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BASIC INEQUALITIES FOR DIAGONAL and subdiagonal multipoint Padé approximants
to N power series expansions of Stieltjes function fy at points zy, 2, ..., zy are de-
rived. For particular cases the inequalities obtained reduce to those obtained earlier
for one-, two- and three-point Padé approximants in [1], [5] and [23], respectively. Nu-
merical examples illustrating the relations achieved are also provided. Our results can
be applied to the determination of bounds on the effective moduli of bone subjected
to torsion and composites in the case of transport equations.

1. Introduction

THE PROPERTIES OF one- two- and three-point Padé approximants to Stieltjes
function, say fy, were extensively investigated in recent years. The obtained
results valid in a real domain read: (i) for z > 0 the sequence of the diagonal
and subdiagonal one-point Padé approximants to the expansion of fy at ¢ = 0
form upper and lower bounds uniformly converging to fo(z), cf. [1], [8] and [27];
(ii) for z > 0 the sequence of the diagonal two-point Padé approximants to
the expansions of fy at £ = 0 and & = oo also form upper and lower bounds
uniformly converging to fo(z), cf. 5], [22], [23] and [9]; (iii) for > 0 the sequence
of the diagonal three-point Padé approximants to the expansions of fy at z = 0,
x =1 and z = oo form upper and lower bounds uniformly converging to fo(z),
cf. [9]. The Padé approximant bounds reported in (i) - (iii) are the best ones with
respect to the given number of Stieltjes series coefficients.

The main aim of this paper is to extend the validity of the inequalities for
one- [1, [8], [27], two-[5], [9], [22], and three-point Padé approximants [23] to
the multipoint Padé ones, constructed for power expansions of fy at z;, Zg, ..
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2n < oo. Nontrivial practical applications of the inequalities obtained previously
to mechanical problems are presented in [21], [24], [26] and [27].

This paper is organized as follows: In Sec.2 we introduce the basic defi-
nitions, notations and assumptions dealing with Stieltjes functions, multipoint
Padé approximants and multipoint continued fractions. The basic inequalities for
diagonal and subdiagonal multipoint Padé approximants to a Stieltjes function
are derived in Sec.3. In Sec.4 illustrative examples are presented. Particular
cases of the inequalities obtained are discussed in Sec.5. In Sec.6 the practi-
cal &pplications of the multipoint Padé approximants are presented. The results
achieved are summarized in Sec.7

2. Preliminaries

Let us consider a real function f analytic at N different points 1, za, ...,
zn, where without loss of generality we assume

(2.1) T < Ty <.: <IN

The power expansions of f at the above points are
oo

(2.2) o)=Y al=iE—2)% i=12.,N
k=0

In practical situations we know only a few first coefficients of each expansion
(2.1) and then we have to deal with the limited information characterized by
the truncated power series

p;—1
(23)  f@)= Y ek(z;)(e — z;)" + O — zj)"), i=1,2...,N,
k=0
where p; denote the given number of coefficients of power series at each point.
Now we are in a position to recall from [2, Chap.8| the definition of multipoint
Padé approximants to f.
DEFINITION 1. The N-point Padé approzimant to a function f, corresponding
to theNerpansz'ons (2.3), if it exists, s a rational function Pp,/Q, denoted by
[m/n]; ",

N,p Pm{x) a{)+ﬂ1$1+a2z2+...+am:€m
[m/nly ™ = = 2 .
Qn(ﬂ:) l+b$1+b2x +...+bnxn
(24) ;

p=)_pj, m+n=p-1,
=1
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satisfying the fr;!!owa'ng relations:
(2.5) [m/n]N” Oz —=5)P); j=12,.4N.

In the followulg we deal only with diagonal and subdiagonal approximants, then

(2.6) mzp—IvE(}%l), —E( 21),

where E(x) denotes the integer part of z.

As usual, for the ordinary one-point Padé approximants the relations (2.5),
where f and m/n] must be understood as the power series expansions at the cor-
responding points zj, represent a linear system defining the coefficients (a9, ay, ...,
A, b1, b2, ...y hp)-

REMARK 1. All previous definitions are also valid for analytic functions of
complex variable and for points x; in the complex domain.

In our investigations we are concerned with Stieltjes functions and the N —point
Padé approximants to the corresponding Stieltjes series. Let fy be a Stieltjes
function having the following representation, see [1],[9]

p

folz) = fol0) + 2 /

0
ii_{’%fn(l”) = fo(0) = go > 0, Il_i}{.lofo(z) =dy < 00,

dryo(u)

(27) 1+ :J':u

where the spectrum - is a real, bounded non-decreasing function.
Let us introduce the following notation:

ra a
(2.8) K="= ——1—— and g:=fi(s;).
k=11 i + 2Ll STE
14,
-ar
1.
Functions f; are defined in the following procedure of expansion of fy in one-

point (afterwards: in N—point) continued fraction

(z—z)fi(e) _
1+ (z — 1) fa(2)

Ha —z1)fe(z1) (z—m1)fr(z)

(2.9) fo(z) = folz1) + (z — z1) fi(z) = foz1) +

= fole1) + K 1 + 1
Hz—z1)gx (z—z)fr(2)
=go+ K ] o 1 ;

All functions f; are also Stieltjes functions.
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Now we focus our attention on N-point continued fraction expansion of fp

at the points z1, xg, ..., zx. Let us introduce the non-decreasing step-wise func-
tion L
(2.10)
N N 0 ‘ifti< 0,
Liz)=) pH(z—gz;), p=) pj=L(zn), H(t)= {
i=l1 j=1 Lt >,

The value L(z) denotes the total number of given coefficients of power expansions
of fo at all points z; <z : L(zg) = p1 + po + ... + P&

To construct the multipoint continued fraction, we begin by expanding fq at
) as shown in (2.9), we follow by expanding f;,) at z2, and so on:

Lz)-1(g —z))gx z—z; 1221 (z — 25)gx
2.11) fo(z) = K T i
( ) folz) =go+ k=1 1 + T — T9 k=L(z:) 1

(z —zn—1) LEN-1 (z—zN)gr (2 —2zN)fp(2)
+ (z—zN) k=L{zy-1) 1 4 1 .

One can easily verify that the N—point Padé approximant [1r:'z/'1f1.]‘ff\;‘IJ to fo is
equal to the following truncated continued fraction:

L(z)-1 (g — g;) T — zy LZ2)=1 (5 — 39)
Ny — K 1)9k 1R 2)9k
(2.12) m/n]h (z) = go + X 1 o :zgk=L[z1)h_-_ﬁ1

(z —2zn-1) LEM-1 (2 —2pn)gk
+ (z—2N) k=L{zn-1) 1 !

where, because fj are positive functions,

(2.13) Yk : gr > 0.

3. Basic inequality
THEOREM 1. Let fo be a Stieltjes function (2. 7) and let N power series (2. 2)

have nonzero radii of convergence; then the diagonal and subdiagonal N-point
- i N‘p = . e
Padé approzimants ['m/n]fo obey the following inequality:

(31)  zel-poo (=M@ [m/n)NP(z) > (~1)X@ fo(a),

where m and n are defined by (2. 6) and the function L by (2. 10).
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Sketch of the proof. Let us start from the Stieltjes function fy repre-
sented by the following multipoint continued fraction (one step less than in

(2.11))

Lz)-V(z —z1)gr (2 —21) L1 (z — 2))gk
.2 = K K N T
G2 Bel=n+ K 7 e ety 1
T —ZN_1 L(”fg"Q (x—zn)gr (& —2N)frizy)-1(2)
+ T — TN k=L{zy-1) 1 + 1 '

For simplicity, choosing #; = 0 and replacing frzy)-1(%) by grzy)-1 =
fLizn)-1(ZN), one obtains the following Padé approximant [m/n]?;’p to fo:
L(0)-14 z L(z2)-1 (z — z2)
Np .y _ o N N i)
(3.3) [m/nly (=) =g0 + k=1 1 +x— 9 k=L(0) 1
z—zy-1 Y02 (z-zN)gk (€ — TN)IL(an)-1
+ T—TN k=Lizn-1) 1 + 1 i

Since all fi are Stieltjes functions, they are decreasing positive functions on
] = p, oo, and then the following inequalities hold:

(34) 1+{I—$j)gk >0, J= 1)2v---1N

and

(3.5) z€[ —poof: (x — zn)fLizn)-1(%) < (2 — ZN)GL(zn)-1-

The recurrence formulae for (3.2) and (3.3) jointly with the relations (2.12) and
(3.5), vield the basic inequality (3.1). O

In the next section the numerical example illustrating the universality of the
inequality (3.1) will be presented.

4. Illustrative examples

Let us start our considerations from the following Stieltjes function:
(4.1) folz) =1+ In(0.5(z + 1))
having at « = 0, 1, 10° and 10° the truncated power expansions

folz) = 0.307 + O(z),

i fo(z) =1+ 0.500(z — 1) — 0.125(z — 1)2 + O((z — 1)%),
4.2
folz) = 7.21 + 103(z — 10%) + O((z — 10%)?),

folz) = 14.1 + 10~ (z — 10°) + O((z — 10°)?).
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[ s [m/n) 3 AH(OM2H(x- 1+ 1H(x-10%+1H(x-10%) SV e [mn]*%: 1H(0)+3H(x-  THE-10")+TH(x-10%)
— [min]**: 2H{x-1)+ TH (10" TH(x-10%) — [P M- HE- 10+ H(x-10%)
'''''' 14in(0.5(x+1)) ".--“'"—”If.« e 1 4{0(0.5(x+1))

X -0 x

d 1 ol l L l

10" 10 40! 102 10° 10 105 10° 100 10° 10 102 1630 90Y 10 10°

Fic. 1. Three- and four-points Padé approximants to the Stieltjes unction
fo(z) =14 In(0.5(z + 1)), see Theorem 1.

o b
20 sewes [min]*7: AH(O)+3H(x- 1)+ 1H{x-10}+2H(x-10%) 00 ... [mén*2: 1H{0)+ 3H(x- "+ 2H(x-10+2H(x-10%)
| — [min]*% 3H(x-111H(x- 10" 2H(x-10%) — [/ 3H(x-1)2H(-10%)+2H(x-10%)
LS T w 14In{0.5(x+1)) 1] R 14In(0.5(x+1)) Jpm~
10 ) 10
5r 5
-0 X -0 X
10Y 10° 10b 102 10° 10t 10° 10° 10t 10% 40! 10 10* 10 18° 10°

FiG. 2. Three- and four-points Padé approximants to the Stieltjes function
fo(z) =1+ In(0.5(z + 1)), see Theorem 1.

Evaluated from the input data (4. 2), the four-point Padé approximant [1r1fa/‘n.]}’4

i) ;|
L(z) = 1H(z) + 1H(z — 1) + 1H(z — 10%) + 1H(z — 10°), to 1+ In, (0.5(z + 1))
takes the form

0.693z 0.099(z —1) 0 .983 x 10~%(z — 103)
4.3 44 — 0.307 4
G e e 1 # 1

The discrete values of L(z), (—1)“®) fo(z) and (—1)%(=) [m/n]};‘(m) taken at z =
—0.5, 0.5, 500, 5 x 10°, 10® are gathered in Table 1. The functions (—1)(®) fy(z)
and (—1)1‘(‘“")[1r:n,/1ra.]}1";i (see Table 1) satisfy the inequality (3.1). Also the val-

ues of [m/n]?‘;'p to 1 + In(0.5(z + 1)) presented in Figs.1 and 2 obey the basic
inequality (3.1).
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Table 1. The input data (—1)“*) fy(z) and (—1)[11:/11]}: for numerical verification
of the basic inequality (3.1), where fy(z) =1+ In(0.5(z + 1)) and
L(z)=1H(z) + 1H(z — 1) + 1H(z — 10*) + 1H (z — 10°).

T —-0.5 0.5 | 500 | 5x 10 | 10°

L(zx) 0 1 2 3 4

(—1) 5@ £y (z) —-0.386 | —0.712 | 6.52 | —11.1 | 18.7
(=)@ [m/n];*(z) | —0.100 | —0.672 | 7.15 | —7.61 | 692

5. Particular cases of the basic inequality

In this section we will discuss the particular cases of the basic inequality (3. 1).
We start from one-point Padé approximants [m/n]}f" to Stieltjes function fj.
For such a case, Theorem 1 reduces to (we recall our choice z; = 0)

CoROLLARY 1. Diagonal and subdiagonal one-point Padé approximants
[m/ﬂ]}{’]p ' to power series of Stieltjes

(5.1) fo(z) =) ex(0)a*

k=0
with L(z) = p; H(zx) obey the following inequality:
(52)  (=1)"HE) [m/n]? (z) > (-1)PH® fo(z) in -p<z<oo

For diagonal and subdiagonal one-point Padé approximants the Corollary 1
coincides with Theorem 15.2 proved by BAKER in his book [1].

For two-point Padé approximants [m/n] f‘p to the Stieltjes function fy, the
basic Theorem 1 is formulated as follows.

COROLLARY 2. Diagonal and subdiagonal two-point Padé approximants
[m/n]"r to the series of Stieltjes

o o]

(5.3) folx) = D e(0)z*, fo(z) = ch(zg  — z9)*

k=0

with L(z) = p;H(z) + poH(z — 23) obey the following inequality:
(5.4) (~1)PrH@)+pH(z—22) [m/n]:“:‘p(m] > (—1)PH@)pH(E=22) £ (1)
5 \Z) 2

in —p<z<Loo
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Further, if o — oo then from Corollary 2 we infer

COROLLARY 3. Let us denote by [‘m/sw.}?,.(’]l’":'f_2 the two-point Padé approxi-

mants at the points 1 = 0 and 25 to the series of Stieltjes
(5.5) fo(z) = ch(() y folz) = ch ) (z — z3)"

with L(z) = pyH(z) + p2H(z — x3). For 29 — oo these diagonal and subdiagonal
two-point approximants have finite limits denoted as follows

2‘
(5‘6) hm [m/n]fg w2 = [m/n]f::oo(x)'
Moreover, in —p < z < oo the following inequalities are satisfied:
(5.7) (=P HE) [m/n)PP (z) > (—1)PHE fo(z).

Corollary 3 coincides with Corollaries 4.6 and 4.7 proved by A. BULTHEEL
etal. in [5] and also with Theorems 5.1 and 5.2 reported by TOKARZEWSKI and
TELEGA in [26).

Let us discuss the three-point Padé approximants [m/n]
case 3 — 0o. Then Theorem 1 yields:

B W0 fo for the

COROLLARY 4. For z3 — 00, the diagonal and subdiagonal three-point Padé
approximants [m/n] oz tO the series of Stieltjes

= Z cx(0)z*
k=0

(5.8) folz) =) ex(@2)(z — z2)F,

z) = cx(as)(z — z3)F,
k=0

with L(z) = p1H(z) + poH(z — x3) + psH(z — z3), obey in —p < z < oo the
following inequality:

(5.9) (—1)7’1H(*HP'*H(P“}[m/n]f,:fm(z) > (=1 H @) P H(z=22) £ ()
where
(5.10) 11m [m/n]f“3 [m/n]f P (@)

Corollaries 4 and 3 coincide with Theorem 10.1 derived by TOKARZEWSKI
in [23].

http://rcin.org.pl



BASIC INEQUALITIES FOR MULTIPOINT PADE ... 149

6. Padé approximants application

PERRINS et al. [19] investigated numerically and experimentally the effective
conductivity €.y of hexagonal array of cylinders embedded in an infinite matrix
(see Fig.3) as a function of ¢ and h = €3/e;, where ¢, €1 and €3 denote the
volume fraction of cylinders and the conductivities of the matrix and inclusions,
respectively. It is well known that .5 has a Stieltjes integral representation, cf.
[4] and [10]

FiG. 3. Hexagonal array of cylinders embedded in an infinite matrix; ABCD-the unit cell,
OECF-the sub-unit cell.

ees(h) _eer(0) |, [ dylw)
(6‘1) £1 = €1 +h0/1+hu'

From (6.1) it follows that Padé approximants to power expansions of e.s/e)
satisfy the basic inequality (3.1).

Now we are in a position to recall the experiment performed by PERRINS
et al. [19], see Fig. 4. The measurements of €. ¢(h)/e; elaborated by these authors
allowed to construct the following power expansions of e.s(h)/e:

(i) For ¢ = 0.65 :

‘E"iﬂ = 0.203 + O(h),
1
(6.2) geg(h) =1+0.65(h—1) — 0.114(h — 1)2 + O(h — 1)3,
1
Eei(h) =4.93+ O(1/h).
1
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(ii) For ¢ = 0.76 :

h
‘E'ﬁ'eJ =0.132 + O(h),
1
(6.3) EEJ;U’} =1+0.76(h — 1) — 0.091(h — 1)2 + O(h — 1)3,
1

eet(t) _ 758 + 0(1/h).

(iii) For ¢ = 0.80 :

-E—"-fé@ = 0.203 + O(h),
1
h
(6.4) 682( ) =1+ 0.80(h —1) —0.080(h — 1)2 +O(h — 1)3,
1
h
6’*’*;( ) _ 1034+ O(1/h).
1
brass
s water cylinder
cylinder | ammeter
isolator *I/
conductor voltmeter

Fic. 4. Scheme of experiment performed by Perrins et al. [19] for the sub-unit cell of

hexagonal array of cylinders, cf. Fig. 3.

The coefficients of (6.2), (6.3) and (6.4) are obtained by experimental mea-
surements of the electrical potentials and the electrical currents appearing in the

two-phase system shown in Fig. 4.

The multipoint Padé approximants [2/2]** (solid line) and [1/1]"? (dashed
lines) have been evaluated to “experimental” power expansions of €.s/e; repre-
sented by series (6.2)-(6.4), see Fig. 5. According to Theorem 1 those series form
the upper and lower bounds on the effective conductivity e.y/e; of hexagonal
array of cylinders, respectively. The theoretical conductivity €.r/e) evaluated in

[19] is also shown in Fig. 5 for comparison.
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7. Final remark

A new basic inequality (3.1) for diagonal and subdiagonal multipoint Padé
approximants [m/n]x“’ to a Stieltjes function fy (z), —p < & < oo, has been
derived. This inequality generalizes the previous ones formulated for one-, two-,
and three- point Padé approximants [m/ n]‘}:’)”’ to fo.

The transport coefficients such as thermal conductivity, magnetic permeabil-
ity, dielectric constant, diffusion coefficient, have Stieltjes integral representation.
On account of that, inequality (3. 1) yields upper and lower bounds on the trans-
port moduli of macroscopically isotropic two-phase media, cf. [24] and [27]. They
are the most general bounds reported until now in both the mathematical and
mechanical literature and can also be used to the study of bone torsion, cf. [25].

Multipoint Padé approximants approach presented in this paper is particular
useful for the prediction of the effective moduli of inhomogeneous two-phase
media from both the theoretical and experimental data, cf. Fig. 5.

i eaf\al

e upper bounds (exper.) ¢ =0.800
8 | ———— lower bounds (exper.) o
8 = = o exact solution $=0.780
4 — — — — —
5
= ¢ =0.650
a
3
2 |
Tt A~

100 2 10! 2 102 2 103 2 104

F1G. 5. The multipoint Padé approximants [2/2]**(solid line), [1/1]'*(dashed lines) to the
“experimental” power expansions of €.s/£1 given by (6.2)-(6.4) and the theoretical power
expansion of z.; /e (scattered line) reported in [19].
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