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A DISCRETE-GRAIN MODEL accounting for the induced anisotropy of polycrystalline
ice is formulated. An individual ice crystal is supposed to be a transversely isotropic
medium whose behaviour is linearly viscous. For such a crystal a frame-indifferent con-
stitutive law involving three microscopic rheological parameters is derived. Assuming
that each crystal undergoes a homogeneous deformation of the polycrystalline aggre-
gate (the Taylor approximation), the macroscopic viscous behaviour of the material
is determined. The considerations are illustrated by the results of numerical simula-
tions of simple flows, showing the evolution of the oriented structure of the material
and the variation of macroscopic viscosities with increasing strains. In addition, the
influence of the parameters describing the single crystal anisotropy on the overall

behaviour of the aggregate is investigated.
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ice crystal dimensionless rheological parameters

crystal e-axis unit vector

strain-rate tensor

unit tensor

velocity gradient tensor

structural tensor

rotation matrix

deviatoric Cauchy stress tensor

spin tensor

global spatial Cartesian co-ordinates

local spatial Cartesian co-ordinates

angle defining the crystal c-axis orientation
shear strain

viscosity for shear on a crystal basal plane
isotropic polycrystalline ice viscosity
instantaneous viscosities

Cauchy stress tensor

angle defining the crystal c-axis orientation
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1. Introduction

ICE CORES RETRIEVED from polar ice caps in Antarctica and Greenland reveal
strong fabrics (THORSTEINSSON et al. [31]), with individual ice grain c-axes
(the axes of the crystal hexagonal symmetry) aligned along some preferential
directions, with the degree of the alignment usually increasing with the depth of
ice, in response to changing loading conditions. Such a phenomenon, in which the
internal structure of the material, and hence its macroscopic properties, evolve
due to current stress and strain configurations, is known as induced anisotropy.

The main mechanisms taking place on the microscopic level of a single ice
grain that are involved in the formation and subsequent evolution of the oriented
structure of the medium include, according to ALLEY [1], (1) crystal lattice ro-
tation, a process, in which the crystal c-axes rotate towards the principal axes of
compression and away from the principal axes of extension, (2) polygonisation
(also referred to as rotation recrystallisation), a mechanism in which the exist-
ing crystals are split and new grains are formed, and (3) dynamic (or migration)
recrystallisation, a process phenomenon in which, due to high shear stresses and
high temperatures, new grains are created at the expense of old grains that
subsequently disappear. The role of these three micro-processes changes consid-
erably with the depth in an ice sheet. In the present work, we are concerned with
only the first of these processes, namely the crystal lattice rotation, a mechanism
which, unlike the other two, occurs throughout the whole depth of a polar ice
cap, and dominates the evolution of ice fabric in the upper half of a polar ice
sheet.

A single crystal of ice is highly anisotropic, much more anisotropic than most
metallic crystals. As indicated by DUVAL et al. [9], a stress needed to shear the
crystal on its basal plane at a given strain-rate is about two orders of magnitude
smaller than those required for other, non-basal, slips. The hexagonal symme-
try of the ice monocrystal is practically insignificant in terms of its mechanical
behaviour, therefore the single grain can be regarded as a transversely isotropic
body (KAMB [16]). At temperatures and stresses typical of polar ice masses,
ice deforms mainly by viscous creep. Plastic (rate-independent) behaviour is
observed only at the stress magnitudes of 100 MPa (DUVAL et al. [9]), by far ex-
ceeding those occurring in natural conditions. The strong anisotropy of the single
crystal has significant consequences for the overall flow of polar ice sheets as the
oriented structure of the polyerystalline material develops. This has been con-
firmed by the results of numerical simulations of polar ice sheets (MANGENEY
et al. [19,20], STAROSZCZYK and MORLAND [29]), showing that the rates at
which the whole sheet flows are about twice as high for an anisotropic ice with
oriented fabric than those calculated on the assumption of isotropic ice with a
random distribution of crystal c-axes. This clearly indicates that the mechanism
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of induced anisotropy must be taken into account in the analysis of polar ice
behaviour if realistic results are to be obtained.

When modelling the behaviour of polycrystalline ice, a material with evolving
micro-structure, two distinct approaches can be pursued. In the first approach,
based on the methods of classical continuum mechanics, ice is treated as a con-
tinuum in which each material point contains crystals of all possible orientations.
The distribution of these orientations in space can be described by a so-called
orientation distribution function, whose evolution determines the directional
changes in the internal structure of the aggregate (SVENDSEN and HUTTTER
[30], MEYSSONNIER and PHILIP [21], GODERT and HUTTER [14], GAGLIARDINI
and MEYSSONNIER [21], GAGLIARDINI et al. [11]). Another continuum approach,
in which the micro-structure of ice is ignored by assuming that the macroscopic
behaviour of the material depends entirely on the macroscopic variables, such as
stress, strain-rate and strain, has been followed by MORLAND and STAROSZCZYK
[24], STAROSZCZYK and MORLAND [28] and STAROSZCZYK [26].

A fundamentally different approach is to treat each point of the polycrys-
tal as a collection of a finite number of discrete grains. In such a method the
behaviour of each crystal is followed separately, and the macroscopic response
of ice is derived from the responses of all individual grains by applying a ho-
mogenisation technique. Employing this method, Azuma [2] has developed a
model, in which an individual crystal is assumed to deform only by basal slip,
and the microscopic stress applied to each crystal is related to the bulk macro-
scopic stress in a way determined on the basis of experimental results. VAN DER
VEEN and WHILLANS [32] have adopted a similar approach, by supposing that
the only slip system active during the viscous deformation of a grain is that
associated with basal gliding, but, following LLIBOUTRY [17], have made an as-
sumption of a uniform stress, requiring that the stress in each grain is the same
as the macroscopic stress applied to the polycrystal. Yet another approach is
the self-consistent model based on the theory developed by HUTCHINSON [15]
and extended by MOLINARI et al. [23], in which no assumptions on the relations
between the microscopic and macroscopic strains and stresses are needed. In
that formulation each crystal is treated as an idealised geometric inclusion in an
infinite homogeneous medium with properties supposed to represent the macro-
scopic behaviour of the polyerystal, and on this basis interaction forces between
the grain and the aggregate are determined. Following this method, CASTELNAU
et al. [7] have constructed a model for polycrystalline ice in which the crystal
slips on basal, prismatic and pyramidal planes are incorporated.

In this work we formulate a discrete-grain model, in which the crystal slips
can occur on basal and prismatic planes (the latter are the planes parallel to the
crystal c-axis), which in terms of its generality and complexity places this model
between the simpler AzumA [2] and VAN DER VEEN and WHILLANS [32] models
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on one side, and the much more complex and elaborate CASTELNAU et al. [7]
model on the other. A single crystal is supposed to be a transversely isotropic and
linearly viscous medium. The anisotropic properties of the crystal are described
by means of two rheological parameters. For such a material, a constitutive law
that relates microscopic stresses to strain-rates is formulated. Adopting then the
Taylor assumption of the homogeneity of strain throughout the polycrystalline
aggregate, a uniform deformation model is constructed. Correlating the model
predictions with experimental data describing the limit macroscopic viscosities
of ice in compression and simple shear, the two microscopic rheological parame-
ters are determined. For illustration purposes, the model is used to simulate the
viscous behaviour of polycrystalline ice in uniaxial compression and simple shear
flows. The results obtained demonstrate how the initially isotropic fabric with a
random distribution of crystal c-axes evolves as the deformation proceeds, and
the variation of the macroscopic viscosities with increasing deformation is illus-
trated. In addition, the influence of the two rheological parameters describing the
anisotropy of the single grain on the macroscopic behaviour of a polycrystalline
ice aggregate is investigated.

2. Single crystal kinematics

We adopt material rectangular Cartesian co-ordinates OX; (1 = 1,2, 3) with
base vectors e; (1 = 1,2,3), and fixed spatial rectangular co-ordinates Oz; (i =
1,2,3) with the same origin O and the base vectors e;. In order to describe a
changing position of a single crystal, we use a local spatial reference frame asso-
ciated with the ice grain, with the axes Oz (i = 1,2,3) and the base vectorse;.
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FiG. 1. Global and local co-ordinate systems, with the angles # and ¢ defining the crystal
c-axis orientation.
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Due to the transverse isotropy of the single crystal of ice, with the direction
of the axis of its transverse symmetry coinciding with the crystal c-axis and
defined by the unit vector ¢, it suffices to follow the orientation of the vector ¢
in space to uniquely describe the position of an individual crystal. Accordingly,
we assume that ¢ = eJ, and to complete the definition of the local reference
frame, we further assume that the z{ axis lies in the meridian plane Oz3z},
and the zj axis is chosen in such a way that the right-handedness of the local
co-ordinate system is preserved (see Fig.1).

In order to position the local frame Oxf relative to the global frame Oz;, we
introduce two angles: the co-latitude, or the zenith angle, 9, and the longitude
@. In terms of these two angles, the rotation matrix Q, with the components
given by Qj; = ei‘eg , which transforms the components of non-scalar quantities
from the local to the global reference frame, is given by

coscosyp —sing sindcosyp
(2.1) Q = | cosd¥sing cosyp sindsing

—sind 0 cos )

In what follows, we will be concerned with both microscopic quantities, refer-
ring to the behaviour of an individual crystal of ice, and macroscopic quantities,
describing the behaviour of a polycrystalline aggregate as a whole; the latter
quantities will be indicated by a superposed bar. Further, the components of
tensor entities expressed in the local reference frame will be denoted by the super-
script g, while those expressed in the global reference frame will be left without
any suffix. Thus, A indicates a microscopic tensor quantity whose components
are expressed in the co-ordinate system Oz associated with a single grain, while
A denotes a macroscopic tensor quantity whose components are expressed in the
global co-ordinate system Ogz;, etc.

Since in the problem at hand the internal structure of the material evolves,
which is due to the change in time of the crystal c-axes orientations in space,
the local frames Oz! (i = 1,2,3) associated with individual grains of ice ro-
tate relative to the fixed global frame Oz; (i = 1,2,3) as the deformation of
the polycrystalline aggregate occurs. Therefore, the matrix Q which describes
the transformation of tensor entities between the frames Oz; and Ozf is time-
dependent, that is Q = Q(¢). Hence, the relations connecting the global and
local position vectors, x and x9 respectively, have the following forms:

(2.2) x=Q(t)x9, xI=QT(t)x, x=x(X,t), x?=x(X,t),

with the vector X containing the material co-ordinates, common for both refer-
ence systems Oz; and O:::f’, QT being the transpose of Q, and ¢ denoting time.
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Differentiation with respect to time of the relations describing the properties of
orthogonal matrices

(2.3) Q" =Q"Q =1,
where I is the unit tensor, yields the relations
(2.4) QQT+QQ"=0, Q"Q+Q"Q=0,

in which superposed dots denote time derivatives. In view of (2.2),, the velocity
fields observed in the global and local frames, v and v? respectively, are related

by
(2.5) v =x=Qx?+Qx% = QxI + QvI.

By differentiating (2. 5) and (2. 2), with respect to the spatial co-ordinates z;
(1 = 1,2,3), we obtain the following equation that connects the velocity gradient
tensors L and LY (whose components are L;; = 0v;/0z; and ij = 61}?/83:?,
respectively), measured in the global and local co-ordinate systems:

(2.6) L = QQ7 + QLQT.

The relations (2. 6) and (2.4) provide the transformation formulae for the strain-
rate and spin tensors. The strain-rate tensors D and DY, the symmetric parts of
L and LY, respectively, are related by

(2.7) D = QD’Q’,

while the spin tensors W and WY, the anti-symmetric parts of L and LY, re-
spectively, are connected by

(2.8) W =QQ" +Qw*Q".

The presence of the term QQT in Eq. (2.8) reflects the fact that the angular
velocity in the global system Oz; is the vector sum of the angular velocity in the
local system Oz] and the angular velocity of Oz with respect to Oz;. As the
spin tensor W is a skew-symmetric tensor, it follows that the matrix equation
(2.8) is equivalent to the set of three independent differential equations. Since
the matrix Q(¢), which defines the orientation of the crystal c-axis, and hence
the ice fabric, is a function of two variables, the angles ¥ and ¢, we need to
prescribe altogether five (out of six) independent components of the spin tensors
W and WY in order to determine the rotation of an individual crystal.
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Now, by equating, in turn, the components ( )iz, ( )13, and ( )23 in (2.8),
and using the definition (2.1) of the matrix Q, we obtain the following three
relations describing the evolution of the grain orientation:

(2.9)  @pcosyd = Wi, — Wiacosd + (Wigsing — Wz cos ) sind,
(2.10) d = —W + Wizcos g+ Wagsing,
(2.11)  ¢singd = —Wi; — Wigsind — (Wi3 sing — Wog cos ) cos 9.

From among five independent components of the microscopic spin tensors W and
W9 which need to be prescribed, three, namely those expressed in the global
frame Oz;, will be further related to the components of the macroscopic spin
tensor W. Accordingly, only two components of W? must be determined on the
microscopic level. This is done by following MEYSSONNIER and PHILIP [21], and
assuming that the grain basal planes remain parallel to each other throughout
the viscous deformation of the crystal, which implies that the velocity component
in the direction of the c-axis (coinciding with the z§ axis) is a function of the
z§ co-ordinate only, that is v§ = v§ (z§). Thus, dv§/dz] = dv]/0z) = 0, which
results in the following two kinematic relations connecting the spin and strain-
rate tensor components in the local reference frame Oz :

Hence, the only microscopic spin tensor component not yet prescribed is W{"z. Its
value can be determined from Eq. (2.9), given the current values of the angles
¥ and ¢ as well as the spin tensor components in the global frame Oz;. Since
W, describes the rotation of the crystal about its axis of symmetry measured
in the local reference frame O;z:f, and this rotation does not affect the viscous
response of the crystal due to the assumed transverse isotropy of the grain, the
actual value of WY, is irrelevant to our problem. For this reason, we can ignore
the relation (2.9) in our considerations, and restrict our attention to Egs. (2. 10)
and (2.11) which, in view of (2.12), become

(2.13) ) = —D{, + W3 cos ¢ + Wag sin g,
(2.14) ¢sing = —Di; — Wigsind — (Wy3sing — Was cos ) cos 9.

The above two kinematic equations describe uniquely the evolution of the
crystal c-axis orientation as long as the microscopic strain-rates D, and Dj,
measured in the lattice frame Oz{ are known. In the uniform strain approach
adopted here, the latter variables will be expressed in terms of the macroscopic
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strain-rates, while in the uniform stress model the strain-rates D]ga and D:f{;;
would be related to the macroscopic (equal to microscopic) stresses through a
constitutive law for the single crystal.

3. Constitutive law for a single crystal of ice

It is generally accepted in theoretical glaciology that the creep behaviour of
ice obeys a Norton-Hoff-type power law, stating that, in the case of uniaxial
loading, the strain-rate is proportional to some power of the applied stress mag-
nitude (GLEN [13]). At the deviatoric stresses larger than 0.2 MPa, the power
law exponent N for polycrystalline ice aggregate is equal to about 3, while for a
single crystal its value is N ~ 2 (DUVAL et al. [9]). At lower stress levels, however,
which are more pertinent to polar ice sheets where the deviatoric stresses are
usually smaller than 0.1 MPa, both laboratory and field measurements (DOAKE
and WOLFF [8], LLIBOUTRY and DUVAL [18], ALLEY [1]) give indications than
the exponent N can be lower than 2, and at very low stresses possibly ap-
proaching a value close to unity. The latter flow regime corresponds to that of
Harper-Dorn creep observed in many metals (LLIBOUTRY and DuUVAL [18]). Such
a nearly Newtonian viscous flow, with N ~ 1, seems to be a dominant material
behaviour in the central, upper part of a large polar ice sheet, though a definite
conclusion whether the assumption of N ~ 1 at small stress levels is the best
approximation to the real ice behaviour can be made only after more empirical
data is available (BARAL et.al [3]). In this work we restrict our attention to a
linear constitutive law for ice, assuming that N = 1. Nonlinearity of the creep
of ice can be incorporated in the constitutive model by relating the isotropic ice
viscosity to the strain-rate invariant tr D?, which is a conventional approach in
glaciology.

An individual grain of ice is assumed to be a transversely isotropic material,
with the crystal c-axis being the axis of the rotational symmetry. The medium
is supposed to be incompressible, which is a common ice mechanics assumption,
and its material behaviour is approximated by a linearly viscous flow law. There-
fore, the necessary variables which the constitutive law should include are the
Cauchy stress o and the strain-rate D. In order to account for the transverse
symmetry of the material, we introduce a structural tensor M defined by

(3.1) M=cQ®c¢, M;=cc; (i,5j=12,3),
which has the property tr M=1.

Our starting point is the general theory of frame-indifferent (objective) con-
stitutive laws (BOEHLER [5]). In accordance with this theory, the most general
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linear constitutive equation for a transversely isotropic material, which relates
two symmetric second-order tensors (in our case o and D), has the form

(3.2) o=al+aM+azD+ ay (MD+DM),

where oy and a9 are functions of the invariants trD and trMD and a3 and
a4 are constants. The “anisotropic” invariant tr (MD) =c’Dc describes the
components of D in the privileged material direction represented by the vector
c, parallel to the crystal c-axis. The coefficients oy (k = 1,...,4) are given by

a1 = ap + atr D+ ag tr (MD),
(3.3) o9

I

a4 + as tr D + ag tr (MD),
3 = ay, 04 = as,

that is there are eight material constants (ay,...,ag) in the most general linear
law. However, the ice incompressibility condition imposes the restriction tr D =0,
so the parameters as and as, providing they are of finite values, do not affect the
stress response of the material and therefore can be discarded from the analysis,
reducing the number of constants left for prescription to six. Further reduction
of the number of constants is achieved by assuming that there exist a natural,
stress-free state of the material when it does not flow, that is 0 = O when D = O.
Hence,

(34) D=0 = o=al+aosM=a114+a;M =0,

as a) = ay and ay = a4 when D = O. By multiplying both sides of (3.4) by M
we obtain

(3.5) Mo = aiM + ayM? = (a; + a3) M = O,

due to the identity M? = M. Calculating now the traces of the tensors entering
the relations (3.4) and (3.5) we find that

(3.6) 3ay +a4 =0 and ay+ag4=0,

resulting in a; = a4 = 0, so there are only four non-vanishing constants left
in the viscous flow law (3.2). Due to the ice incompressibility assumption, the
mean pressure in the material is a workless constraint that is not given by a
constitutive equation, therefore only the deviatoric stresses determine the creep
response of ice. Hence, by equating the deviatoric parts of both sides of (3.2),
we obtain the relation

(3.7) oP = oy 1P + ayMP + a3D” + a4 (MD + DM)?,
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where:

- 1
X o =S=0—-trol=04pl, =—=tro
(38) P_$=o-zuol=0+pl, p=-3to,

with S denoting the deviatoric Cauchy stress and p being the hydrostatic pres-
sure, IP? = O (as I is a spherical tensor), MP = M — 3 I, D? =D (as trD = 0),

and
2
(3.9) (MD + DM)” = MD + DM — §tr(MD)I.

Accordingly, Eq. (3.7) becomes
(3.10) S = ayMP? + 3D + a4(MD + DM)?,

and we note that the coefficient a; = a3 does no longer appear in the constitutive
relation, so it now includes only three material constants: ay = agtr (MD),
a3 = a7, and oy = ag. Thus, the constitutive law for a single, transversely
isotropic and incompressible crystal of ice can be expressed in the form:

(3.11) S = agtr(MD)(M — %I) + a7D + ag [MD + DM - gtr(MD)I].

The three constants ag, a7 and ag, defining the viscous response of the ma-
terial, should (ideally) be determined from the results of simple laboratory ex-
periments. Assume that we are able to measure three viscosities for the single
crystal, namely: p13 for shearing in the plane parallel to the crystal c-axis (so-
called basal shearing), p112 for shearing in the plane normal to the c-axis (so-called
prismatic shearing), and pgs for unconfined axial compression carried out along
the c-axis. These three viscosities are defined in terms of the deviatoric stresses
and strain-rates expressed in the local co-ordinate system Oz as follows:

89,
(3.12) Hij = '2_];:;;'a

where the factor 2 appears to conform to the classical form of the flow law for
viscous isotropic fluids S = 2D, with ug denoting the isotropic fluid viscosity.
Adopting the global reference frame Oz; to coincide with the local frame Oz?
attached to the crystal, in which case S = §9 and D = DY, the tensors and their
combinations entering the relation (3.11) are given by

(3.13)
000 0 BES =0
M=|000]|, MD‘=| 0 0 0 |, tr(MDY) = D,
001 DY D§, D,
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2
*§D§3 0 Df,
(3.14) MDY + D'M - %tr(MD-"’)I =| o —§D§3 DY,
4
D3, D3, §D§3

With (3.13) and (3.14), the law (3.11) provides the relations that connect the
deviatoric stresses Sj; to the corresponding strain-rates D; by

1
In view of (3.12), the latter equations yield the following definitions for the

material constants ag, a7 and ag :

(3.16) ag = 3psz + iz — 4p13, a7 =2p12, ag = 2(u13 — p12).

Now let us introduce two dimensionless rheological parameters A and B that
define the axial and prismatic shear viscosities in terms of the basal shear vis-
cosity:

(3.17) A=E8 p- 2
Hi13 H13

and denote the viscosity 13 (the smallest viscosity among pas , it12 and py3) by
. With these definitions, the relations (3.16) become

(3.18) ag = (3A+ B —4)p, ar=2Bu, ag=2(1-B)py,

where, for physical reasons, A > 1, B > 1, and g > 0. In particular, when
A = B =1, then we deal with an isotropic grain, while the case A = B — oo
(infinite axial and prismatic viscosities) corresponds to the situation in which
the crystal can deform only by basal slip. On substituting (3.18) into (3.11),

we obtain the frame-indifferent constitutive relation for the single crystal of ice
given by

(3.19) S = 2,u{%(3A+B~4) tr(MD)(M— %I) +BD

+(1- B) [MD + DM - %tr(MD)I] } .
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Using the Voigt notation (in which tensor components are expressed as elements
of vectors), the flow law (3. 19) can be re-written in the crystal co-ordinate system
Oz} in an alternative form as

g 9
(51 (La+m) ta-B) \ /Ph)
g 2 2 DQ
22 1 1 22
(3.20) =2 4 ,
SQ_ Dg
12 B 12
ST3 (0) | Di,

sl -+ 1\t

with the symmetric viscosity matrix depending on the three rheological param-
eters of the model: basal shear viscosity p and two dimensionless parameters A
and B describing the degree of anisotropy of the single crystal. In a simplified
model with A = B, the viscosity matrix takes a diagonal form, analogous to the
form of the fluidity matrix considered by GAGLIARDINI and MEYSSONNIER [12],
who used in their uniform stress model an inverse constitutive law for the crystal,
in which the strain-rates are expressed in terms of the deviatoric stresses.

4. Macroscopic behaviour of a polycrystal of ice

Assuming that each grain in the polycrystal has the same volume and the
number of grains at a given material point does not change with time (as a result
of recrystallisation, for instance), the components of any macroscopic tensor
quantity are defined as an arithmetic mean of the corresponding components
associated with all constituent grains

1 Ny
. (k)
(4.1) Ay = N, kE_lAt-J- 3

where Ny is the number of crystals. According to ELVIN [10], the minimum num-
ber of grains required to obtain statistically satisfactory results of homogenisa-
tion should be at least 230.

The kinematic Eqgs. (2.13) and (2.14) describing the evolution of the grain
orientation, combined with the constitutive law for the grain given by (3.19),
and supplemented by the averaging relation (4. 1), do not suffice to describe com-
pletely the behaviour of the polycrystalline aggregate. For this reason, additional
assumptions need to be introduced in order to provide further relations connect-
ing the microscopic and macroscopic variables, required to close the system of
equations.
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In most of the models developed for ice (LLIBOUTRY [17], VAN DER VEEN
and WHILLANS [32], GODERT and HUTTER [14], GAGLIARDINI and MEYSSON-
NIER [12], STAROSZCZYK [27]) it has been assumed that the stress state is uni-
form throughout the polycrystal , that is, at a given material point, the stress
in each crystal equals that in the polycrystal. This assumption is known as the
Sachs or Reuss approximation, and has been first introduced to ice mechanics
by LLiBouTRy [17], who has argued that the differences in the microstresses be-
tween adjacent ice crystals are negligibly small due to the process of continuous
migration of crystal boundaries. In other branches of material science, however,
for instance in metallurgy and struetural geology, in common use are models,
widely referred to as Taylor-Bishop-Hill (TBH) models, which are based on the
assumption of the uniformity of deformation in the polycrystalline aggregate.
Since both, Sachs-Reuss and Taylor, approaches do not account for the local
interactions between constituent crystals, so they are both significant simpli-
fications of the real intrinsic behaviour of the material, it seems that there is
no obvious reason why one of the approaches should have much more advan-
tage over the other. In fact, the results of numerical calculations carried out
by MEYSSONNIER and PHILIP [22] by using the self-consistent model similar to
that of CASTELNAU et al. [7], in which no assumptions on local stresses and
strains are made, have demonstrated that the viscous response of isotropic poly-
crystalline ice aggregate given by the self-consistent approach is closer to that
predicted by the Taylor model rather than the Sachs-Reuss model. In addition,
which will be shown shortly, the Taylor approximation allows the theory to be
correlated with the limit ice behaviour observed in simple experiments, whereas
the analogous Sachs-Reuss model fails to do so (GAGLIARDINI and MEYSSON-
NIER [12], STAROSZCZYK [27]). It is also well known (BisHop and HiLL [4]) that
the above two extreme approximations of the stress and the strain homogeneity
in the polycrystal yield, respectively, lower and upper bounds for the stress at
a given strain-rate. Therefore, it is of interest to develop for polycrystalline ice
a model based on the deformation uniformity assumption to complement the
afore-mentioned uniform stress models. Accordingly, in this work we adopt the
Taylor (also known as the Voigt) assumption of the strain uniformity, which in
terms of the velocity gradients takes the form:

(4.2) L=L,
which necessarily implies that
(4.3) D=D and W=W.

A consequence of the condition (4.2) is that, in general, the local stress S
is different in each crystal. This stress is defined by the constitutive law (3.19),
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with the microscopic strain-rate D now replaced by the macroscopic strain-
rate D. The components of the macroscopic stress in the polycrystal S are then
evaluated by applying the averaging relation (4. 1), determining thus the relation
between the macroscopic strain-rate and stress. In order to follow the evolution
of the crystal orientation, described by Egs. (2.13) and (2. 14), we first apply the
reciprocal of the relation (2.7) to find the strain-rate components expressed in
the lattice frame Oz{ in terms of those measured in the global frame Oz;, and
then use the relations (4.3) to obtain:

1 = - =
(4.4) DY, = =sin29 [Dy;(1 + cos® ) + Daa(1 + sin’ @) + Dy2sin2p
13 92

+ €08 29 (D13 cos ¢ + Dag sin ),

1 = = =
(4.5) D§3 55 sin?) [(Dzz — Dy1) sin2p + 2D cos 2@]

— cos? (Dy3sing — Doz cos ).

On substituting the above two relations into the kinematic Eqs.(2.13) and
(2.14), with the spin tensor components W;; replaced by W;;, we are able to
calculate the angles 9 and ¢ defining the current orientation of the crystal
c-axis.

Now determine the macroscopic viscosity of the isotropic polycrystalline ice,
Jto, in terms of the single crystal rheological parameters u, A and B. Suppos-
ing that the orientations of c-axes of all grains in the aggregate are uniformly
distributed in space (an idealisation of the random fabric), and that the num-
ber of grains is sufficiently large, then each crystal (with its orientation de-
fined by (9, ¢)) “occupies” the same elementary area sin? df dy on a unit hemi-
sphere of the radius 7 = 1. Hence, the number of grains on that hemisphere is
Ny = 2/ sin¥ di dyp. With the number of grains increasing to infinity, N; — oo,
the summation in the relation (4.1) can be replaced by the surface integration,
which, when applied to the deviatoric stress components, transforms the aver-
aging formula into:

2T 7T_/2

(4.6) Sij = -2—;/ / Sij (9, ) sind dd d.
0 0

In order to establish the relation between the macroscopic and microscopic
viscosities, consider a simple flow configuration, namely that of simple shear, in
which the only non-zero strain-rate components are, say, D13 = D3;. For a grain
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with the orientation given by (4, ¢), the crystal c-axis unit vector components in
the global co-ordinate system are defined by ¢ = (sin® cos ¢ ,sin ¥ sinp, cos 9)7.
The latter determines the structure tensor components M;; = ¢; ¢;, which used
in the constitutive law (3.19) yield the microscopic stress Si3 as

(4.7) Si13 = 2uD\3[(3A + B —4)sin? ¥ cos® ¥ cos? ¢
+ B + (1 — B)(sin® ¥ cos® ¢ + cos® 9)).

After substituting the above equation into (4.6) and performing the prescribed
integration, we find that the macroscopic stress Sy3 is given by

% Do
(4.8) Sz = gy.D];; [A+ZB+2),

which, by comparing to the viscous fluid flow law S = 2uoD, that is S;3 =
2p9Dq3, defines the macroscopic viscosity of the isotropic ice by

(4.9) jig = %(A +2B +2).

From the above relation it follows that when the single crystal is isotropic (in
which case A = B = 1), then py = u, implying that the microscopic and
macroscopic viscous properties of ice are the same. On the other hand, when
the single crystal is assumed to deform only by basal glide, which corresponds
to A = oo and B — oo, then (4.9) gives an infinite value of the viscosity
1o , showing that in our model both the prismatic shear and axial deformations
should be permitted in order to yield a bounded value of pg. This result differs
from the prediction of the uniform stress model, which allows the basal shear to
be the only active slip system in the crystal, and yields for such a limit case of the
grain anisotropy the relation pg = 2.54 (GAGLIARDINI and MEYSSONNIER [12],
STAROSZCZYK [27]). In addition to (4.9), and using the results obtained in [27],
we can express the ratio of the isotropic polycrystalline ice viscosities predicted
by the Taylor and Sachs-Reuss theories, giving, respectively, the upper and lower
bounds for pg, as

T
(4.10) “_g= 21—5(A+2B+2)(A‘1+28_‘+2),

where ;;,3,“ and ,ug denote, respectively, the viscosities predicted by the Taylor
and Sachs-Reuss approximations. Obviously, p.hr/ pg =1for A= B =1, defining
isotropic grains.

As the polycrystal deforms under uniaxial compression or simple shear (which
will be illustrated in the next section), the crystals gradually rotate in such a way
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that, ultimately, all the c-axes are aligned in parallel. In such a limit situation,
the macroscopic properties of the aggregate become those of the single crystal,
with the material behaviour described by the constitutive Eqgs. (3. 19) and (3. 20).
Hence, using (3.17) and (4.9), the relation (3.20) yields the limit macroscopic
viscosity for shearing in planes parallel to the crystal c-axes in the form:

13 5
4.11 —_
ey o A+2B+2
Similarly, the limit macroscopic viscosities for shear in the plane normal to the
crystal c-axes (prismatic shearing), for uniaxial compression along the c-axes,
and for uniaxial compression in the direction normal to the c-axes, are given,
respectively, by

B2 _ 5B 33 _ 54 pu _ 5(A+3B)

419) e caetoe = e AL L
(¢12) wo A+2B+2 o A+2B+2 wo 4(A+2B+2)

In laboratory tests carried out on samples of polycrystalline ice, usually only
the viscosities for simple shear and unconfined uniaxial compression are mea-
sured. The reciprocals of the limit ratios of these viscosities to the isotropic
viscosity for indefinite deformations, that is uo/p13 and pg/pss, are commonly
described in glaciology as enhancement factors for shear and compression, F
and E,, respectively (BuDD and JACKA [6]). By substituting the experimentally
measured values of the enhancement factors to Egs. (4.11) and (4.12),, we can
determine the values of the two rheological parameters A and B in our model.
As a result, we obtain the following relations for A and B:

By o 5By, B

(4.13) A B, B el in

which ensure the correlation between the observed limit behaviour of polycrys-
talline ice and the model predictions.

5. Numerical simulations

The model formulated in the previous sections is now applied to simulate the
viscous behaviour of polycrystalline ice in two simple configurations, correspond-
ing to those occurring in typical laboratory tests, namely the unconfined uniaxial
compression and simple shear. As first, we determine the microscopic rheologi-
cal parameters A and B, related by Eq. (4.13) to the macroscopic enhancement
factors. BUpD and JACKA [6] have measured in tests conducted on warm ice
(near melting) the enhancement factors E, = 3 and E; = 8, whose meaning is
that both axial and shear viscosities decrease with increasing deformation of ice.
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However, as the data presented by PIMIENTA et al. [25] and THORSTEINSSON
et al. [31] indicate, the axial viscosity of polar ice increases with deformation,
hence E, < 1 seems more appropriate, especially at low temperatures and low
stress levels characteristic of natural ice masses. The value of E, as small as 1/10
for a single-maximum fabric has been found experimentally by PIMIENTA et al.
[25], although recently MANGENEY et al. [19] have suggested the value E, ~ 1/3
for ice near the bottom of the Greenland ice cap, calculated by applying the
constitutive model developed by LLIBOUTRY [17] and the field data provided
by THORSTEINSSON et al. [31]. The shear enhancement factor for ice near the
centre of the Greenland ice sheet has been evaluated to be Es = 2.5, though it
seems that further away from the centre, where shear stresses are larger (and
hence fabrics are stronger), a higher value is more relevant. Accordingly, in our
simulations we adopt the enhancement factors E, = 1/3 and E; = 5, for which
the relations (4.13) give A = 15 and B = 4. It should be noted here that it
is not possible to achieve the above enhancement factors by employing uniform
stress models (GODERT and HUTTER [14], GAGLIARDINI and MEYSSONNIER
[12]), with a single parameter describing the crystal anisotropy, in which case
the maximum value of E; that can be attained is 2.5.

Assume that the uniaxial compression is carried out along the =3 direction,
with equal strains in both lateral directions z; and z3. Then the deformation
field is described by

(51) m=MX, z2=XXs, z3=MXs M=Xk=X)"%

where A; (¢ = 1,2,3) are the principal stretches along the z; axes, all equal to
unity at the start of flow from the isotropic state and A3 < 1 afterwards, and the
last relation in (5.1) is due to the ice incompressibility condition AjAsA; = 1.
The velocities are defined by

39 b T -
(5.2) v = —53:1/\3//\3, v = —5&821\3//\3, vz = T3A3/ A3,

so the tensors of macroscopic velocity gradient L, strain-rate D, and spin W are
given by

‘—-%;\3/)\3 0 0
(5.3) L=D= 0 _%,\3/,\3 o | W=0.
0 0 A3/As,

In the calculations, performed for the isotropic ice viscosity pg = 10 MPaa,
where the unit “a” stands for a year, it has been assumed that the axial strain
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rate D33 = A3/A3 = 1072 a~! is kept constant throughout the flow. All the
simulations have been carried out with N, = 800 discrete grains whose initial
orientations have been distributed at random. In the plots, the axial deformation
along the z3-axis is expressed in terms of the axial strain £33 defined by

(5.4) €33 = Az3 — 1.

The evolution of ice fabric with the axial deformation e33 is illustrated by means
of the equal-area Schmid diagrams shown in Fig. 2, in which the dots represent
the positions at which the individual crystal e-axes intersect the unit hemisphere,
projected onto the plane of the plot. The diagrams demonstrate how the single
grains rotate and gradually align in the direction of the principal axis of com-
pression, which for large deformations gives rise to a single-maximum fabric,
with nearly all c-axes clustered around the z3-axis. Such a behaviour of poly-
crystalline ice aggregate, predicted by the model, agrees well with the behaviour
observed in both the laboratory conditions and in the field (PIMIENTA et al. [25],
BupD and JACKA [6], ALLEY [1], THORSTEINSSON et al. [31]).

“--_._‘__

£,.,=-06.1=183a £,=-0.8,t=321a £,=-0.95,1=598a

FiG. 2. Evolution of fabric in uniaxial compression along the z3-axis as a function of the
macroscopic axial strain £33 and time ¢ (in years).

Figure 3 illustrates the evolution of the macroscopic axial viscosity with in-
creasing compressive strain as a function of the crystal rheological parameters A
and B. The axial viscosity is defined in terms of the current macroscopic stress
S33 and the prescribed strain-rate Dj3 by the relation paz = S33/(2D33), and is
normalised by the macroscopic viscosity pg, that is the ratios ju33/po are plotted
in the figure.
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Figure 4 shows the variation of the normalised macroscopic viscosities p;;/pud
(solid lines) with the strain e33 for the single crystal rheological parameters
A = 15 ard B = 4, demonstrating the evolution of the strength of anisotropy
(in this case transverse isotropy) of the aggregate with increasing macroscopic
deformatien. For comparison, also the results predicted by the related uniform
stress mocel by STAROSZCZYK [27), indicated by the dashed lines, are presented
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FiG. 2 Evolution of the normalised axial viscosity with the strain £33 in uniaxial
comjpression for different values of the crystal rheological parameters A and B.

30} UGS
,i
i
£ 2] / i .
§ i
[}
S 20 !,' 4
3 T
7] 1" 22
ﬁ 15+ J': -
!
: /
e S_—
< ra
P Hiz
R see=ISTT Mgyl e |
0.0 1 1 1 1
00 0.2 0.4 06 -0.8 -1.0
Axial strain

F1G. 4. Evelution of the normalised viscosities with the strain £33 in uniaxial compression for

the crystal rheological parameters 4 = 15 and B = 4. Comparison of uniform strain (
and uniform stress (- — —) model results.

in the figure. We note that (1) the isotropic ice viscosities (occurring at £33 = 0)
predicted by the uniform strain and uniform stress models, are, for the chosen
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single crystal parameters, in the ratio ,u;{/,ug = 2.5667 determined by (4.10),
and (2) the same limit viscosities p1, i1 and g3 when £33 — —1, for the Taylor
model given by (4.11) and (4. 12), are predicted by the two theories. However,
it is seen that the limit viscosities given by the two models are approached in
different ways. For the uniform stress model, the most significant evolution in
the fabric strength occurs for the axial strains £33 changing from —0.4 to —0.6,
with the limit values reached just after the latter value is exceeded, while for
the uniform strain model, which predicts a “stiffer” behaviour of ice, the limit
alignment of individual grains, and hence the limit viscosities, are attained much
later, at £33 close to —1.

Next consider a simple shear in the plane Oz;z3 started from an initially
isotropic state. The deformation field is now described by

(5:}) 11 =X1+KX3, zo=Xo, z3=Xj,

where k is a shear strain increasing from zero. The associated velocity field is
given by

(5.6) vy = Rz, vz =v3 =0,

vielding the macroscopic velocity gradient, strain-rate, and spin tensors of the
forms:

3 {1

(il P P 0 0 5.& 0 0 ‘iﬂ

G L=1001701], D= ¢ 00 , W=| 0 0 0
1 1
0 0 0 i i

2.“; 05 0 2}» 0« ~0:

The process of formation and subsequent development of fabric during simple
shear is illustrated in Fig. 5. We note that in this flow regime the crystals initially
rotate towards the plane Ozoz3, and only at very large shear strains & their c-
axes cluster around the axis 3 (which becomes the principal axis of compression
as k£ — o0). Ultimately, the same single-maximum fabric as in the uniaxial
compression develops.

The evolution of the macroscopic viscosities during simple shear deformation
is illustrated in Fig. 6 and 7. A characteristic feature that is seen in the figures
is an initial hardening (an increase in the shear viscosity p3) of ice under shear-
ing, with a maximum shear viscosity occurring at the strains x ~ 2. Figure 6
shows the dependence of the normalised viscosity 13/ of the aggregate on
the parameters A and B describing the anisotropy of constituent crystals. It
can be observed that now, compared to uniaxial compression (see Fig.3), the
macroscopic behaviour of the polycrystal is less sensitive to particular values
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K£=40, t=400a £ =10.0,1=1000a K£=20.0 t=2000a

FiG. 5. Evolution of fabric in simple shear in the Oz,23 plane as a function of the
macroscopic shear strain & and time ¢ (in years).
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Fi1G. 6. Evolution of the normalised shear viscosity with the strain s in simple shear for
different values of the crystal rheological parameters A and B.

of the microscopic rheological parameters. Figure 7 demonstrates, for A = 15
and B = 4, the evolution of the instantaneous viscosities j;;/pg with increas-
ing shear strain x, showing the development of anisotropy from the initially
isotropic fabric at & = 0. Since the fabric at the limit x — oo coincides with that
created at large deformations during uniaxial compression, the full anisotropy
gradually transforms into transverse isotropy, with gz — poz and gy, — poo.
Moreover, the limit viscosities plotted in Fig. 7, as being again described by the
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Normalised viscosity

Shear strain

FiG. 7. Evolution of the normalised viscosities with the strain x in simple shear for the
crystal rheological parameters A = 15 and B = 4.

relations (4.11) and (4.12), are equal to the limit viscosities shown in Fig. 4:
[,.'.13/;450 =02= 1/E5, ;.1.33/,(!.0 =30= 1/Ea, “12/;10 = 0.8, and ,u,n/,uo =1:35.

6. Conclusions

The process of induced anisotropy in polycrystalline ice has been modelled
by assuming that an individual crystal of ice is a transversely isotropic material,
and that the strain is uniform throughout the polycrystal. The creep behaviour
of the single crystal has been described by two parameters defining the strength
of its anisotropy. The magnitudes of these parameters have been correlated with
the limit viscosities in compression and simple shear observed in experiments,
something which is not possible with the analogous uniform stress models. Al-
though the viscous response of the single crystal has been assumed to be a linear
relation connecting the deviatoric stress to strain-rate, non-linearity of the ma-
terial behaviour can be easily accounted for by relating the viscosity of ice to a
function of the strain-rate invariant tr D?, which is a well established approach
in theoretical glaciology. In the proposed model only the crystal lattice rotation
mechanism has been considered, and the effects of the rotation and dynamic
recrystallisation on the fabric development in polycrystalline ice have not been
taken into account. The reason for not including the latter mechanisms into the
model is an insufficient amount of experimental data enabling the proper identi-
fication of the main factors controlling such complex microprocesses. Once these
factors are identified and quantified, then the present model can be applied as a
framework for incorporating more features of the creep behaviour of ice.
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