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On resonances of nonlinear elastic waves in a cubic crystal
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Using THE METHOD of weakly nonlinear geometric optics, we obtain asymptotic trans-
port evolution equations for high-frequency, small amplitude nonlinear elastic waves
in a cubic erystal. Both geometrical and physical nonlinearities are included in our
model. We expand strain energy up to the third order terms with respect to the
strain matrix components. The nonlinear resonant asymptotic equations obtained
are of integro-differential type. The coefficients of these equations are called resonant
interaction coefficients (RIC). They determine whether and between which waves
the nonlinear resonant interactions occur. We have calculated all the RIC in the
explicit analytical form for three different crystalline directions of a one-dimensional
wave motion. Comparison of the results shows that the direction of propagation influ-
ences the resonant interactions in an essential way. Moreover, our analytical formulas
for RIC can be used to determine the material constants of a crystal.

1. Introduction

THE NONLINEAR RESONANCE of two waves, contrary to the classical linear superpo-
sition, consists in producing a new wave with a fixed wave number and frequency
being the combination of the componential wave numbers and frequencies. The
generation of the second harmonics is a classical example. Recently, the analysis
of nonlinear resonant interactions of waves attracts many mathematicians and
physicists. In the last decade, a new asymptotic method called weakly nonlinear
geometric optics, W NGO in short, was mathematically rigorously developed to
analyze nonlinear resonances [1 - 3|.

In this paper we are interested in resonant interactions of nonlinear elastic
waves in anisotropic media. For simplicity, we focus on a cubic crystal being
the simplest nonlinear, anisotropic, elastic medium. To analyze the problem
of resonant interactions we derive the equations of motion as the first order
quasilinear hyperbolic system of partial differential equations (PDE). Both the
geometrical and physical nonlinearities are included in our model.

Employing WNGO we reduced our complicated system of PDE to a rela-
tively simpler set of transport evolution equations with integro-differential terms
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that describe the nonlinear resonances of the interacting waves. These transport
equations can be solved, in general, numerically only. The solution gives the
information how the shapes of particular waves evolve in time and space. Even
before solving the set of our asymptotic equations, the knowledge of the ana-
lytical form of all the nonvanishing RIC provides useful physical information:
which waves interact, how strong the nonlinear resonance is and what new waves
are produced.

We start with a general formulation of nonlinear dynamical elasticity equa-
tions in three space dimensions. After expanding the strain energy up to the
third order terms in an arbitrary anisotropic homogeneous medium, we specify
the energy form explicitly for a cubic crystal. Then, for simplicity of our presen-
tation, we restrict ourselves to the one space dimension and show the analytical
formulas characterizing our hyperbolic system of PDE for three selected direc-
tions of wave propagation. Finally, we calculate analytically all the RIC, which
we then briefly analyze.

2. Nonlinear elasticity equations

2.1. General form in three-dimensional space

We consider the equations of nonlinear elasticity which, in Lagrangian coor-
dinates, take the following form:

v
Pﬂa = V(F T)a
(2.1)
OF
o

: du X : : .
where we introduce: v = — - velocity, u - displacement, Vu is the displacement

ot

gradient matrix with respect to the space variable x = [x1, 29, x3] € R3¢ - time,
po — density and F = I+ Vu is the deformation gradient.

In a nonlinear hyperelastic medium the stress tensor T is characterized by
the relation:

ow

(2.2) = B
where the strain energy W = W(E) is an analytic matrix-valued function that
we later expand up to the third order terms with respect to the strain matrix E
components, and
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(2.3) E= %(FTF —7).

Using the definition of F we can express the strain tensor E as the function
of the gradient of displacement:

(2.4) E = E(Vu) = % {Vu+ (Vu)" + (Vu)" Vu}.

It shows that we include geometrical nonlinearity in our formulation, apart from
the so-called physical nonlinearity expressed in W (E) (cf. (2.5) below).

2.2. Nonlinear anisotropic medium

We assume the expansion of the energy W in the following physically non-
linear form:

3 3
1 1
(2.5) W(E) = 5 E cijktEij B + 6 _S_ Cij ki;mnEij Exi Emn.
1,7,k 1,0k mn

Given the explicit form of the energy W = W(E) as a function of the strain E,
we compute the stress T = {T‘ij}?‘_jzl by formally differentiating W with respect
to E:

3

3
1
(2.6) Ti; = S Cij ki Bt +5 E Cij kil mn ki Emn.
k.l klmmn

Then employing the formula (2.4), we obtain the energy W as the function of
the gradient of displacement: W(Vu) = W(E(Vu)).

From now on, to shorten the notation, we use the standard abbreviated in-
dices ¢ij, ¢ijk, 1,J,k = 1,...,3 according to the known rule:

1.1 — 1 2,2 — 2 33 — 3
(2.7) 2.3 — 4 3,2 — 4 1,3 — 5
3,1 = 5 1.2 = 6 21 = 6

2.3. Cubic erystal

After BIRCH [4], the explicit form of the strain energy function W = W(E)
in the simplest cubic crystal is the following:
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| . I}
(28 W= 5011(3121 + B3 + E%;) + é12(E11 Eay + ExEsg + By Eyg)

éaa(Ely + B3, + E3y + E3y + B3, + E) + i (B} + B + Ei)
é112{E% (B + Ea3) + E3, (B + E33) + E3(BE1y + E)}

~é144{E11(E% + E%) + Ex(E% + E3) + Es3(E}, + E3)}

+ +

+
— D

+ éies{(Bn1 + Bx)(EY, + E3)) + (Ex + Bs3) (B3 + E3)

+ (En1 + E33)(E3; + E3)}
+ ¢193E11 Bog B3y + éas6(Er2 B3 B3y + Eo EsoEy3).

[ o%]

provided that the wave propagation direction is z; = [1,0,0]. The coefficients
Gij, €ijk in (2.8) are related to ¢;j, cijx in (2.5), (2.7) as follows: & = ¢,

b 1 . I}
G = 2o, Ci44 = 2C144, Ci23 = €123,
. I y i
2 = 5 cua ¢166 = 2cC166, Cas6 = 4 Cy56-

Given any other direction z of wave propagation, we need to transform the
formula (2.8) for the energy W = W (E) according to the rule:

(2.9) W(E) — W(Q.EQT)

where Q. is the unitary matrix of the rotation that transforms the vector
z; = [1,0,0] into the vector z and where the superscript 7' denotes matrix trans-
position.

In this paper we also consider the two other canonical directions of propaga-
tion: zo = [1,1,0] and z3 = [1,1,1]. The rotation matrix corresponding to the
direction zs is

s 1 1 -1 0
(2.10) e
and to the direction z3 is
o 1 -1 1
V3 V6 V2
1 1 1
i W=7 &
L B A3 d
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2.4. First order system in one dimensional-space

In the one-dimensional case (x = [z,0,0]), making use of the formalism from
Sec. 2.1, and under natural assumptions guaranteeing hyperbolicity, our nonlinear
elasticity equations (2.1) lead to the quasilinear hyperbolic system of the form:

aw ow
(2.12) 5 + A(w) - P 0,
with the matrix A(w):
0 iB(w)
(213) A(W) T Po )
I 0

where I is the 3 x 3 identity matrix and
w = [v(z,t),uy(z,t)] = [wy, wa, w3, we, ws, we ]

The 3 x 3 matrix B = {B'ij}?,jﬂ in (2.13) is derived from the equation of motion
in (2.1) and is given by the general formula:
LT
(2.14) Bj; = A W(uz) = W(E(uy)).
()‘uri+3de+3
The matrix B can be further specified after expanding the energy W = W (E) up
to the third order terms with respect to the strain matrix E (cf. Sec. 2.2).

In the final form of B obtained by using (2.14), we neglect higher than the
first order terms in w. The form of B depends on the direction z of the wave
propagation in the cubic crystal, as the energy function W does (cf. Sec. 2.3,
(2.8), (2.9)). The analytical form of the matrix B will be explicitly given later
for three directions: z; = [1,0,0], zo = [1,1,0] and z3 = [1,1, 1].

3. WNGO approach

We are interested in the Cauchy problem for the quasilinear hyperbolic sys-
tem (2.12) with periodic initial conditions
ow* ow*
- =t A W’"F - = 0,
ot ') oz

w(z,0) = wo + ew;(z,z/€),

(3.1)

where € is a small parameter and wy is a constant state solution to the PDE
system (2.12).
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This problem can be solved by using asymptotic methods. The heuristic
expansions, without proving their asymptotic correctness, were applied by physi-
cists to study interactions of nonlinear waves already in the fifties. The mo-
dern, mathematically rigorous approach, called weakly nonlinear geometric op-
tics (WNGO), was initiated by CHOQUET-BRUHAT [5], followed by HUNTER and
KELLER [6]. In the eighties and nineties, many papers devoted to WNGO were
published, e.g. [1, 2|, several of them containing the rigorous proofs of the validity
of WNGO |3, 7].

The WNGO method has been already applied to study resonances in dif-
ferent physical situations: gasdynamics [1], magnetohydrodynamics [8], isotropic
elasticity 9], magnetoelasticity [10]. We have analyzed the resonances in nonlin-
ear electrodynamics [11].

3.1. Asymptotics

A weakly nonlinear geometric optics asymptotic solution to the system (3.1)
is sought for in the form:

:I:—z\ji

(3.2) w(z,t) = wo +¢ Z a; (.’L“ 5 ) rj + O(e?)

1

with the unknown amplitudes a;. We assume here that a; are periodic with zero
mean.

Here J; is the eigenvalue of A(wy), j = 1,...,6, and r; is the right eigenvector
corresponding to A;:

(A(wp) — AI)r; = 0, 1; (A(wg) — A1) =0, l; -xj = i

while 1; is the left eigenvector of A(wyp) and §;; is the Kronecker delta.
Inserting (3.2) into (3.1), expanding A around wyg, into Taylor’s series, us-
ing multiple scale analysis and employing the solvability condition, we obtain
the transport evolution equations for the amplitudes a; of resonantly interacting
waves.
In general, for strictly hyperbolic systems, these are integro-differential equa-
tions of the form [1]:

’ i
(')(J.j Baj i aﬂ._-‘; j " 1 ' -
(3.3) ot + jFﬂ;— -I-Fjjtlja—” i % qu Flil;]gc 5T / apuqda =0
) -
where
;  Oay
aq = ag(z, 1, + s(A; — Ag)), a, = E}u(.}:,i,n +5(A = Ap)),

http://rcin.org.pl



ON RESONANCES OF NONLINEAR ELASTIC WAVES IN A CUBIC CRYSTAL 97

and Y indicates summation avoiding repeated indices, while n = (z — Ajt) g
The nonlinear resonance takes place when at least one of the integro-
differential terms with I'), in (3.3), j,p,q = 1,2....,6, does not vanish.

3.2. Resonant interaction coefficients

The fundamental feature of a nonlinear resonance of waves is the generation
of a new wave with a fixed wave number and a frequency being the combination
of the componential wave numbers and frequencies [1, 3]. It is of great practical
importance to investigate whether and when such nonlinear resonances take place.

The strength of the j-th wave produced through the nonlinear resonant inter-
action of p-th and g¢-th waves is represented by the coefficient qu in (3.3). Itis
called the resonant interaction coefficient (RIC). 1t can be put into relatively
simple form:

(34) pq(wﬁ ( A)Iw wurp Ty
convenient for further manipulations with the help of the symbolic calculation
program Mathematica.

The formula (3.4) for RIC involves right and left eigenvectors of the matrix
A of our PDE set, and the derivatives of A with respect to the unknown vector w,
all evaluated at the constant state wy around which we expand our asymptotics.
In fact, the (Vw A) is the Hessian of the matrix A. Thus, together with the eigen-
vectors of A in the analytical form, the formula (3.4) can be quite lengthy and
tedious. Nevertheless, it is in a suitable form for symbolic calculation programs
like Mathematica or Maple.

Specially designed procedures have been developed in the Mathematica lan-
guage. These procedures allow us to calculate analytically and efficiently simplify
all the RIC of the system (3.3) for any given constant state wy.

4. Nonlinear resonances in a cubic crystal

The explicit form of all the RIC have been computed for system (2.12) o
nonlinear elasticity equations for a cubic crystal, at the zero constant state (wg =
0) for three different directions of wave propagation: z; = [1,0,0], z = [1, l,U]
and 'z3 = [1,1,1].

In each case, apart from the analytical formulas for RIC, we present the
particular analytical form of the matrix B (cf. (2.13)) and the eigenvalues of the
matrix A(wg). All the formulas are presented as functions of the elastic material
constants ¢;j, ¢jjk.
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Moreover, in Fig. 1 we show a graphical representation of nonlinearly inter-
acting waves. This representation can be interpreted as follows. Let us recall
that a nonvanishing I}, in (3.3) represents the strength of the j-th wave pro-
duced through the nonlinear resonant interaction of p-th and ¢-th waves. For
each new j-th wave, j = 1,...,6, we show a 6 x 6 matrix of respectively shaded
squares that represent the p-th and ¢-th waves, by interaction of which the new
j-th wave is produced. The letters in the squares and the shades of the squares
correspond to the analytical formulas for the respective RIC. They, in turn, are
referred to the graphics by the letters in squares in the formulas.

Our graphical representation helps to determine all the nonvanishing RIC
and to find the relations between them (e.g. which of them are equal) with-
out presenting lengthy redundant equations. Such a visualization allows us to
compare easily nonlinear resonant interaction of waves for different directions of
propagation or for different constant states.

Let us notice that the structure of the eigensystem of our matrix A in (2.12)
is preserved, irrespectively of the direction of the wave propagation z;. There are
always three pairs of eigenvalues of opposite sign:

(41) /\1 = —-,\2, /\3 = ‘—)A_l, /\5 — -)\5,

with the degeneracy A3 = A in the cases 1 and 3. In each case, the calculated
eigenvectors of A(wp) can be expressed in terms of the eigenvalues (4.1) and they
take the following form:

1

vy ={3,00001,0,0L, = §[,\;1, 0,0,1,0,0],
1

rp=[3,0,0,1,0,0], L= 3[}"00100],
1

r3 = [0,23,0,0,1,0], 15 =3[0, X0 1, D).

1
ra =[0,%,0,0,1,0], L =3[0, N 5 0 200

1

rs = [0, 0, A5, 0, 0, 1], 5 = ;2-[(}, 0,2;%,0,0,1],
1

rg = [0,0, X:0,0,1], o= 5[U, 55 0, B 1]k

Formula (4.2) shows that in all the three cases analyzed we have a complete set
of linearly independent eigenvectors satisfying 1; - r; = 4;;, in spite of the fact
that our system (2.12) is not strictly hyperbolic at wy in the cases 1 and 3.
The completeness of the eigenvectors allows us to calculate RIC even in these
degenerate cases.
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F1G. 1. Graphical representation of nonlinear resonances in a cubic crystal for different
directions of wave propagation (see page 8).
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4.1. Case 1

For the direction z; = [1,0,0] of wave propagation we have:
The matrix B in (2.13):

o + Py Yus Ywe
Bi= Yws & + ywqy 0
Ywe 0 0 + ywy
with
a = C11,
B = 3en + e,
Y = €11 + C166;
6 = C44-
Eigenvalues:
A= — L —Az,
20
)
’\3 — = ——a— _-Aéh
20
[ &
As = —[ — = —Xg-
20
RIC: 8
Y BT g N iy
=
Tl = .
@ 33 zm
=4
dleDk, = :
13 2@
4.2. Case 2

For the direction zo = [1,1,0] of wave propagation we have:

The matrix B in (2.13):

o+ ﬁ‘-‘.Uq, YWws '}"’wr,
B= Yws § + ywy 0
y*wg 0 0" + yrwy
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with

(e + c12 + 2c44),
1

(c11 4 c12 + 2¢44) + Z(Cm + 3e112 + 12¢166),
1

(cn1 + c12 + 2c44) + Z(Cm —€112),

(e11 + c12 + 2¢44 + €144 + €166 + 2¢456)s

(011 = 012):

B = B = B = N B

it = Cy4.
Eigenvalues:

A

do = =y =2,
Po

I

r

!
Il

|
>
&

RIC:

]« =
[b]e T, = p
[]¢ Tl = 5
HF‘?a:z—? )
*'“’F‘?5=2_7

4.3. Case 3

For the direction z3 = [1,1, 1] of wave propagation we have:
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The matrix B in (2.13):

o + Buy Yws Yiwg
B = Yws 0 + ywy + ews EwWg
Vg EWg 6 + ywy + ews

with

1
o= g(cn + 2¢12 + 4eqs),

B = c11 + 2¢19 + 4eyy
1
+§(Clll + 6¢112 + 12¢144 + 24c¢166 + 2¢123 + 16¢456),

1 1
k= 5(611 + 2¢12 + 4eqy) + 5(0111 — 3c144 + 6ci66 — €123 — 2¢456),
1
d = 5(611 — c12 + C44),
V2 .
€= -}E(Cm — 3c112 + 3¢144 — 3c166 + 2¢123 — 2C456)-
Eigenvalues:
M= —y[= ==X,
20
)
A3 = —|— = =M\,
Po
As = — i = —Ag.
£o

RIC:
aj]eo Tl = ———
k] 2 ;—-pua

=
Tk = "
@ 33 gm

? i
(_)Fl:}_zm!

el IE, = .
33 gm

5. Conclusions

The coefficients of the transport evolution equations (3.3) of weakly nonlinear
elastic waves in a homogeneous cubic crystal have been calculated explicitly in
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a general analytical form. These coefficients, called RIC, represent resonant
interactions of nonlinear waves and are expressed in terms of material constants
of the medium. The RIC formulas have been analyzed for various crystalline
directions of one-dimensional wave propagation.

The knowledge of the complete set of RIC for a given direction of propa-
gation allows one to determine precisely which waves interact, how strong the
nonlinear resonance is and what new waves are produced.

The analysis of the derived formulas shows that the most important factors
influencing the resonant interactions are: the direction of wave propagation and
the character of the nonlinearity of a crystal.

Closer examination of the Fig. 1 leads to the following observations:

e For all the three cases analyzed, the following formula holds true:

i — il
Fi’m . _Fif;
for all p, ¢ and j = 1,3,5. Let us also recall that A; = —\;;;. The physi-

cal interpretation is that resonant waves are produced always in pairs of waves
propagating in opposite directions.

e The waves numbered 1 and 2 can only be produced by the interaction of
waves in the same pair, namely: (1,2), (3,4) or (5,6).

e In the cases 1 and 2 there are the same nonvanishing RIC - meaning
that the same resonances may occur in both cases; only the magnitudes of the
nonlinear interactions differ.

e In the case 3 (propagation along the cubic diagonal) more nonzero RIC oc-
cur than in the other cases. All the additional RIC are expressed in terms of the
third order material constants (cf. the definition of ). Therefore, the physical
nonlinearity is crucial here.

e All the nonvanishing RIC except those e-dependent are not zero, even with-
out the physical nonlinearity included in the energy formula expansion. Thus,
nonlinear interactions manifest themselves already in the models with geomet-
rical nonlinearity only. However, higher-order, physical nonlinearities influence
substantially the magnitude of the resonances (cf. formulas for g and ).

e Analytical formulas for RIC can be useful for determining elastic constants
of a crystal in suitably designed measurements.
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