vorticity
fields of the disturbance flow. Similar procedure can be applied to the equations
(3.4). The main advantage is the reduction of the number of unknowns and
lowering the dimension of the algebraic eigenvalue problem obtained as a result
of discretization of the system (3.4).

As a first step, the following functions are introduced

Then, using the definition (3. 6) and the spectral form of the continuity equation
”mgr(y)“i'DQLn*"ﬁgz?:O: m=..—2,—1,0,1,2,..,

the inverse relations can be derived
(3.7) g =\(itm Dol — BOI™) [RE; 9 = (1BDG + tm ™) K5, .

The reader should notice that 6™ is closely related to the Fourier representation
of the y-components of the disturbance vorticity field v. Indeed, one has

oo

(38) wy=00s — vz = Y i(Bg} — tmgl)expli (tnz + Bz — ot)]

n=—0o0

= =3 Z 6" exp [i (tax + Bz — ot)].

n=—00

The stability equations expressed in terms of the amplitude functions { g, 6™}
assume the following form:

o0
Smg:z o+ Z (@Lﬂ,ng:;n—fhn 5 G;ﬂ,ﬂg;n—?l g égl.ﬂeﬂ'l-Pn + G;n'nﬂm_n) =0

n=1
= u,—2—1.0:1;2:
(3.9)
Q™0™ + ReB DFg™
00
3 Z (E:n,ng;n+n + E;n,ngLnun 3 E’;ﬂangm+n + Eén.ngm—n) =0
n=1
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In the above, the operators S™ and Q™ are defined as previously by (3.5).
The expressions of the other operators are rather long and therefore they are
presented the Appendix B.

The disturbance velocity field should vanish at the boundaries of the flow
domain. Thus, the Eq. (3.9) are supplemented by homogeneous boundary con-
ditions imposed at the wavy walls of the channel. It will be explained in Sec.5
how the treatment of the boundary conditions applied for the main flow in Sec. 2
can be adopted in the stability analysis.

4. The numerical method for the stability equations
4.1. Spectral discretization of the stability equations

The structure of the set of the stability Eq. (3.9) is simple — for each integral
number we have a pair of two differential equations, the first of the fourth order
and the other of the second order. Clearly, all these pairs of the equations are
coupled. Supplemented by appropriate homogeneous boundary conditions, the
Eq.(3.9) define the eigenvalue problem. Nontrivial solutions can exist only for
certain combinations of the following parameters: the Reynolds number Re, wave
numbers o and [, the Floquet exponent § and the complex amplification rate o.
In the analysis of temporal stability, we are interested in determination of the
amplification rate o as a function of the remaining parameters. Mathematically, a
linear differential eigenvalue problem must be solved. After suitable discretization
and truncation, a finite-dimensional algebraic problem is obtained. It can be
solved numerically with the use of standard tools, for instance those from the
LAPACK library.

The numerical method used to solve the stability equations can be regarded as
a variant of the spectral Chebyshev-Galerkin method. The unknown amplitude
functions are sought in the form of (truncated) Chebyshev expansions

Ky Ky
(4.1) gr(y) =D TiTi(y), 0"(y) =) ORT(y).
k=0 k=0

As in the Sec. 2, the Chebyshev polynomials are defined on the interval [Y,Yy].
The further procedure consists in three steps:

1. Insertion of the above expansions into the stability equations.

2. Projection of the equations obtained after the first step onto the subspace
spanned by a finite number of the Chebyshev polynomials. For each fourth-
order equation, the projection is made by computing the weighted inner
products with the functions Ty, T, .., Tk, —4. For each second-order equa-
tion the projection is made by computing the weighted inner products
with the polynomials Ty, T,..,Tk,—2. The additional six equations (for
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each fourth/second-order pair) come from the direct enforcement of the
homogeneous boundary conditions.

3. Truncation of the originally infinite set of the stability equations to its
finite-dimensional approximation. It means that in the computations, the
range of the summation index “m” in the expansion (3. 3) will be -M, .., M.

We first consider the discretization of the m-th fourth-order equation in (3.9)
After the Chebyshev representations are inserted and the projections are made,
one has

v
42y > ("N T, TP
k=0

(o] Ky
- Z {Z (G TR T P Z o) B A 1“;;*—"}

+i{Z<Gm“n,T3> o+ 3 cmm,mer‘“} o

n=1 Uk=0 k=0
j=0,., Ky —4

where the inner product (-, ), is defined as described in the Appendix A.
Analogous procedure applied to the m-th second-order Eq. (3.9) yields

Ka Ky
43) > (Q™T:,T;),OF +BRe - > (DRI, T;), TR
k=0 k=0
Ky Ky
{z‘, (BT T, TE + S (BT T, rm}
k=0 k=0

o0
Gy B
n=1
00 Ky Ky
+Z{Z(E}"“Tk, SO0 4 3 (BT Ty), @“‘*“} =0,
1 k=0
i=0,..,Ks—2.

Insertion of the explicit forms of all operators (see Appendix B) into the
formulas (4.2) and (4.3) leads to rather complicated expressions. However, all
of them can be computed in terms of seventeen elemental structures with two or
three indices. Each entry of a double-index structure is defined by the Chebyshev
integral of the products of a Chebyshev polynomial and an even-order derivative
(up to 4'® order) of another one. Each entry of a triple-index structure is defined
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by the Chebyshev integral of the product of a Chebyshev polynomial, a derivative
(up to 3™ order) of another one, and one of the amplitude functions defined in
(3.2) or one of its derivatives (up to 2" order).

4.2. Numerical implementation of the boundary conditions

Main feature of the numerical method applied for the determination of the
main flow is that the computational domain is extended to overlap the interior
of the channel with wavy walls. Consequently, the basic functions for spectral
expansions are the Chebyshev polynomials defined in the non-standard interval
[Y%, Yy]. The boundary conditions at the channel walls are enforced as the in-
ternal conditions imposed along the wavy lines immersed in the interior of the
extended computational domain.

The same technique can be applied to the homogeneous boundary conditions
formulated for the disturbance velocity field in the stability analysis.

The derivation of the boundary conditions for the disturbance velocity field
consists in four steps:

1. Derivation of the Fourier representation of the disturbance velocity distri-

butions along the wavy walls.

2. Extracting the Fourier coefficients and setting them to zero.

3. Re-writing the obtained expressions in terms of the expansion coefficients

of the amplitude functions g{} and ™.

4. Truncating to a finite number of Fourier modes in order to get the final

computable form.

The derivation procedure will be demonstrated on the example of the y-
component v, computed for the bottom wall y = yz(z). The distribution along
the bottom wall can be expressed as

oa

(4.4) wvy(z,yr(z),2) = Z gy (yp(z)) exp [i (taz + Bz — ot))

n=—oo

- k=—oc \ j=0

= f: i i (wi)L I} | exp (ikaz) | exp [i (taz + Bz — ot)]

o0 o0 o0

= Z Z Z (w;’;l_n) > 7 | | exp[i (tmz + Bz — ot)].

m=—00 |n=—00 \ j=0
Let us rewrite (4.4) in the following form
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(4.5) vy(z,yL(z), z) exp[—i (dz + B2)] exp (iot)

= Z i Z(wfﬂ_n)LF? exp (imaz).

oo
m=—o0 | n=—0c0 \ j=0

If we set all Fourier coefficients in right-hand side of (4.5) to zero then, at any
time instant, the y-component of the disturbance velocity field will satisfy the
homogeneous boundary condition at the bottom wall. Indeed, both the Floquet
exponent ¢ and the spanwise wave number 3 are real, so the factor exp[-i(dz +
fz)] is bounded in space. Thus, the second step of the derivation procedure yields

o0 oo

(4.6) 3 Z(wf;l_n)br;* O T s B B

n=-00 \ j=0

Similar two equations are obtained for the remaining velocity components.
Then, replacing the subscript “L” with “U” gives an analogous triple of equations
for the upper wall.

In the third step, the conditions for the components v, and v, have to be
expressed in terms of the functions g{ and 8™. Using the relation (3.7), we end
up with following formulas:

n=-o00 ’% k=1 k=0
M= u—5-1,012 ..
% - i o= [k . e n
3 (fz(a)rk—z() ) "
m=.,-2,—1,0,1,2,..

for the bottom wall. Again, a pair of analogous conditions for the upper wall is
obtained by replacing the subscript “L” with “U”.
This way, we obtain three additional homogeneous equations for each wall

and each number (Fourier mode number) “m”. To make finite computations
possible, all sums in above expressions have to be truncated. The final form of
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the equations expressing the boundary conditions at the channel walls is

M Ky
Y (i (w,ﬁ,_n)f Urz) g, =M, O

n=—M \k=0
M . Ky Ky
it, Jé}
> (B35 (8, 12~ 3 ok eﬂ)
(4.8) n=-M \"" k=1 ' " k=0

In the above formula, the subscripts “L” and “U” refer to the bottom and
upper walls, respectively.

4.3. Structure of the algebraic eigenvalue problem

The unknowns can be collected in the following block vector

(49) =z=[{TB,T%, ., Tk, 1, Tk, :68,0%,..,0%, 1,0k, }
T
W M D, ..M]

Then, Egs. (4.2), (4.3) and (4.8) can be written in the form of the homogeneous
linear system

(4.10) P.z={.

The matrix P has a block structure. The block dimension of P is 2*M-+1. All
blocks are matrices with dimension Ky + Ky + 2. The position of a block inside
the matrix P can be described with the use of two block indices: row index m and
the column index n. The range of these indices is [-M, .., M]. Each block with
the row index m consists of Ky — 3 rows corresponding to the m-th Eq. (4.2),
Ky — 1 rows corresponding to the m-th Eq. (4.3) and six rows corresponding to
the m-th Eq. (4.8) enforcing the homogeneous boundary conditions.

The eigenvalue problem is defined by the characteristic equations for the
homogeneous system, i.e. det P = (. In the case of temporal stability, one seeks
the amplification exponent o as a function of other parameters of the problem. In
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such a case the eigenvalue problem is linear and can be expressed in the standard
form as

(4.11) Poz = 0P, 2.

The matrices defining the generalized eigenvalue problem (4.11) can be ob-
tained directly by extracting those parts of the stability equations, which do not
contain o. Alternatively, the matrix P can be considered as a function of the
attenuation exponent o and then the matrices in (4.11) can be determined as
follows:

(4.12) Po=P(0), P,=P;—P(1).

The generalized eigenvalue problem (4. 11) can be solved using standard rou-
tines from the LAPACK library. However, the investigation of variations of se-
lected eigenvalues/eigenvectors with a change of various parameters (Reynolds
number, roughness geometry, wave numbers etc.) necessitates an efficient tracing
algorithm. It seems that the Inverse Iterations Method provides an appropriate
tool for this task. The IIM can also be used to improve the accuracy of partic-
ular eigensolutions obtained by other methods. Although an exposition of this
method can be found in many textbooks on the numerical algebra, for the sake
of completeness it is presented in the Appendix C.

5. The convergence tests

In this section, we present results of the convergence tests. The numerical
computations have been carried out for the Reynolds number Re=5000 and the
wave numbers =3 and #=2. The shape of the channel walls is assumed in the
following form:

yr(z) = =1 — Scos (az), yy(z)=1+ Scos(az) ,

where §=0.02. The main flow is computed using fifteen Fourier modes (N=14)
and sixty (J=59) Chebyshev polynomials per each amplitude function ®,,. The
assumed length of the Fourier representation of the main flow ensures that the
error in enforcement of the boundary conditions (2.8) is less than 10712, The
convergence test has been designed in the following way. For the flow parameters
chosen for the test, two unstable modes exist: the Squire mode (Sq) and the Orr-
Sommerfeld mode (OS). This situation is analogous to the case of distributed wall
suction, discussed by the author in [6]. The corresponding eigenvalues are eval-
uated using different number of modes M in the disturbance Fourier expansion
(3.3). With increasing number of modes, the representation of the disturbance
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is getting more accurate. We also assume that the number of Fourier modes of
the main flow accounted for in the stability computations is the largest possible,
i.e. it is equal to M.

When the number of modes M increases, the convergence is expected. The
computations are repeated with a different number of the Chebyshev polynomi-
als. This way the convergence with respect to K, and Ky can be established as
well. The latter issue is, however, less important because the efficiency of im-
mersed boundary approach to the boundary conditions depends mostly on the
convergence properties with respect to the Fourier expansions.

The results of the test computations are presented in Table 1. Rapid con-
vergence of the evaluated eigenvalues is observed. Surprisingly enough, the com-
puted values are quite accurate even for M=3. The values for M=7 and M=8
match to within nine significant digits. In the numerical stability analysis, such
accuracy is more than satisfactory.

Table 1. The unstable eigenvalues computed for different values of the Fourier
modes M and Chebyshev polynomials K, and Kj.

M o -10° K, = Ky=49 K, =59,Kp=49 | K, = Kp=59
3 Sq 1.923180264 1.923152536 1.923125632
0S 1.382477688 1.382428066 1.382420663
4 Sq 1.922667419 1.922629066 1.922598856
0S 1.381969904 1.381912186 1.381896911
;5 Sq 1.922661537 1.922622306 1.922592749
0S 1.381965322 1.381907517 1.381891484
6 Sq 1.922662554 1.922623455 1.922593912
0S 1.381966101 1.381908421 1.381892490
- Sq 1.922662452 1.922623367 1.922593787
0S 1.381966016 1.381908339 1.381892384
8 Sq 1.922662449 1.922623364 1.922593784
0S 1.381966013 1.381908337 1.381892378

Practically, M = 4 or M = 5 is sufficient to obtain very good approximations
of the leading eigenvalues. If one is interested in the corresponding eigensolutions,
the accuracy of the boundary conditions should be also considered. It is instruc-
tive to compute the error in the boundary conditions for the components of the
disturbance velocity field. Obviously, the value of the error is meaningful pro-
viding that an eigensolution is normalized. Table 2 shows the maximum norm
of the boundary error computed at the bottom wall for the z-component of the
disturbance velocity field. The latter is normalized so that its maximal value in
the flow domain is the unity. The accuracy of the boundary conditions is im-
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proving with increasing number of the Fourier modes. In the number of modes is
sufficiently large, addition of one mode reduces the norm of the error by a certain
factor, i.e. the error diminishes at exponential or spectral rate. The observed rate
of convergence can be roughly characterized as reduction by two orders of the
magnitude per each three more modes.

Table 2. The maximal boundary error of the velocity component v, of the
eigensolutions computed using different number of the Fourier modes. The
number of the Chebyshev polynomials is K, = Ky=59.

M |3 4 5 6 7 8

Sq | 1.4767.107% | 3.2391-10~* | 1.1662:10~* | 3.1286-10~" | 6.8561-107° | 1.5373-10~°

0S| 1.4590-10~% | 3.5159-10~*% | 1.2026-10~* | 3.2257-10~% | 7.0622-10°° | 1.5943-10~°

6. Concluding remarks

The numerical method described above offers an efficient alternative for the
traditional approach based of the domain transformation. The technique of im-
mersed boundaries seems to be particularly useful when the magnitude of bound-
ary corrugation is sufficiently small, i.e. it is not larger than several percent of
the channel width. This range of values it exactly what one would reasonably
call the “wall roughness”. The methods based on a domain transformation are
not much competitive here, because of the “overhead” due to extreme complica-
tion of the stability equations in the computational domain. Another possibility
is to resort to domain perturbation methods (DPM). The idea is to transfer
the boundary conditions from a corrugated boundary to a straight centerline,
and get an approximate form of boundary conditions with the use of a Taylor
expansion of a certain order. First-order procedure is well described in [7). The
applicability of this approach to flows in a corrugated channel has been recently
investigated by CABAL et al. [8] and compared with the domain transformation
and immersed boundary techniques. The essential conclusion is that the DPM
(even of higher orders) cannot provide a sufficient accuracy in enforcement of
the boundary conditions, particularly when the magnitude of wall corrugation
becomes sufficiently large for flow destabilization. Thus, it is rather unlikely that
DPM applied to the stability problem considered here would be of any use.

There are, certainly, some limitations of efficiency or even applicability of the
immersed boundary method. The magnitude of a corrugation has been already
mentioned. The other problem is posed by large values of the wave numbers. It
has been shown in [4] that computations with large values of the wave number o
require much larger numbers of the Fourier modes and Chebyshev polynomials.
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At the same time, the rate of convergence, although exponential, becomes much
slower. Consequently, the overall efficiency of the methods significantly drops
and the computational cost becomes prohibitive. For such extreme cases, the
method based on the domain transformation, although much more complicated
in derivation and implementation, would be a better option (see [7]). On the
other hand, the wave numbers characterizing unstable forms of disturbances
turn out to fall within the range of small or moderate values (a,3<10), where
the immersed boundary approach is preferable.

Appendix A. Basic functions

Assume that the computational domain is the interval [Y},, Yy|. The transfor-
mation from the computational domain to the standard domain, i.e. the interval
[-1,1], is given as

(A1) Y2,Yu]3y — n(y) =p-y+q€[-1,]]

where
p=2/(Yuy-Yr)andq=-(Yr + Yr)/(Yuv - Y).

The following set of functions (polynomials) can be defined

(A.2) Ti(y) =tilp-y+q), =012,

where ¢; denotes the standard Chebyshev polynomial.

If the following weight function is introduced

(A3) w(y) =2p-y+4q), Qn)=(1-7")"
then the functions defined by (A.2) satisfy an orthogonality condition, namely

B3

Yy
(A8 [ T0) T0)w )
YL
b 0 if j#Kk,
—f M) t(n) () dp==< = if j=k=0,
Pl Pl r2if j=k>0.

The derivative of the basic function 7; can be expressed in terms of the functions
TD, Tl 3y TJ'_I as follows:

(A5) DTi(y) = 3. & - Tu(y).
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The expansion coefficients in (A.5) are related to the coefficients in Chebyshev
differentiation formulae

J—1
(A.6) Dtj(n) = 3. C - ti(n)
k=0

namely, we have c" pC"‘ The coefficients { C"J } are the following:

27, k isodd
C;-‘ = — when j is an even number,
0, k iseven

0, k isodd,
C'J’-c =4¢2j, k>0and even — when jis an odd number,
3, k=0.

The multiplication rule for the basic functions {T}} is the same as for the
standard Chebyshev polynomials, i.e.
1
(A.7) T Te=3Ti+k + 3 T|J k|-

Another important operation is an inner product of a pair of the expansions
in {T;}. Consider two functions given as follows:

M N
—; ZgJTJ(y), h(y) = Z hka(y
=0 k=0

Then the inner product is defined as follows:

Yy = | min(M,N)
a8 [swrwewdy =5 (whorz > k).

Implementation of the boundary conditions in the channel with wavy walls re-
quires computations of the Fourier expansions of the following composite func-
tions:

k=+o0 k=+o00
T fz))= Z wl exp(ikaz), DTj(f(z)) = Z ) exp(ikaz) .
k=—00 k=—o00
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Since the basic functions are real, the coefficients satisfy obvious relations
w,=(uw]), d,=(d), k=01, j=01,.

The real function f is assumed in the form of the following Fourier series:

o0
Z rexp(ikaz) + = ka exp(—ikaz) .
k= kﬁl

Using the recursive definition of the Chebyshev polynomials, one arrives at the
following formulas:

it =p (z e Zf;w;’;m) s 2t -,

n=0 n=0
(A.9)

oo
dfflzp (2w{c+2fﬂ +an k+ﬂ)+2qdi~di“.

n=0

In order to use (A.9), the coefficients for j = 0 and j = 1 have to be defined
explicitly. Since

By(f(z)) =1, By(f(z)) =0
Bi(f(z))=p- flzx)+q=pfo+q+ z 2pf,, exp(inaz) + Z 2an exp(—inaz),
DBy(f(2) = s e
one obtains the following starting formulas:
=1, 'w2=0 for k>0,

1
wy =pfot+aq, wp=zpfe for k>0,
dl =0 for k320,

dy=p, d=0 for k>0,

(A.10)

Appendix B. The operators in the stability equations (3.9)

The differential operators appearing in the stability equations (3.9) are de-
fined as follows

http://rcin.org.pl



220 J. SZUMBARSKI

ina k2,
Gy =Re- | 57— (B” — tmtm—n) DFy D + 5" (B + tm-ntm—2n) F}' D
km—n km n
1 .
+ (2nap® — tmk2,_,) Fi D* + —— (naty, — k2,) F7 D?
m—T1 m-n

+ 4 k2 bty PO + tmD2F;‘] :

G, =Re- :c,%m ntiiin — BBV (DFS* D

k2 . i G
= kg— (52 el tm+ntm+2n) (Fz?) D -+ k2 ( 2”“52 == tmkm+n) (Fu ] D2
m+n m+n
+'kzz— (—notm — k2,) (FM)* D +ikktmion (FR)* + ity (D?FR) } '
m+n
Gy =Re: [k?n_n 2na Btym—nFi D + k2 e {tm + topn ) DET
. ‘2 I3
km—n k’m-—n
—m,n 1 ny* naﬁ nAs
Gg" =Re: |—75—2naftmin (Fy)" D — 75— (tm + tmsn) (DF)" +
km+ﬂ km+ﬂ
inaﬁk,?u e ARGl L s
k3n+n {Fu ) b k?n+n (Fu ) D :
E™" = Re - [ﬁDF‘:‘ lgaﬁpn Dz]
—m.n s tnef oo
E™" = Re- [5 (DFz)" + 2= (Fy') 92] :
m+n

E;n,n = Re - [—1 th;n k21 (62 = tmtm-—n) Fl? D] )
m—n
E;" =Re- [—um(Fr)“ = kzl (B2 + tmtmn) (F )‘D]
m+n
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Appendix C. Inverse iterations method

In this work, the following form of IIM has been used:

START : A¢ — inititial approximation of an eigenvalue,
zp — inititial approximation of an eigenvector. ||zp|| =1
po =0
REPEAT fork =0,1,..:
1) Solve (A — AoB)wyy = Bz
2) Compute pyi1 = (Wi41,2k) "
3) If |px4+1 — pk| > € then
normalize zx+1 = Wi41/ [[Wi+1llo
go to step 1
Else
compute the eigenvalue A = A\g + pg41
compute the normalized eigenvector z = Wiy 1/ ||[Wk+1llo
STOP
End If
END.
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