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A DOMAIN OF INFLUENCE theorem is proved for a linear thermoelastic solid with
a Cattaneo’s type heat conduction law and a scalar internal variable. The obtained
result is applied to prove the hyperbolicity of a semiempirical heat conduction theory,
describing the propagation of thermal waves in crystals at low temperatures.

1. Introduction

A DOMAIN OF INFLUENCE theorem is one of the basic results of classical isother-
mal elastodynamics [1,2]. It asserts that for a finite time ¢ > 0 a solution of a
given initial and boundary value problem, corresponding to the data which are
defined in a bounded support, vanishes outside a bounded domain D(t). Its phys-
ical interpretation is that an initial perturbation of a bounded elastic domain
gives rise to an elastic disturbance which for any ¢ > 0 cannot occupy the whole
space, 1. e. it propagates with a finite speed. Such a theorem cannot be proved
in classical linear coupled thermoelasticity since the Fourier law of heat conduc-
tion implies an infinite speed of thermal disturbances [3]. LORD and SHULMAN
[4] proposed a generalized dynamical theory of thermoelasticity which is based
on a generalized heat conduction law [3]. Some domain of influence theorems in
the framework of the afore-mentioned theory has been proved in [5- 8|. Different
authors [9- 14] approach the problem of finite speed of thermal waves by intro-
ducing into the constitutive equation some additional internal variables related
to the thermal inertia of the body at hand. The ensuing initial and boundary
value problems are transformed from the mixed hyperbolic-parabolic type to
the hyperbolic type. This situation is typical of the internal variables theory
since very often additional variables are introduced to eliminate the paradox
of infinite speed of propagation [15,16]. For linear and quasi-linear systems of
evolution equations the hyperbolicity is assured if a given matrix, related to the
coefficients of the system, admits real eigenvalues and a corresponding complete
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16 V.A. CIMMELLI and P. ROGOLINO

set of eigenvectors spanning the space of states [17, 18]. However, this property
in general cannot be assured by a prior: conditions but very often these condi-
tions depend on the solution itself. In other words, these should be regarded as
compatibility conditions in the sense that those solutions which do not verify
them do not lead to a finite speed of propagation of thermomechanical distur-
bances. In many cases the notion of domain of influence yields the possibility
of establishing a priori conditions ensuring the hyperbolicity. This renders the
study of wave propagation more perspicuous.

In this paper we prove a domain of influence theorem for a linear thermoelas-
tic solid obeying a generalized heat conduction equation and with an additional
scalar internal variable. The physical nature of this variable will be not speci-
fied, allowing thus the model to describe a wide class of phenomena. In Sec. 2 we
specify the model and its thermodynamic properties. In Sec. 3, after posing the
initial and boundary value problem we are faced with, we enunciate our main hy-
potheses on the data and on the material functions. Then, in Sec. 4, we apply the
technique developed in [8] to establish a domain of dependence inequality which,
in Sec. 5, is used to prove our main result, i.e. a domain of influence theorem. Fi-
nally, in Sec. 6, the obtained result is applied to the so-called semi-empirical heat
conduction model, introduced by Kosinski and co-workers [10,12, 19], to describe
non-Fourier heat conduction in solids.

2. The physical model

Let us consider a linear thermoelastic body B which is identified with an open
and connected region C of the Euclidean three-dimensional point space F3. The
set C is supposed to be regular and, generally, unbounded. The fundamental
system of equations governing the time evolution of B consists of:

1. The equation of motion

(2.1) pii = divS + b,

where p is the mass density, u the field of displacement, S the stress tensor,
b the body force;
2. The balance of energy

(2.2) pé =S-E —divq + pr,

Bl | 1 )
where € means the specific internal energy, E = §(Vu +Vu’) is the strain
tensor, q the heat flux vector and r the radiating heat supply;
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3. The second law of thermodynamics, expressed by the Clausius-Duhem in-
equality

q_
0

where 7 is the specific entropy and @ the absolute temperature;
4. The Maxwell-Cattaneo heat conduction equation

(2.3) pii + div pg >0,

(2.4) toq + q = —KV4,

where constant ¢y is a suitable relaxation time and K the conductivity
tensor;

5. The evolution equation for a temperature-dependent scalar internal vari-
able a which in the present paper is set in the form

(2.5) & = mb + na.

The scalar functions m and n express suitable material properties whose physical
nature will remain unspecified. However, we observe that at the equilibrium
(@ =0), a is proportional to the absolute temperature.

Taking into account (2.2), inequality (2.3) may be set in the form

(2.6) —p(F+nb)+8-B — éq-Vﬁ’zU,
where
(2.7) U=e—0p

is the Helmholtz free energy. Finally, a set of constitutive equations of the type
(2.8) ¢ =9%(6,V6,E,a,Va),

where @ is an element of the set {S,¢, U, q}, characterizes the model under
analysis. Compatibility of (2.8) with (2. 6) implies the thermodynamical restric-
tions [20]

v
(29) n= _%:
oV
(2-10) S = pﬁ:
(2.11) ¥ = ¥(0,E,a,Va),
(2.12) Aa+ AVa - %q V6 >0,
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ov . 2 ;
where A = pB_ is the so-called affinity representing the generalized force con-
(83

jugated to a and A=p—r[21,29
We pursue our analysis under the additional hypotheses that the stress tensor
does not depend on « or on Va and the internal energy does not depend on Va.
In such a case, the linearization procedure [20] leads to the following consti-
tutive equation for S :

(2.13) S = C[E] + 6M,

where C is the classical fourth order tensor of linear elasticity while M is a
second order symmetric tensor accounting for the stress-temperature relation.
From (2.13) and (2.2) we get

(2.14) ceb + catt = oM - E — divq + pr,

d 0
where ¢, = p—; is the heat capacity per unit of volume and ¢, = p-i is the

latent heat per unit of volume related to the presence of the internal variable.
Moreover, (2.10) and (2.13) yield

(2.15) ¥(6,E,a) = %E .C[E] + %fm ‘E + Yg(a, 6, Va),

where W is the free energy corresponding to a rigid motion.

3. The initial and boundary value problem: basic assumptions and
postulates

The fields p, ce, €a, m, n, K, M and C represent the material thermome-
chanical properties of B and are supposed to be prescribed. The mass density p
and the specific and latent heats c, and c,, respectively, and the parameter m
are assumed to be positive fields on C, i.e.

(3.1) m>0, p>0, cc>0, ca>0 on C.

Requirements of stability for the solution of (2.5) force n to be negative.
The elasticity tensor is symmetric and positive semidefinite so that *)

(3.2) A-C[B]=B-C[A,YA, B € Lin,
(3.3) A -C[A] >0 VA € Lin.

)We denote by V the basic Euclidean three-dimensional vector space and by Lin the nine-
dimensional vector space of all linear mappings from V to V (second order tensors on V).

http://rcin.org.pl



A DOMAIN OF INFLUENCE THEOREM IN LINEAR THERMO-ELASTICITY. .. 19

Analogous relations are required to be satisfied by K and M:
a-Kb=b-Ka; a-Mb=b-Ma VYa,beV,
a-Ka>(0 YaeV.

These relations imply the inequalities [1]

(3.4) 2A-C[B| < ¢ 'A-C[A] +¢B-C[B] VA,B € Lin, V¢ >0

(3.5) 2a-Kb<¢ 'a-Ka+¢b-Kb Va,beV, V&> 0.

We also assume that p~1(x), c¢;!(x), ¢5(x), |C(x)|, |K(x)| and |[M(x)| are
bounded on C'. The elasticity tensor C maps Lin into the subspace Sym of all
symmetric elements of Lin: its kernel is the whole subspace Skw of all skew-
symmetric elements of Lin. Finally, we assume that the material fields have the
following regularity properties:

(3.6) Py Cey Cay M, n, € CYC), K, M € C3(C), CeCi(0),

where, as usual, C = C U dC. Moreover we suppose that the external fields
b(x,t) and r(x,t) are such that

(3.7) be CY(Q), r € CY(Q),

where Q = C' x [0, +00[. As far as the field equations are concerned, let us observe
that equations (2.4) and (2. 14) imply

(3.8) Ce + cadt = BM - Vi + div(KV0) +F,
where
(3.9) f=f+tof

and 6 is a suitable reference temperature. Hence, our system of equations be-
comes now

(3.10) piu = div(C[E] + 6M) + b,
(3.11) e + cab = oM - Vi + div(KV8) + £,
(3.12) & = mb + na.

Let now {9,C,8;C} and {85C, 84C} be two partitions of the boundary dC of C
such that

0C = 0;C U 3,C = 85C U 84C,
HCN&KC =0, &CNGC =0.
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20 V.A. CiMMELLI and P. ROGOLINO

A solution of the mixed coupled thermoelasticity with thermal relaxation and
an internal variable consists of a triple {u,6,a} such that:
1. Equations (3.10)-(3. 12) are satisfied;

21
u = ug, 1 = 1y,
0 =6y, 6 =8, onC x{0}
a = Qp,
where ug, 1g, g, 0y and aq are given initial conditions;
3

u=u" on 9,C x [0, +00],

Sn = (C[Vu] + M#)n = s" on 3,C x [0, +o0],
6 =6 on 33C x [0, +o0],

—KV6-n=g" on d4C x [0,+00],

with n being the outward unit normal to dC.

In the next section we will prove a suitable inequality representing a link between
the support of the data u*, s*, 6*, ¢*, ug, g, 6y, 6o, ag, r and b, and the
support of the solution (u, @, a) at each instant ¢ > 0.

4. A domain of dependence inequality

The present section is devoted to prove a domain of dependence inequality
for a solution (u, 8, @) of the initial and boundary value problem of Sec. 3.

Let us first observe that, if we multiply the equations (3.10) and (3.12) by
to, then differentiate with respect to ¢t and finally add the derived equations to
the original ones, we may rewrite system (3.10)-(3.12) as follows:

(4.1) pu = div{C[Vi] + 6M} + b,
(4.2) Ceb + cal = BoM - Vs + div(KV0) + £,
(4.3) & = ml +na.
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For this system we prove the following

THEOREM 1. (Domain of dependence inequality). Let (u,8,a) be a solution
of the initial and boundary value problem specified in Sec. 3, and let ¢ be a positive
constant of the velocity dimension, such that

(4.4) A+ {(cer™)B0}2IM| < c,

(4.5) (cce to) 'K+ {(cer) 00} 2 M| <,

where A 1s the“acoustic tensor” in the direction of propagation m, defined by
(4.6) A(x,m) = p ! (x)Cla®m] Vx € E3, Ya€ V;

then the following domain of dependence inequality holds true:

t

(4.7) / n(x, t)dv + 65 fds [ (VO - KV6)(x, s)dv

C(xo,R) 0 Clxo,R+c(t—s)]
t
+ 65" /d.s / ca% & (x,s8)dv < / n(xg, 0)dv
0 Clxo,R+c(t—3)] Clxo,R+ct]

t
+ /ds / (b-a+ 96’1?‘9)():, s)dv
0 C[xo,R+c(t—s))
t
+/ds - f (0-8 — 65'04)(x, s)do

0 acns[xﬂ.R+c(l-a}]

Vt>0, VR>0 and Vxy € C,

where
(4.8) n(x,s)
17 :2 2 ; ~152 = 1M .2
= E(pu + Vi C[Va) + cby '8 + 108, V8- KVO - caby' ~a ) (x,5)
while

S(XU,dJ = {x € Ej: |x —XO[ < d},
C(x0,d) = C N S(xo, d)
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Vd € R and, moreover,

(4.9) (C[Va] +Mé)n = 3,

~

(4.10) —(KVé) -n=

e

Proof. Let gs: A€ R — gs(A\) € [0,1] such that

95(A) =0 if A €] — 00,0,
(4.11) 9s(\) =1 if )€ [§,+oo, §>0,

] . dg&('\)
95(A) = = VAER,

and let us define
(4.12) g(x,s) Egg(c‘l[R+c(t—s)—|x-—x0|]),

where R is a positive constant of the length dimension while ¢ and x( are arbi-
trarily fixed. Function g is defined on E3 x [0, +o0o[ and its support is

(4.13) o= |J Shxo,R+c(t - 9)].
s€f0,t]

Moreover, g is smooth on E3 x [0,+o00o[ and Vg vanishes identically on the
following set

(4.14) o= |J Slxo,R+c(t—s—0)]
s€[0,t]

in which

(4.15) g(x,s) =1 Vx € S[xg, R+ c(t — s — J)].

Clearly, 4 is to be choosen so small as to assure that R + ¢(t — s — d) > 0 for
any s € [0,¢]. Now if we multiply both sides of (4. 1) by gt and use the vectorial
identity relative to the divergence of an inner product, we obtain

(4.16) s [pﬁ.ﬁ] = gb-a + V- {(C[Va] + M) gir}

29dt
- g{C[Vi] + M} - Via — & - {C[Vi] + 6M} Vg.
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As a further step, we multiply (4.2) by @ and take into account the definition of
@ in order to get

(4.17) VA -M - ca&h0;" = (26p) " %(ceé?) —0;'V - (6KV0)

+0;'V6 - KV6 + zo(zeu)“%(ve K V0) — 7605,

Finally, we substitute equation (4.17) in (4.16) and integrate on C x [0, t].
Then, by applying the divergence theorem and taking into account (4.9) and
(4.10), we may write

(4.18) /{%gpu dv +f gceﬁol(ﬂ}] dv

C c

gt / [lgtoa-l(ve-Kve)]‘dv
gr—=9 0
C

t
t
0 / [%gvﬁ.C[Vﬁ]}ndv + 65! /ds f(gVQ—KVQ)(x, s)dv
0 C

C

t

1 ,

= /ds/ [ipﬁQQ + Eaglc.,e"’g + %toeglve-xveg + %Vﬁ-C{Vﬁ]g}dw
0 C

t i
= /ds/é- (C[Vi] + M) Vgdv — fdsfeg‘évg-xvadv
0 G 0 C

t
+/ds/g[ﬁ-§— 19qda+[ds/[gb 4 + 7005 ")) dv +
0 ac 0 c
t
—/ / caa99
0
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On the other hand, from (4.3) it follows that

(4.19) b& = 74* — 0da

with

(4.20) VO LY
m m

Then, due to (4.19), the last integral of (4.18) takes the form

t t
(4.21) /ds/gcnﬂaléf;‘dv = fds/gcaﬁglré2dv+
0 C 0

C

t

1 1
= E/[gcaﬂu_loézg]ﬁdv + i/ ds/caﬂo_lodzg dv.
C 0 c

Owing to the definition of n and taking into account the equalities presented
above, the following relation holds true:

t
(4.22) [ gn(x,t)dv + 065" [ ds [ (gV8-KVE)(x,s)dv
/ &

t i
= [ gn(x,0)dv + [ ds [ (gn)(x,s)dv— [ ds [ 4-{C[Vi]+6M}Vgdv+
it Sl L

c

t t
~/ ds/ﬂn"léVg-KVde + /d.s/g(ﬁ-s~9glé@)dg
0 (o4 0 ac

+
1::&..,___5“

t
dsfg(fa-ﬁw(;lfé)du—fds/gcaeglra"’dv.
C 0 C

The third and the fourth integrals at the right-hand side of equation (4.22) may

be estimated by using the following inequality, which follows from (3.4), (3.5),
(4.4), (4.5) together with the definition of g(x,s) and A(x,m) :
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(4.23) —1-C[Va]Vg—a-MVg—6;'0Vg- (KV0)

< gg{va .C[Vi] + (¢ Cli ® ef.’]ef.')}

bo| =

il . =
+ 595{ ¢ IMll(cep) 0] (p1® + 05 cef?)
+ (Ptoflo) '0%e) - Kel + 65149V - KV |

< so5{Va- C[va) + (|A] + ¢ MI{ (cep) 00} )pi?

B | =

1
+[(Ptoce) " [K] + 7 MI{ (cep) 60 } *1cet5 0% + 65 16V0 - KVO} < gfm.
Here
el = |x — x| ™! (x — xo).
Let us observe now that function g is not decreasing and hence the relation
(4.24) 95(A) = —g(x,s)

implies that ¢ is negative. As a consequence, owing to (4.23), the sum of the
second, third and fourth integrals on the right-hand side of (4.22) is negative, so
that from (4.22) it follows:

t
(4.25) gn(x,t)dv + 05" | ds [ (gV6-KVO)(x,s)dv
/ [“]

t
+951/dsfgca'r&2(x,s)du = /gn(x,ﬂ)dv
0 C

C

t t
+[ds/g(ﬁ-ﬁ-s~9[]écj)do+/ds/(5-ﬁ+951Fé)du.
0 ac 0@ e
Finally, since
g(x,8) = gs(c™[R +c(t — 5) — |x — xo]),
g5(A) =1 VA € [4,+00]
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and g having support T defined by (4.13), we may conclude that, as ¢ tends
to zero, function g tends to the characteristic function of the set . Then, it is
allowed to calculate the limit of (4.25) as § tends to 0. It yields exactly (4.7),
q.e.d.

5. Domain of influence theorem

In this section we prove that from the domain of dependence inequality,
together with the hypotheses of Sec.2 and 3, a domain of influence theorem
follows. Let C(t), t > 0, be the set of the points x € C such that:

l.xeC =uy#0 or wyg#0, or 6#0 or 90#0 or ap #0;
moreover 3t € [0,] : b(x,t) #0 or r(x,t) #0;
2. x€9,C = 3te|0t]:u*(x1)#0;
3. x € 3C = Jte|0,t]:s*(x,1) #0;
4. x € 33C = It € [0,t]: 0*(x,1) #0;
5. x € C = 3t e0,t]:q"(x,%) #0.
The set

(5.1) C* = {x¢ € C : C(t) N S(x0,ct) # 0},

where ¢ is the same of equations (4.4)-(4.5), is the domain of influence of the
data at the instant ¢. We prove now the following

THEOREM 2. (Domain of influence theorem). Let (u,0,a) be a solution of
the initial and boundary value problem (3.10)-(3.12). Then u=0, 6 = 0 and
a =0 on the set Q = {C — C*} x [0,1].
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Proof Let xo € C — C*(t) and let A € [0,¢]. We apply the domain of
dependence inequality with ¢ = A and R = ¢(t — A) in order to get

A
(5.2) / n(x, \)dv + 65! /ds / (V6 - KV0)(x,s)dv

Clxo,c(t—A)] 0 Clxq,c(t—s)]

A
+65" /ds [ (caTd?)(x, 8)dv < / n(x,0)dv
0 Clxoe(t—s)] C(xo,ct)
A
+ /ds / (b-a+ églfé)(x, s)dv
0 Clxoe(t—s))
A
+ / ds f (h-8— 65 '64)(x, s)do.
0 acnS|[xp,c(t—s)]

The right hand-side of (5.2) is zero. In fact, because xg € (C—B*(t)), by equation
(3.10) restricted to the set C(xo, ct) x {0} and by Hypothesis 1, it follows iip = 0
and hence 4 = 0 on C(xg,ct). Also by Hypothesis 1 we have 6o =0, Va=0
and V6y = 0 on C(xp,ct). This is enough to conclude that

(5.3) / n(x,0)dv = 0.

C(xﬂvcﬂ

Furthermore r(x, s) and b(x, s) vanish on C(xo,ct) x [0,¢] so that b(x,s) and
7(x, 8) are zero on the same set. As a consequence, b(x, s) and 7(x, s) identically
vanish on C(xp,ct) x [0,1], so that

A "
(5.4) / 5 / (b- & + 81#8)(x, s)dv = 0.
0 C[xo,c(t—s)]

In order to evaluate the last integral in (5.2) we rewrite it in the form
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A
(5.5) [ ds / (-8 —0;5'04)(x,s)do

0 aCNS[xo,c(t—s))

A
=/ f (0 + tota) - 8do + f - (sg + to8)do +
0  &,CNSxp,c(t—s)] 82CNS[xg,c(t—s)]

- 4! / (6 + to6)Gdo — 05 / éqcfa] ds.
83CNS[x0,c(t—3)) 33CNS[xp,c(t—s)]

Since A < t and C(xp,ct) C {C — C(t)}, due to Conditions 2-5, the right-hand
side of (5.5) also vanishes. Then, inequality (5.2) reduces to

A
(5.6) fﬂ(x, A)dv + 65 /ds / (V8 -KV0)(x,s)dv+
C 0 Clxo,e(t—A)]

A
+ 60'1 ds / cc.?'&z(x,s)dv <0.
0 Clxo,c(t-2)]

Let us recall now that tensor K is positive semidefinite and from (5.6) it follows
that

(5.7) / n(x, A)dv <0.
C[x0)c(t_‘\)]

Finally, since 7 is non-negative, we have

(5.8) n(x,A) = 0.

Taking into account the definition of n we deduce

(5.9) i(xg,\) = 0, 6(xp,A\) =0, and &(xp,\) = 0.
Moreover, Condition 1 implies

(5.10) i(x,0) = 0, 6(x0,0) =0, a(x0,0) =0 Vxg€C—C*t).
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Hence, from the uniqueness theorem of the solution of ordinary differential equa-
tions it follows

(5.11) a(xg,A) = 0, 8(xg, ) = 0, a(xp,A) =0 VY(x0,)) € {C—C*(t)} x[0,1].
Finally, the ordinary differential equation

(5.12) a(xp,A) =0,

with the initial condition

(5.13) u(xp,0) =0,

admits the unique solution

(5.14) u(xp,A) =0 VA € [0,].

This is enough to conclude that

(5.15) u(x,\) =0V(x,A) € {C—C*(t)} x[0,1].

The theorem has been proved.

6. The semi-empirical heat conduction model

One of the most fundamental and delicate concepts of non-equilibrium ther-
modynamics is that of absolute temperature. Its definition is well founded at
the equilibrium or even for small deviations from an equilibrium state. However,
it becomes questionable for arbitrary states and processes when the Clausius
integral extended to a closed process is not zero [23]. On the other hand, it be-
comes necessary to consider non-equilibrium states and processes if one wants
to describe some important thermodynamic phenomena. One of these is just the
propagation of thermal waves at a low temperature. Kosinski and co-workers ap-
proached the problem by introducing a new temperature 3, called semi-empirical,
as a scalar internal state variable, [10,12]. It is related to the absolute tempera-
ture, €, by a suitable ordinary differential equation of the type

(6.1) B=£6,1)
and a given initial condition
(6.2) B(to) = Bo.

Obviously, the new theory is hyperbolic but it must also allow a passage to
the classical parabolic case given by Fourier’s law. By design, when relaxed
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coincides with the absolute temperature 6, otherwise 3 follows after # with a
certain delay, controlled by a small parameter 7, called relaxation time. This
delay introduces hyperbolicity and, if chosen to be small, controls the passage to
the classical case. A general model of anisotropic thermoelastic solids with semi-
empirical temperature has been introduced in [12]. In the linear case, numerical
solutions to an initial and boundary value problem of the type considered in
the present paper have been found in [19]. These solutions confirm that the
model admits hyperbolic heat propagation. In this section we apply the result of
Sec. 5 in order to prove the hyperbolicity of the theory via a domain of influence
theorem. To this end let us consider a linear thermoelastic solid described by a
set of constitutive equations having the form

(6.3) ¢ =9*(0,3,V0,VB,E).
The additional hypotheses quoted below specify better the model.

a) The stress tensor depends on f only through @ and is given by the consti-
tutive equation

(6.4) S(E,8) = C[Vu] + M6,
where C and M are the same of Sec. 2.

b) The evolution of the semi-empirical temperature is determined by the linear
differential equation

(6.5) f=20-2p,

where the material scalar parameters 7 = 7(z) and o = o(z) are positive
and have both the dimensions of time.

¢) The heat flux is given by the Fourier’s type heat conduction law

where K(z) is the the heat conductivity tensor defined in Sec. 2.

d) The specific internal energy e does not depend on VS 2, i.e.

B Let us recall that the second law of thermodynamics prevents ¢ from depending on V4.
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(6.7) e = ¢(6,5,E).

Equation (6.5) may be rewritten as follows

(6.8) B =0-18
o

Taking the gradient of (6.8) and applying to the obtained equation the operator
—-K, we get

(6.9) cq+q = —-KV,

with K = gK. Equation (6.9) is of the Cattaneo’s type and it may be put in
the form

(6.10) q = -KVo,

with

(6.11) f=f+of.

The same procedure developed in Sec. 3 allows us to write our system of equa-
tions in the form

(6.12) pii = div{C[Vu] + M} + b,
(6.13) ceb+ csB = BM - Vit + div{KV8} + 7,
(6.14) f=26-28,

T a

where cg is the latent heat relative to the semi-empirical temperature 3. We

; 1 1 ;
assume for the functions —, —— and cg the same properties of m, n and c¢,,
i

respectively. Then, we consider the problem of finding a solution (u,6,3) of
equations (6.12)-(6.14) such that

(6.15) u=uy u=1ug, =406, § =0 B=PH on Cx{0},
where ug, 119, o, fp and Bo are given initial functions, and
u = u* on 9,C x [0, +o0|,
(C[Vu] + M@)n = s* on 8,C x [0, +o0],
6 =6" on 33C x [0, +00],
—KV6-n = ¢* on 9,C x [0, +00].

(6.16)
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It is immediately seen that, by identifying § with «, the above mentioned
initial and boundary value problem is the same as that of Sec.3. Then, we
define the domain of influence C* of the data in the same manner as in Sec. 5.
Theorem 4. admits the following corollary:

THEOREM 3. Let (u,6,(3) be a solution of the initial and boundary value
problem (6.12)-(6.16). Then

(6.17) u=0, ¢=0and =0
on the domain

(6.18) Q = {C-cC*} x[0,1].
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