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Mean value and bounding formulae for heat conduction
problems
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SOME MEAN VALUE formulae and bounds on the thermal energy for the steady-state
heat conduction problems are proven. The formulation is based on the analogy which
exists between the linear elasticity and heat conduction. The formalism of the applied
analogy follows the Wojnar’s approach. Some examples illustrate the applications of
the theorems derived.

1. Governing equations

CONSIDER A BODY that occupies a closed and limited region B of volume V in
R3. The set of inner points of B is denoted by B and the set of points on the
boundary of B is denoted by 8B, B = BUAB. Point P of B is indicated by the
vector OP = p = z1e; +zye3 + z3e3 in a given orthogonal Cartesian coordinate
system Ozzoz3 with the unit vectors ey, es, es.

The temperature difference field in the body B is given by © = 0 (z1, z9, z3)
[1, 2]. The heat flux vector is denoted by q = q (21, z2, z3) = q1 (71, 22, 23) €1+
q2 (z1, T2, 23) €3 + g3 (X1, X9, X3) €3 in B

Following WOJNAR [1], we introduce the thermal intensity vector field t by
the definition

(1.1) t=-Vo.

In Eq.(1.1) V is the gradient (del) operator.
The field equation of the steady-state heat conduction problem are the heat
balance equation [6,7, 8|

(1.2) -V.q+r=0 in B,
the Fourier law of heat conduction [6,7, 8]
(1.3) qg=K:%,

and the thermal intensity-temperature field relation (1.1).
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128 1. ECSEDI

In Egs. (1.2), (1.3) the dot denotes the scalar product according to [3,4, 5],
K = K(zy, 29, 23) is the heat conductivity tensor field which is symmetric and
positive definite, and the distributed heat source in B is indicated by r =
'.-"(.‘L'l, I3, :L‘3).

On the boundary surface @B the heat source g, is defined at every regular
point of B as

(1.4) gs = q(z1,z9,73) - 0, (z1,29,z3) € OB,

where n is the outward unit normal vector to dB at point (z;,z2,z3).

2. Mean value formulae

2.1. Mean thermal intensity vector

Throughout this paper, the mean value of a continous function f = flzy,z2,3)
on B is denoted by

1
<f>=v-8/fdv.

THEOREM 1. Let © be a temperature field, let t be the correspond_ing thermal
intensity vector field, and suppose that © and t are continuous on B. Then the
mean value of t depends only on the boundary values of © and is given by

(2.1) <t>= ﬁ%/end/{.
a8

P r oo f. The validity of the relation (2.1) follows from Eq. (1.1) and the
divergence theorem [3,4,5]. In Eq. (2.1) dA is the surface element.

2.2. Mean heat flux vector

At first, we formulate two integral relations which will be used to derive the
governing relationships.

Let u = u(zy,22,73) and v = v(zy,z2,23) be regular vector fields in B.
From the divergence theorem we get the first integral relation

(2.2) (uoV):vdB= [u(n-v)dAd— [ u(V.v)dV.
foidaad Sl

Here, the tensor product of two vectors is denoted by a small circle and its
definition is given in [3, 4, 5].
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The second integral relation is

(2.3) jv-VUdV = /Un-vdA—/UV-vdV,
B aB B

where U = U (zy,x9,x3) is an arbitrary continuously differentiable scalar-valued

function in B . The relation (2.3) is a direct consequence of Eq. (2.2), from it

we obtain by the substitution u = ¢U, where c is an arbitrary constant, vector
different from zero vector.

THEOREM 2. The mean heat flur corresponding to the Egs. (1.2), (1.4) de-
pends only on the associated boundary heat flur and the distributed heat source
and is given by

1
(2.4) L qg>= v /qspdA—/‘rpdV
aB B

P roof. The proof of the mean heat flux theorem is based on the vector
identity (2.2), from it we obtain by the substitutions u = p,v = q and the
application of the identity po V = 1, where 1 is the unit tensor.

THEOREM 3. For a homogeneous material we have
(2.5) Lg>=K<t>.

P r oo f. The validity of the relation (2.5) follows from the Eq. (1.3) and
the definition of the mean value of t and q.

Next theorem refers to a nonhomoegenous body and it can be derived from
the Fourier (1.3), the divergence theorem and the mean heat flux theorem (2. 4).

THEOREM 4. For a nonhomogeneous body the solution of Egs. (1. 1), (1.2)
and (1. 3) satisfies the relation

(2.6) /(—)K-ndAzfrpdV-—/qspdA,

aB B aB
where g5 is given by Eq. (1. 4).
3. Upper and lower bounds on the thermal energy

Two types of the boundary value problems of heat conduction are considered.
The first one is formulated by the field equations (1.1), (1.2), (1.3) with
vanishing heat source in B and the following boundary conditions:

(3.1) ©=0, ondB; and q-n=0 ondB,,
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130 I. EcsEDI

where © = Oy(x,,22,23) (z1,22,23) € 0B, is a given function and B =
dB1UdBy 8B; N @By = {0}. It may be dB; = B and 9B, = {0}.

The second type of the heat conduction problem is described by the field
Eqs. (1.1), (1.2), (1.3) and the boundary conditions

(3.2) ©=0 ondB, and q-n=¢gy ondB,.

It may be By = 0B and dB; = {0} . The prescribed heat flux ¢» = ¢3 (21, z2, z3)
(1,72, 3) € 0By and the given internal heat source r = r (1,29, z3) (21, %2, 3)
€ B must satisfy the global balance equation

(3.3) /r‘dV = / g2 dA =0, if 9By =0B.
B dB2

The definition of the thermal energy corresponding to the thermal intensity field
t on B is as follows [1]:

(3.4) E‘K{t}zéft-l{-tdv.
B

The heat flux energy corresponding to the heat flux vector q on B is defined
as[1]:

(35) Er{a)=3 [a-R-aav,
B

where R = R(z1, z2, x3) is the inverse matrix of K = K(z;,z9,z3) (the thermal
resistivity tensor [1,2,7]). Of course, R-K = K-R = 1 and R is symmetric and
positive definite second-order tensor field on B. If t and q satisfy the Fourier
law (1.3) then we have Ex {t} = Er{q}.

The aim of this section is to establish the upper and lower bounds for the
thermal energy computed from the solutions of the above mentioned types of
heat conduction problems.

THEOREM 5. Let Uy be the thermal energy computed from the solution of
the boundary value problem whose boundary conditions are specified in Eq. (3. 1),
and for it the internal heat sources vanish. In this case, we have

2
(/c-n E-)MA)
9B,
/c-R-ch

B

(3.6) 5U15/VF-K-VMV,
B
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where F = F(xy,x9,x3) is a sufficiently smooth scalar field defined on B satis-
fying the "temperature” boundary condition

{3?} F(:f:;,:.':31:1:3) = 9[{1‘],1‘2,1‘3) {I[,.’L‘Q,Ig) € 831;

futhermore, ¢ = c(xy, 29, x3) is a sufficiently smooth vector field on B satisfying
the conditions

(3.8) Ve=0mB and e¢-n=0on0dBy and chdB £ 0.
B

Equality in (3. 6) 1s reached if

(3.9) F=0inB and c=M\qinB,

where A is an arbitrary constant different from zero.

P r oo f. The proof of the upper bound relation is based on the equation

(3.10) /q-V@dV:]q'VFdV.
B B

Putting in Eq.(2.3) v=q and U = F, we get

/VF-quz/Fq—ﬂdA—/FV-qu =/Fq-ndA
B B

aB aB,
= /(—)q‘ndA=/®q-ndA
aB, 0B
:/V@-qdlf’+/@‘?‘qd‘/=/V@-qu,
B B B

thus the relation (3. 1) is valid. The application of the Fourier law (1.3) and the
definition of t gives
(3.11) /ve-rc-vew:fve-lc-vmv.

B B

The combination of the Eq. (3.11) with the Schwarz inequality

2
(3.12) (/V@-K-VFdV S/VG-K-V@deVF-K-VFdV.
B B

B

yields the upper bound relation formulated in (3.6).
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132 1. ECSEDI

In order to prove the lower bound relation formulated in (3. 6) we substitute
into Eq. (2.3) v = ¢ and U = ©. This substitution yields

(3.13) /c—V@dV= /@w-ndA.
B a8,

By application of the Schwarz inequality we can write

2 2
(3.14) (/c-V@dV) = (/c-R-qu) S/C-R-ch B/q-R-qu.

B B B

From Eq.(3.13) and the inequality relation (3.14) we obtain the lower bound
formula of the relation (3.6).

THEOREM 6. Let Uy be the thermal energy computed from the solution of the
boundary value problem whose boundary conditions are specified in Eq. (3. 2). In
this case, we have

(/qudAufrde :

aBa B

(3.15)

<U25/C-R-CdV,
fo-K—Vde A
B

where f = f(z1,T2,23) is a sufficiently smooth scalar field defined on B and it
satisfies the conditions

(3.16) f=0 ondB, and /|Vf|2dV £ 0;

futhermore C = C(z1,z9,73) is a sufficiently smooth vector field defined on B
satisfying the conditions

(3.17) V. C+r=0 mB and C-n=¢qy on dBs.
Equality in (3. 15) can be reached only if
(3.18) f=X0 inB and C=q inB,

where A is an arbitrary constant different from zero.
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P roo f. Putting in Eq.(2.3) v=qand U = f, we obtain

(3.19) B/q-Vdez/fq-ndA—B/fV-qu=[fquA—B[?'de.

OB 9B,

We note here that

(3.20) q-VfdV = [ VO-K-VfdV.
[oer-]

From the Schwarz inequality we get

2
(3.21) (/ve-x-wav) 5/V@-K-vedV/Vf-K-Vfdv.
B B

B

The combination of Egs. (3.19), (3.20) with inequality ( 3.21) gives the lower
bound relation formulated in (3.15).

To prove the upper bound formulated in the relation (3.15), we start from
Eq. (2. 3). Putting in (2.3) v =C, U = ©, we obtain

/C—V(—)dv = ]@n-CdA—[@V-CdV:[@n-qu—f@V-qu
B 8B B aB B

[V@-qu—k/@V-qu—/@V-qu,
B B B

thus, we have

(3.22) /C-V@dV = /q-V@dV.
B B

Equation (3.22) can be written in the form

(3.23) /C-R-qu:/q-R-qu.
B B

The combination of Eq. (3.23) with the Schwarz inequality

2
(3.24) (fC-R-qu) S/C-R-CdV/q-R—qu
B B B

leads to the upper bound formulated in (3. 15).
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134 I. ECSEDI

We know that, in the Schwarz inequality used to prove the relations (3.6)
and (3.15), the sign of equality is valid when the functions appearing in them
are not linearly independent. This fact and the structure of the boundary value
problems considered determine these cases when the equality holds in (3.6) and
in (3.15).

The upper bounds in (3.6) for the case 9B, = 0B and in (3. 15) for the case
0By = 0B, were derived by the use of principles of “minimum potential thermal
energy” and “minimum complementary heat flux energy” in [1].

4. Examples
4.1, Example 1. Concentrated heat sources.

The solid body under the action of two concentrated “inner” heat sources
located at points P, and P, is considered. The boundary surface of the body is
free from the heat flux, ¢, = 0 on 9B, and we have

(4.1) r=Q(p—p2)—d(p—-m)] Pi=0P; (i=1,2),

where the symbol §(...) denotes the Dirac function.
The application of the formula (2.4) gives the result

(4.2) (q) = —g (P2 — p1)

which shows that the mean heat flux vector is parallel to the vector P1Po =
P2 — P1-
4.2. Example 2. Hollow body subjected to surface heat flux.

The body considered is bounded by the closed surfaces A; and A;. The closed
surface A; is “inner” and the closed surface As is the “outer” boundary surface
of body B. It is assumed that the inner heat source r is given, and on the whole
boundary of B which is 8B = A;U Ay the surface heat flux is known, that is

(4.3) gs=¢q on Ay and ¢s =¢o on As.
The relation between r, q; and ¢ is as follows (global heat balance equation):

(4.4) /q; dA+/qsz=/rdV.
B

Ay Ag

The mean heat flux vector in this problem is

(45) (@ =1 (/ pardA+ [pa— [rpda
1 Ay v
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Let us consider the case r = 0 in B and assume that g, g2 are constants. For
this case from Eqgs. (4.4), (4.5) we obtain

Ay Ao
4. = —q - = —0G;G
(4.6) (q) L (P2 — P1) 7 616Gz,
where
1
(4.7) 0G; = If;:.a!A . (i=1,2).
1,4,-

4.3. Example 3. Heat conduction in cylindrical body.

This example illustrates the application of the relation (2.6). The body con-
sidered is cylindrical bounded by a cylindrical, surface which is A3 and two
planes normal to Az at z3 = 0 and z3 = L. The end cross-sections of the cylin-
drical bar-like body are A; at z3 = 0 and Ay at 3 = L. The equation of Aj
is ¢(zy22) = 0 and 0 < z3 < L. The following problem of steady-state heat
conduction is analysed:

(48) S] (Ilt-T:Q:OJ =T (:81):32) on Al's
(49} © ($Ir$21 L) = T2 [3:1,1'2) on A21
(4.10) q-n=Q(z1,72,7z3) on As.

In Egs. (4.8), (4.9), (4.10) Ty, T» and Q are given and it is assumed that the
“internal” heat source is known. The form of the thermal conductivity tensor K
is as follows:

(4.11) K(zy,2z2,23) = ki (21,22,23) €1 0 ey + kop (z1,22,23) €20 €
+ kg (z1,29,23) (e10ex+epoe)
+ k33 (z1,22,73) €3 0 €3.

We introduce the heat flux resultants at the end cross-sections Ay, Ay by the
definition
(4.12) Q= /q— n; dA f1=1.2).

A

We note n; = —e3 and ny = e3. The outer normal vector on the boundary
surface segment Aj is

(4.13) n = n;e; + nges, n?+ni=1).
1 2
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136 I. ECSEDI

Let Q3 be defined as

%
(4.14) Q3= ( Q(m,wz‘ma)d&fa) ds,
[\/

dA,

where dA; is the boundary curve of the cross-section A9 and s is an arc coordi-
nate defined on 9As.

The global balance equation for the body B bounded by the surface dB =
AlUAQUAs is

(4.15) Q1 +Q2+Q3—R=0,

where

(4.16) R= /‘I‘ (21,29, 23) dV.
B

In Eq. (4.15) @, and @ are unknown. Their values can be computed by the use
of relation (2.6). From Eq. (2.6) we get

(4.17) /@ea—l{ ‘ndA = /:{:ardV - /xgqs dA.
aB B aB

We define the following quantities:

(4.18) Ry = | z3rdV,
B
L
(4.19) Q4 = / (/mg,Q dl‘:;) ds,
949 0
= 1
(4.20) b= [ balon,20,000,
Ay
(4.21) ky= %/ksa(ﬂil,ﬁ:z,L)dA,
Az
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- 1.
(4.22) Ty = / ks3(z1, o2, 0T (21, 72)dA,
1.
Ay
= 1
(4.23) T =— /k33(11:1‘32,L)Tz(xlaiz)dA,
Aks
A2
(4.24) A= fdA = fdA.
A], A?

Introducing the quantities defined above into the Eq. (4.13) we obtain

kT —kTi, G R
L T

For the case r = 0 in B, and n-q = 0 on A3, Eq. (4.25) gives

(4.25) Q2 =

TQ_T‘A, ity =k = k.

(4.26) Qa=-Q1=—k

We mention that the heat conduction problem determined by the boundary
conditions (4. 8), (4.9) and (4. 10) is a three-dimensional boundary value problem
which, in general, does not have the solution in a closed form.

4.4. Example 4. Bounds for the thermal energy.

Homogeneous isotropic body is bounded by two similar ellipsoids of revolu-
tion described by the surfaces v = 1y and v = v (0 < v) < 13), where

. z3\2
(4.27) v =22 + 22 + (ga) " a>1.

The “inner” boundary surface of body B is A; and on it v = vy, the “outer”
boundary surface of body B is A2 and on it ¥ = . The inner heat sources
vanish, r = 0 in B, and we have the next “temperature” boundary condition

(4.28) ©, =T = const on A,

(4.29) ©; =0 on A,.

The function

(4.30) F(z1,89,25) = T—2 ("—2—1)

vp—u \v
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satisfies all conditions which are prescribed in (3. 6) for F' = F (z,,z2,z3) . Since
the hollow body considered is isotropic and homogeneous, the thermal conduc-
tivity tensor has the form K = k1 (k = const) and we have

/VF-K-VFdV =k/]VFFdV.
B B

A simple calculation gives

drk
(4.31) RET— T (2a i l) :
gfl_1 a
b

To obtain the lower bound for Uy, we use in (3. 6) the divergence-free vector field
B=0 ($1!I21 $3)

(4.32) c.=5 ( =Mx?+:c§+:c§).

It is very easy to show that

(4.33) f c-nOydA = T/ P RdA = 4nT,
35; Al p
1 [dV e G
(4.34) !c-R-ch—EB/p———ifrh(a)(u—l——u-;)E,
where

a-—1

(4.35) h(a)= % (aarc tga + ) fora>1and h(a) =1fora=1.
The combination of (3.6) with Eqs. (4.33), (4.34) leads to the lower bound

ik
G
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The bounds (4.31) and (4.36) for @ = 1 give the same result; in this case
the boundary surfaces A; and Ay are concentric spheres with their centers at
the origin of the coordinate system and » denotes the distance from the origin.

5. Conclusions

The main purpose of the present paper was to show how one can use the
analogy which exists between the linear elasticity and heat conduction. The
formulation of the mean value theorems of steady-state heat conduction problems
follows the formulation of mean displacement, and the mean stress theorem done
by GURTIN [9] in linear elasticity.

The upper and lower bounds for the heat flux are derived by the applica-
tion of Schwarz inequality, avoiding the application of the minimum principles
of potential thermal energy and complementary heat-flux energy which were
developed by WoOJINAR [1].

Examples 1 and 2 present the computation for two problems of the mean
heat flux vectors.

Example 3 discusses the heat conduction in a bar-like body by the application
of equation based on the concept of mean thermal in¢ensity and the mean heat
flux vector.

Example 4 gives two side bounds for the thermal energy of a hollow body
bounded by two similar ellipsoids of revolution. In this example, the test func-
tions applied can be used for the case of nonhomogeneous anisotropic bodies
which have shape as the body in Example 4.
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