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THE ARTICLE REPORTS on a methodology to synthesize the response of orthotropic
micropolar half-space subjected to concentrated and distributed loads. The distur-
bance due to normal and tangential loads are investigated by employing the eigenvalue
approach. The integral transforms have been inverted by using a numerical technique
to obtain the normal displacement, normal force stress and tangential couple stress in
the physical domain. The results concerning these quantities are given and illustrated
graphically.
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1. Introduction

IN MANY ENGINEERING problems, including the response of soils, geological
materials and composites, the assumptions of an isotropic behaviour may not
reflect some significant features of the continuum response. The formulation and
solution of anisotropic problems is much more difficult and cumbersome than its
isotropic counterpart. In the last years the elastodynamic response of anisotropic
continuum has received the attention of several reseachers. In particular, trans-
versely isotropic and orthotropic materials, which may not be distinguished from
each other in plane strain and plane stress cases, have been more regularly
studied.

The theory of micropolar elasticity introduced and developed by ERINGEN [1]
rised much interest because of its possible utility in investigating the deformation
properties of solids for which the classical theory is inadequate. The micropolar
theory is belived to be particularly useful in investigating materials consisting
of bar-like molecules which exhibit microrotation effects and which can transmit
body and surface couples. Recently, CHENG and HE [11,12], ERBAY [14], Ku-
MAR and DESWAL [15,16] have studied different problems in micropolar isotropic
medium.

A review of literature on micropolar orthotropic continua shows that IESAN
[3,4,5] analyzed the static problems of plane micropolar strain of a homogeneous
and orthotropic elastic solid, torsion problem of homogeneous and orthotropic
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cylinders in the linear theory of micropolar elasticity and bending of orthotropic
micropolar elastic beams by terminal couples. NAKAMURA et. al. [8] derived the
finite element method for orthotropic micropolar elasticity.

Most of the problems studied so far, in micropolar elasticity involve the use
of potential functions. However, the use of the eigenvalue approach has the ad-
vantage of finding the solutions of equations in the coupled form directly, in the
matrix notations, whereas the potential function approach requires decoupling
of equations. Yet, the eigenvalue approach has not been applied in micropolar
orthotropic medium. MAHALANABIS and MANNA [10,13] applied the eigenvalue
approach to linear micropolar elasticity by arranging basic equations of linear
micropolar elasticity in the form of matrix differential equation. Recently, Ku-
MAR et. al. [17] applied the eigenvalue approach to micropolar elastic medium
due to impulsive force at the origin.

2. Problem formulation

Let us consider a homogeneous and orthotropic micropolar half-space. The
rectangular Cartesian co-ordinate system (z,y,z) having origin on the plane
y = 0, with y axis directed vertically into the medium is introduced. A normal
or tangential source is assumed to be acting at the origin of the rectangular
Cartesian co-ordinates.

If we restrict our analysis parallel to the zy-plane with displacement vector
u = (u1,ug,0) and microrotation vector ¢ = (0,0, ¢3) , the basic equations in
the dynamic theory of the plane strain of homogeneous and orthotropic microp-
olar solids, in absence of body forces and body couples given by ERINGEN [2],
can be recalled as:

0?u;
(2.1) tiij = Pﬁ,

0?
(2.2) mi3,i + €ijatij pJ 6:{:‘3.

The constitutive relations, given by IESAN [3], can be written as:

t1n = Anen + Agen, tig = Arrern + Argean,
(2.3) to1 = Argerz + Aggenr, tae = Ajgen + A€z,

mi3 = Bgds,1, mez = Byydsp,

(2.4) €ij = Ujit €izds.
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In these relations, we have used the following notations: ¢;; — components
of the force stress tensor, m;; — component of the couple stress tensor, €;; —
component of the micropolar strain tensor, u; — components of displacement
vector, ¢3— component of microrotation vector, €;;; — permutation symbol,
Ay, Ayg, Ao, Agq, Azs, Ags, Baa, Bes — characteristic constants of the material,

— the density and 7 — the microinertia.
We introduce the dimensionless quantities

. w * w N w All

==z, Y=—y  u=—u = ¢
(2 5) ] ] 1
’ t,‘j (6]
th=—L mf=——my, t*=wt
1) All 1 1] B44w 179 ’

where ¢? = Ay1/p and w? = x/pj.
We suppose that initially the half-space is at rest in its undeformed state, i.e.,
we suppose that the following homogeneous intial conditions hold for ¢ > 0:

ou; 0
Uf(ﬂ:,? ’U) = 8_1; = 01 ¢3($:y1 ) 6()33

Introducing dimensionless quantities as defined in Eq. (2.5) as well as us-
ing homogeneous intial conditions in Eqs. (2.1)-(2.4) (dropping the asterisks for
convenience) and applying the Laplace transform w.r. to ‘t’ defined by

0.

o0

(26) {mi(z,y,p), b3(z,y,p)} = f{w(z,y't),qﬁa(m,y,t)}e""dt, i=1,2
0

and then the Fourier transform w.r. to 'z’ defined by

o0

2.7)  {ai(&y,p), ¢3(&y,p)} = f {@i(z,v,p), bs(z,y,p) }e“%dz, i=1,2

-0

on the resulting expressions, we obtain

(2.8) u'y = Qui + Qisu's + Qi6d's,
(2.9) uy = Qaoiiy + Qoads + Qaeuy,
(2.10) '3 = Qariiz + Q333 + Qaqu'y,

where primes in Egs. (2.8)-(2.10) represent the first and second order differenti-
ation w.r. to y, respectively and
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Ay (€% +p?)

Qll — ABB 3 Q15 == ABS
Q22 - (§2A77 +_‘P2A11) Q~23 L _LéKlKQ
Ago ' A Ay’

(11) - wpBukKy’

(€2Bggw? + cix) + Jp2w2A11

Q33 = By,

A}
pw?Byy’

Qi = —

£(A1a + Azg)

Ky = Az —Ags, Ky = Ar— Az, x= K2— K.

The system of Egs. (2.8)-(2.10) can be written as

d
(2.12) d—yW(ﬁ,y,pJ = A, p)W( y,p),
where
[u 5 F Ll
W_-U.":|! A""'[Az Al:|1 U_[‘lfg]s
0. 90 ] (T [
(2.13) g=|o'0 81, I=|» 1 0
0 0 0 0 0 1
[ 0 Q15 Qe Qu 0
A= | Qu 0 0|, A= 0 Q2
| Q34 0 0 0 Q3

To solve Eq. (2.12), we take

(2.14) W (& y,p) = X(&p)e?
so that
(2.15) A, p)W (& y,p) = W (£, y,p)
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which leads to an eigenvalue problem. The characteristic equation corresponding
to the matrix A is given by

(2.16) det [A —qI] = 0,
which on expansion leads to
(2.17) ¢ =g + g’ - X3 = 0,
where
At = Q15Q21 + Q16Q34 + Qu1 + Q22 + Qs3,
@18) Az = Q15(Q24Q33 — Q23Q34) + Q16(Q22Q34 — Q24Q32)
+ QuQ22 + Q22Q33 + Q11Q33 — Q23Q32,
A3 = Qu1(Q22Q33 — Q23Q32).

The roots of Eq. (2.17) are +¢;, i=1,2,3.

The eigenvalues of the matrix A are the roots of Eq. (2.17). We assume that
real parts of ¢; are positive. The eigen-vector X (¢) corresponding to the eigen-
values g; can be determined by solving the homogeneous equation

(2.19) [A - qI)X(€,p) = 0.

The set of eigenvectors X;(&,p), (i =1,2,3,4,5,6) may be obtained as

Xil(gip)
(2.20) Xi(&p) = [ .
Xio(&,p)
where
a;q; a;-qf
(221) Xil {‘Evp) = b! ' -X'iQ(&!p} — bif}i 1
1 i
q=14 i= 11213$
—a;iq; ﬂif??
(2:22) Xj;(&p) = b; , Xpép)=| b |,
1 —qi

j=f+3sq=—Q£ i=1s2:31
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ai = (g7 Q15 + Q16Q32 — Q15Q33)/A;
(2.23) bi = (g} — 67 (Q16Q34 + Qu1 + Q33) + Q11 Qa3)/ A,

Ai = g} (Q15Q34 + Qx2) — Q2Qu,  i=1,2,3.
The solution of Eq. (12) is given by

3
(224)  W(yp) Z [Bi Xi(€, p)exp(aiy) + Bi+sXi+a(é, p)exp(—qiy)],

where B;(i = 1,2,3,4,5,6) are arbitrary constants.

Equation (2.24) represents the solution of the general problem in the plane
strain case of micropolar orthotropic elasticity by employing the eigenvalue ap-
proach, and therefore it can be applied to a broad class of problems in the
domains of Laplace and Fourier transforms.

3. Application

In this section, the general solutions for displacement and stresses presented
in Eq. (2.24) will be used to yield the response of a half-space subjected to a
uniform traction distribution and to a point load. The constants B; will be de-
termined by imposing the proper boundary conditions. These constants, when
substituted in Eq. (2.24), enable us to obtain the displacement and stress solu-
tions in the Fourier and Laplace transformed (€, y, p) domain. The final solution
in the original domain (z,y, t) is obtained by a numerical inversion of both trans-
forms.

CASE 1. Load in normal direction: In the half-space, the load F(z) is applied
in normal direction at the origin of the co-ordinate system. For this loading case
the boundary conditions are:

(31) t22($ 0, t) = _F J(t) t2l(x10! t] =0, m23($)0|t) =0.

. CASE 2. Load in tangential direction: In the half-space, the load F(z) is
applied in tangential direction at the origin of the co-ordinate system. For this
loading case the boundary conditions are:

(3.2) tao(z,0,t) =0, to1(z,0,t) = —F(z)6(t), mas(z,0,t) = 0.

It can be seen that six unknowns are to be determined in Eq. (2.24) and only
three boundary conditions appear in each case. For the half-space the radition
conditions implies outgoing waves with decreasing amplitudes in the positive
y-direction. Therefore the radiation condition requires that By = By = B3 = 0.
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3.1. Influence functions

The method to obtain the half-space influence function, i.e., the solutions
due to distributed loads applied at the half-space surface, is to set directly the
distributed loads F(z) in Egs.(3.1) and (3.2). The Fourier transform w.r. to
the pair (z,£) for the case of uniform strip load of amplitude F, and width 2a,
applied at the origin of the coordinate system is :

(3.3) Fe) = Fz“jg(—ﬁ‘l’

SUBCASE 1 (a). Load acting in normal direction. The solutions for this case
due to the uniformly distributed load are obtained as

(3.4) @(€,y,p) = biBse MY 4 byBse ®Y + b3 Bge Y,

(3.5)  mas(&,v,p)

K
.*A—I[QJB46_Q"’ + g Bse™ 9% +- g3 Bge™ %],
11

(36)  xn(ty,p) = —[NiBse~ 4 NyBse %Y + N3Bge~ %Y,
where
(3.7) Bi = 2Fo(M;q — Mgg;) sin(§a) /€A,
§=4 g0 b=t b= bt b
and
M; = [(—EA7gb; + Agsaig?) Ary + K (Ass — Ars)] /AL,
N; = (Ax2b; — £ Ar2ai)qi/An; i=1,2,3,

(3.8)

(3.9) A = My(gaN3 — qsNa) + Ma(g3Ny — qiN3) + M3(q1 Ny — gaNy).

SUBCASE 2 (a). Load acting in tangential direction. The solutions for this
case are obtained as in Eqs. (3.4)-(3.6) by changing the values of the constant

(3.10) B; = 2F,(Njqx — Nig;) sin(€a)/€A;
=4, 5 =2 k=37 =25, 3 =3 k=1 "v=8, F=l k=2
3.2. Green’s functions

To synthesize the Green functions, 7.e. the displacement and stress solutions
due to a point load described as the Dirac Delta F(z) = F,6(z), its Fourier
transform with respect to the pair (z,¢)

(3.11) F(¢)=F,
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must be used. The expressions for displacement and stresses may be obtained in
the same way as Eqgs. (3.4)-(3.6) by using the constants for the corresponding case.
SuBCASE 1 (b). Load acting in normal direction.

(3.12) B; = Fo(Mjqx — Mkq;)/A;
i=4,j=2 k=3 i=5 j=3 k=1; i=6,j=1, k=2
SuBCASE 2 (b). Load acting in tangential direction.
(3.13) Bj = Fy(N;qr — Nkgj)/A;
i=4,j=2 k=3 i=5 j=3 k=1; i=6j=1k=2,
PARTICULAR CASES: Taking
An=Ap=2+2u+K, An=Ag=p+K, Anp=)
A =p, Bay=Beg=7 -—KH =Ky=x/2=K,

we obtain the corresponding expressions for the micropolar isotropic elastic
medium.

4. Inversion of transforms

The transformed displacements and stresses (3.4)-(3.6) are functions of y, the
parameters of Laplace and Fourier transforms p and £ respectively, and hence
they are of the form f(€,y,p). To get the function f(z,y,t) in the physical
domain, first we invert the Fourier transform using

o0

R R (3
(4.1) £e
= = [teostea)s, - vsin(ea) Lo
0

where f. and f, are even and odd parts of the function f(€,y,p), respectively.

Thus, expression (4.1) gives us the Laplace transform f(z,y,p) of the func-
tion f(z,y,t). Following HONIG and HIRDES 7], the Laplace transform function
f(z,y,p) can be inverted to f(z,y,t).

The last step is to evaluate the integral in Eq. (4.1). The method of evaluating
this integral by PRESS et.al. [9], which involves the use of Romberg’s integration
with adaptive step size. This also uses the results of successive refinement of the
extended trapezoidal rule, followed by extrapolation of the results to the limit
when the step size tends to zero.
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5. Numerical results and discussion

For numerical computations, we take the following values of the relevant
parameters for the orthotropic micropolar solid:

Ay = 13.97 x 10'%dyne/cm?,  Ag = 13.75 x 10'%dyne/cm?,

A7z = 3.0 x 10'%dyne/cm?, Agg = 3.2 x lomdyne/cm?,
Ay = 8.13 x 10'%dyne/cm?, Az = 2.2 x 10"%dyne/cm?,
Bys = 0.056 x 10'%dyne, Bgs = 0.057 x 10'%dyne.

For comparison with the micropolar isotropic solid, following GAUTHIER [6],
we take the following values of relevent parameters for the case of aluminum
epoxy composite as

p=2.19gm/cm3, A = 7.59 x 10'%dyne/cm?,
p=1.89 x 10'%dyne/cm?, K = 0.0149 x 10'°dyne/cm?,
v = 0.0268 x 10'%dyne, j = 0.00196 cm?.

The comparison of dimensionless normal displacement Us[= uy/F,], normal
force stress Tha[= t22/F,] and couple stress Mas[= ma3/F,), for a micropolar
orthotropic solid (MOS) and micropolar isotropic solid (MIS) due to normal
and tangential uniform strip load (USL), have been studied and shown in
Figs. 1,..,6. The computations were carried out for three values of dimensionless
time ¢ = 0.10,0.20 and ¢ = 0.50 at y = 1.0 in the range 0 < z < 10. The solid
lines either without the center symbols or with the center symbols represent the
variations for ¢ = (.1, whereas the dashed lines with or without center symbols
represent the variations for ¢ = 0.2 and large dashed lines with or without center
symbols represent variations for ¢ = 0.5. The curves without center symbol
correspond to the case of MOS whereas those with center symbol correspond to
the case of MIS. All results are obtained for one value of dimensionless width
6, = wafc; = 1.

Case 1. The comparison of normal displacement Us[= uy/F,), normal force
stress Th[= t9a/Fp) and couple stress Maz[= ma3/Fp), for micropolar orthotropic
solid (MOS) and micropolar isotropic solid (MIS) were studied due to a normal
USL and have been shown in Figs. 1,2 and 3.

Figure 1 presents the variation of normal displacement U, with z due to a
normal USL. The value of displacement U for MOS have been magnified by
multiplying with 10, for all three values of time. For the case of MIS, as the
time t increases from 0.1 to 0.5, the values of U; decrease at initial range of
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= whereas for the cases of MOS, the response of displacement with respect to
time is reverse. At the point of application of the source the values for MOS are
smaller than those for MIS due to USL. The behaviour of variation is oscillatory
in the whole range for both the cases.
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Fi1G. 1. Variation of normal displacement Us(z,1,t)(= uz/F,) with distance z due to
normal USL.

Figure 2 shows the variation of normal force stress Ths with 2 due to normal
USL. The values of Tys for MOS have been multiplied by 10 for all three times.
For all three times, the values of Ty for MIS are greater than the corresponding
values for MOS at the point of application of the source. For MOS, initially,
values of Ty start with a small decrease and then oscillate in further range,
whereas for MIS values of stress initially decrease smoothly. For both MIS and
MOS at the initial stage for the maximum value of time, the value of stress is
maximuimn.

Figure 3 shows the variations of tangential couple stress Ms3 with z due to
normal USL. For all three times and for the case of MOS, the value of Maj starts
with a sharp decrease and than start to oscillate in the range 3 < z < 10. For
the case of MIS, the behaviour of variation of couple stress in time is reverse
to that for MOS. As the range of z increases, the values of couple stress tend
towards zero.
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FiG. 2. Variation of normal force stress Taa(z,1,t)(= t22/F,) with distance z due to
normal USL.
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FiG. 3. Variation of tangential couple stress Maa(z,1,t)(= maa/F,) with distance = due to
normal USL.

CaSE 2. Tangential Source: The comparison of normal displacement Us[=
uz/F,], normal force stress Tho[= t22/Fp) and couple stress Maz[= ma3/F,], for
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micropolar orthotropic solid (MOS) and micropolar isotopic solid (MIS) have
been studied due to a tangential uniform strip load (USL), and have been shown
in Figs. 4,5 and 6. The values of U, and Ty, for MOS are magnified by multiplying
with 10 for all three times.
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Fic. 4. Variation of normal displacement Us(z, 1,t)(= u2/F,) with distance z due to
tangential USL.
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FiG. 5. Variation of normal force stress Thy(z,1,t)(= t22/F,) with distance z due to
tangential USL.
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Fi1G. 6. Variation of tangential couple stress Ma3(z,1,t)(= ma3/F,) with distance = due
to tangential USL.

Figure 4 shows the variations of normal displacement Us with x due to tan-
gential USL. The behaviour of variation of displacement is similar to that due
to normal USL as in Fig. 1. However, their corresponding values are different.

Figure 5 shows the variation of normal force stress Ty with z due to tan-
gential USL. The variation of stress for MOS is oscillating with smooth changes,
whereas behaviour of variation for MIS is oscillating with greater changes. As
the value of z increases the value for both the cases approaches zero.

Figure 6 shows the variation of tangential couple stress Ms3. The variation
of couple stress is similar to that due to normal USL, as in Fig. 3. However, their
corresponding values are different.

6. Conclusion

A significant anisotropy effect is obtained in normal displacement, force stress

and couple stress, for all values of time. Due to impulsive force, the character of
solution is transient.
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