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Hall effect on thermosolutal instability of Walters’ (model B’)
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THE THERMOSOLUTAL INSTABILITY of Walters' (model B’) fluid in porous medium
is considered in the presence of uniform vertical magnetic field to include the effect
of Hall currents. For the case of stationary convection, the stable solute gradient and
magnetic field have stabilizing effects on the system, whereas the Hall currents have
destabilizing effect on the system. The medium permeability has both stabilizing and
destabilizing effects on the system depending on the Hall parameter M. The kinematic
viscoelasticity has no effect for stationary convection. The kinematic viscoelasticity,
stable solute gradient and magnetic field (and the corresponding Hall currents) intro-
duce oscillatory modes in the system, which were non-existent in their absence. The
sufficient conditions for the non-existence of overstability are also obtained.

Key words: Hall effect, thermosolutal instability, Walters’ (model B’) fluid, porous
medium.

1. Introduction

THE THERMAL CONVECTION in an electrically conducting, Newtonian fluid layer
in the presence of magnetic field has been discussed in detail in the celebrated
monograph by CHANDRASEKHAR [1]. BHATIA and STEINER [2| have studied the
thermal instability of a Maxwellian viscoelastic fluid in the presence of magnetic
field while the thermal convection in Oldroydian viscoelastic fluid in hydromag-
netics has been studied by SHARMA [3]. The problem of thermohaline convection
in a layer of fluid heated from below and subjected to a stable salinity gradient
has been considered by VERONIS [4]. The physics is quite similar in the stellar
case in which helium acts like salt in raising the density and in diffusing more
slowly than heat. The conditions under which convective motions are impor-
tant in stellar atmospheres are usually far removed from consideration of single
component fluid and rigid boundaries and therefore, it is desirable to consider a
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fluid acted on by a solute gradient and free boundaries. The problem is of great
importance because of its application to atmospheric physics and astrophysics,
especially in the case of the ionosphere and the outer layer of the atmosphere.
The thermosolutal convection problems also arise in oceanography, limnology
and engineering.

With the growing importance of non-Newtonian fluids in modern technology
and industries, the investigations on such fluids are desirable. There are many
elastico-viscous fluids that cannot be characterized by Maxwell’s constitutive
relations or Oldroyd’s constitutive relations. One such class of elastico-viscous
fluids is Walters’ fluid (model B’). SHARMA and KUMAR [5] have studied the
steady flow and heat transfer of Walters’ fluid (model B') through a porous pipe
of uniform circular cross-section with small suction.

In recent years, the investigation of flow of fluids through porous media has
become an important topic due to the recovery of crude oil from the pores of
reservoir rocks. A great number of applications in geophysics may be found in a
book by PHILLIPS [6]. When the fluid permeates a porous material, the gross
effect is represented by the Darcy law. As a result of this macroscopic law, the
usual viscous and viscoelastic terms in the equation of Walters’ fluid (model B')

ot

u' are the viscosity and viscoelasticity of the Walters’ fluid, k; is the medium
permeability and q is the Darcian (filter ) velocity of the fluid. The problem of
thermosolutal convection in fluids in a porous medium is of great importance in
geophysics, soil sciences, ground water hydrology and astrophysics. Generally, it
is accepted that comets consist of a dusty ‘snowball’ of a mixture of frozen gases,
which in the process of their journey, changes from solid to gas and vice-versa.
The physical properties of comets, meteorites and interplanetary dust strongly
suggest the importance of porosity in astrophysical context (MCDONNEL [7]).
The Hall effect is likely to be important in many geophysical situations as well
as in flow of laboratory plasma. SHERMAN and SUTTON [8] have considered the
effect of Hall currents on the efficiency of a magneto-fluid-dynamic generator.
There is a growing importance of non-Newtonian fluids in chemical technol-
ogy, industry and geophysical fluid dynamics. The Hall currents have relevance
and importance in geophysics, MHD generators and industry. In a recent study,
SHARMA et al. [9] studied the instability of streaming Walters’ viscoelastic fluid
B’ in porous medium. More recently, the effect of rotation on thermosolutal in-
stability of Walters’ fluid (model B’) in porous medium has been studied by
SHARMA et al. [10].

Keeping in mind the importance of non-Newtonian fluids in modern tech-
nology, and various applications mentioned above, the thermosolutal instability
of a electrically conducting Walters’ (model B') fluid in porous medium in the

1 0
motion are replaced by the resistance term [—k— (p - ,u,’—) q], where p and
1
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presence of uniform vertical magnetic field to include the effect of Hall currents,
has been considered in the present paper.

2. Formulation of the problem and perturbation equations

Here we consider an infinite, horizontal, incompressible Walters’ (model B')
fluid layer of thickness d, heated and soluted from below so that the tempera-
tures, densities and solute concentrations at the bottom surface z = 0 are Ty, pg
and Cp, and at the upper surface z = d are Ty, pg and Cy, respectively, and
that a uniform temperature gradient (= |dT'/dz|) and a uniform solute gradi-
ent 3' (= |dC/dz|) are maintained. The gravity field g (0,0, —¢) and a uniform
vertical magnetic field H (0,0, H) pervade the system. This fluid layer is assumed
to be flowing through an isotropic and homogeneous porous medium of porosity
¢ and medium permeability k.

Let p,p,T,C,a,d',g,n, pie,N,e and q(u,v,w) denote, respectively, the fluid
pressure, density, temperature, solute concentration, thermal coefficient of ex-
pansion, an analogous solvent coefficient of expansion, gravitational accelera-
tion, resistivity, magnetic permeability, electron number density, charge of an
electron and fluid velocity. The equations expressing the conservation of momen-
tum, mass, temperature, solute concentration and equation of state of Walters’
(model B’) fluid are

(2.1) é[f}—‘: + é (q-V)q] =
- (,Oio) Vp+g(1+5p—';j) - EII (V~u’-§t)q+4i;u (VxH)xH,
(2.2) Vgq=0,
(2.3) E%T— +(q.V) T = kV?T,
(2.4) E’% +(q.V) C = £'V3(C,
(2.5) p=po[l—a(T-Th)+d (C- ),

where the suffix zero refers to values at the reference level z = 0 and in writing
Eq. (2.1), use has been made of the Boussinesq approximation. The magnetic
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permeability u., the kinematic viscosity v, the kinematic viscoelasticity ¢/, the
thermal diffusivity x and the solute diffusivity &’ are all assumed to be constants.
The Maxwell’s equations yield
dH

L BT
(2.6) e (H.V)q+enV“H 477Nev x [(V x H) x HJ,

(2.7) V.H =0,

d d K L
where Fri + e~ 1q.V stands for the convective derivative.
PsCs

HercE=£+(1-E)(
P0G
E but corresponding to solute rather than heat. py, ¢; and py, ¢; stand for density

and heat capacity of solid (porous matrix) material and fluid, respectively. The
steady state solution is

) is a constant and E' is a constant analogous to

q=(0,0,0), T=_—ﬁz+Tﬂy

(2.8) C=-Fz+Cy, p=po(l+afz—dfz).

Here we use linearized stability theory and normal mode analysis method.
Consider a small perturbation on the steady state solution and let ép, dp, 6, v,
h (hz, hy, h.) and q (u, v, w) denote, respectively, the perturbations in pressure
p, density p, temperature T, solute concentration C, magnetic field H (0,0, H)
and velocity q (0, 0, 0). The change in density dp, caused mainly by the pertur-
bations ¢ and ~ in temperature and concentration, is given by

(2.9) 6p = —po (@ — a'y) .

Then the linearized perturbation equations become

210 253 = -1 (v6p) - g (a0 - ')

. kil (u—v’%) q 4ﬁ;0 (V x h) x H,
(2.11) Viq=0.
(2.12) E% = Bw + kY20,
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(2.13) E'g—': = f'w + K'V?y,

(2.14) B _ (HV)q+env?h— =V x [(Vix h) x H]
‘ 3L S 4nNe ‘

(2.15) V.h =0.

3. The dispersion relation

Decomposing the disturbances into normal modes, we assume that the per-
turbation quantities are of the form

(3.1) [w,h;,0,7,(,&] =
[W(2), K(2),0(2),[(2), Z(2), X (2)] exp (ikzx + ikyy + nt),

where kg, k, are the wave numbers along the z- and y- directions respectively,

k = \/(k% + k2) is the resultant wave number and ‘n’ is the growth rate which

is, in general, a complex constant. { = % - % and € = % — % stand for
; y = y

the z-components of vorticity and current density, respectively.
Expressing the coordinates z,y,z in the new unit of length d and letting

nd?* v v v v k1 d
a = kd, U"T! pl_;vpil—r_?rq_ﬁs F“ﬁ: Pf—ﬁ and D_;i_;,'
Egs. (2.10)-(2.15), using (3.1), yield
32) |2+ La-om| (D2 -a®)W
" e P
2 12
I L ¢ (@® — a'T) — fetid (D2 - a2) DE =0,
v 4 pgus
o 1 peHd
3.3 —+—=(1—-0F)|Z = DX
(3.3 245 a-on)|z= Ly,
Hd cHd
3.4 D? — g2 - K=-|—)DW DX
(34) ( ¥ pga) ( 7€ ) ki 4nNen '
Hd

(3.5) (D? —a® —poo) X = - ( ) DZ off (D? - o?) DK,

e " 4nN end
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(3.6) (D? - a® — Ep10) © = — (BT‘F) W,
(3.7) (D* —a® — E'qo)T = - (’i—t{z) W.

Consider now the case when both boundaries are free and perfect conductors
of both heat and solute concentration, while the adjoining medium is perfectly
conducting. The case of two free boundaries is a little artificial but it enables
us to find analytical solutions and to make some qualitative conclusions. The
appropriate boundary conditions, with respect to which Eqgs. (3.2)-(3.7) must be
solved, are (CHANDRASEKHAR [1])

(3.8) W=D?W=0,DZ=0,06=0,"'=0, atz =0 and]l,

DX =0, K = 0 on a perfectly conducting boundary and X = 0, hy, hy, h, are
continuous with an external vacuum field on a non-conducting boundary.

The case of two free boundaries, though a little artificial, is the most appropri-
ate for stellar atmospheres (SPIEGEL [11]). Using the above boundary conditions,
it can be shown that all the even-order derivatives of W must vanish for z = 0
and 1, and hence the proper solution of W characterizing the lowest mode is

(3.9) W = Wysin z,

where W} is a constant.

Eliminating ©, X, Z,I" and K between Eqs. (3.2)-(3.7) and substituting the
proper solution W = Wj sin mz, in the resultant equation, we obtain the disper-
sion relation

(3.10) Ry= (1 :I) [-w?‘ + }15 = ialw2F)][l +z +iEpio1]

l1+z+iEpio A
( p101) + O

: (1+z+iE'qo) B
where
S gafBd* b ga'Bld! ", peH?d? M= cH \?
vemt’ ve'nt’ V'™ dnpoumen?’ 4nNen /) ’
2
T = -:—2, 10 = % and P =7x%P,.
] 1 :

A=(1+z)1+z+ iEpIUI}{ [w?l + P (1- iolﬁzF]] 1+ 2z +ipeoy] + Ql}
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1 ) 2
B= :r{ FZI + P(l -~ iolwzF)] [1 +z+ 1p201]

+ [1 +z+ 1})201] + M(l + z) [101 ﬁ(l - iol'.rrzF)] }

Equation (3.10) is the required dispersion relation including the effects of
magnetic field, Hall currents, medium permeability, kinematic viscoelasticity and
stable solute gradient on the thermosolutal instability of Walters’ (model B’ )
fluid in porous medium in hydromagnetics in the presence of Hall currents.

4. The stationary convection

When the instability sets inas stationary convection, the marginal state
will be characterized by ¢ = 0. Putting ¢ = 0, the dispersion relation (3.10)

reduces to
l1+2z M(1+z
( +Q:) ( )

‘ 1+ P2
(4.1) R,:( . ) o T + 51,

which expresses the modified Rayleigh number R; as a function of the dimen-
sionless wave number = and the parameters S|, @1, M and P. The parameter

F accounting for the kinematic viscoelasticity effect vanishes for the stationary
convection.

To study the effects of stable solute gradient, magnetic field and medium

permeability, we examine the natures of dR:, jgll and %} analytically.
Eq. (4.1) yields
dR
4, — =41
3 RE S
0 de_(l-l-:r ( +Q‘)
; dQ1 \ = l+z+M ’
v
and
L+z
dRy _ Qi(1+3) ( +Q‘)
(4.4) = - ; o
dM z l1+z Card M
P SR
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Thus for stationary convection, the stable solute gradient and magnetic field
are found to have stabilizing effects, whereas the Hall currents have a destabiliz-
ing effect on the thermosolutal instability of Walters’ (model B’) fluid in porous
medium in hydromagnetics in the presence of Hall currents.

—X=— Series1
—&— Seres2
—0— Series])

Wave number (x)

Fi1G. 1. The variation of Rayleigh number (R,) with wave number (x) for M = 0.1, Q,=100,
P = 2; §;=10 for Series 1, §;=20 for Series 2 and S;=30 for Series 3.

>

£
H —X— Series1
5 —b— Serles?
£ —O— Series3

. =¥
g 3 BrEn _x_x..x-x""

RSN
120
4 24 44 (1] B4 104
Wave number (x)

Fia. 2. The variation of Rayleigh number (R;) with wave number (x) for M = 0.1, 5;=20,
P =2, ;=100 for Series 1, 21=120 for Series 2 and @,=140 for Series 3.

The dispersion relation (4.1) is analysed numerically. In Fig. 1, R, is plotted
against x for P = 2, @Q,=100, M = 0.1 and S;=10, 20 and 30. The stabilizing
role of the stable solute gradient is clear from the increase of the Rayleigh number.
with increasing stable solute gradient parameter value. Figure 2 gives R; plotted
against x for P = 2, §1=20, M = 0.1 and @,=100, 120 and 140. Here we also
find the stabilizing role of the magnetic field as the Rayleigh number increases
with the increase in magnetic field parameter @Q,. In Fig. 3, R, is plotted against
x for @1=100, S;=20, P = 2 and M = 10, 50 and 100. Here the destabilizing
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role of the Hall currents is clear from the decrease of the Rayleigh number with
increasing Hall currents parameter value.

=sawatl
—i— Senes?
—X— Series3

Rayleigh number (R)

4 24 44 54 B4 104
‘Wave number (x}

Fic. 3. The variation of Rayleigh number (1;) with wave number (x) for Q,=100, S;=20,
P =2, M = 10 for Series 1, M = 50 for Series 2 and M = 100 for Series 3.

In order to investigate the effect of medium permeability, we examine the

dR
behaviour of _fFl analytically. Equation (4.1) yields
[/

dIy {1+ x)

(I;f)(1+m+M)2+QQ'(HI)I()HHM)+Q?(1+w—MJ
2
(I+:;)+M+Ql)

which is negative. The medium permeability, therefore, has a destabilizing effect
(Hall parameter M«1) on thermosolutal instability of Walters’ (model B') fluid
in porous medium in hydromagnetics in the presence of Hall currents.

It has been shown graphically that for

e @, =100,8, =20,M = 0.1 and P = 1, 3; the medium permeability has a
destabilizing effect [Fig. 4].

e Q1 =100,5; =20,M =10 and P = 1, 3; the medium permeability has a
stabilizing influence for x<7 and for x>7 they have a destabilizing effect
[Fig. 5]

e (1 = 100,585, = 20,M = 20 and P = 1, 3; the medium permeability has
a stabilizing influence for x<12.5 and for x>12.5 they have a destabilizing
effect [Fig. 5].
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It has also been shown that as Hall parameter M increases, the stabilizing
range of medium permeability also increases.

160
[ 1502
g —O— Senes

—d— Series2

140 4

% | TROAAAAa-A-AA-A-Ad .‘.;.‘.‘L‘ﬁ"'*‘ —X— Series3
--x-x..g_:::"::':““- =N =M K

5‘ 130 i

120

4 & 12 16 20 24 28
Wave number (x)

FiG. 4. The variation of Rayleigh number (R;) with wave number (x) for @,=100, S;=20,
M = 0.1 and P = 1 for Series 1, P = 2 for Series 2 and P = 3 for Series 3.

Fic. 5. The variation of Rayleigh number (R;) with wave number (x) for @, = 100, S, = 20;
and M = 10, P = 1 for Series 1, M = 10, P = 3 for Series 2, M = 20, P = 1 for Series 3 and
M = 20, P = 3 for Series 4.

5. Stability of the system and oscillatory modes

Here we examine the possibility of oscillatory modes, if any, on stability
problem due to the presence of kinematic viscoelasticity, stable solute gradient
and magnetic field. Multiplying (3.2) by Wk, the complex conjugate of W, and
using (3.3)-(3.7) together with the boundary conditions (3.8), we obtain
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1

(5.1) [" e (1 —oF)]Il 4 (

ga'K'a?

v

) (14 + E'qo*Is]

JienE pened?
1 2| I I
T 41rpgu[ 6+ p20”I7] + (47r,agu) I + paoIy)

*

1 2
+d? ["? + 5 (1= G*F)} T (ga"“ ) (I + Epyo*I5] = 0,

vB
where
1 1
i /(|DW|2+a2|W[2) dz, I =/(|D@| +a?|0| )
0 0
1 1
I =f(|@| ) dz, =/(|Dl"|2+a2|P[2) dz
0
OI 1
(52) Iy =f(|r| f |D2K|2+2a2|DK[2+a“[K|2) dz
0 0
1 1
i =/(|DK1 +a2|K|2) dz, Ig=/(|DX|2+a2|X|2) dz,
0 0
1 1
i =/(|X| ) dz, i =/([Z|?) &
0

0

The integrals Iy, ..., I1o are all positive definite. Putting ¢ = o, + i0; and
equating the real and imaginary parts of Eq. (5.1), we obtain

1 F r..2 "
(5.3) [(~ ~ ~) AR B SO - W SRR

e F vp 4mpovp2
F gaka®
r A e
+ [e Pe] 10 B Eplfa] or
L  gdw'a®  pene 2 21, gara’
=-|ZL Lt B 4+ d2h) 4+ d? = Tp —
[Pe i v 4 mpov (Is +d*lg) + B vp )
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it ga'k'a? _, LheME 2
5 LS8 16 W LT W I — &I
(5.4) [( ) 1 7 E'qls o (I 9)

sl R gaka®
-dz (E = Ff) Ilu + £ Uﬁ E}JLI;; g; = 0.

It is evident from (5.3) that o, is positive or negative. The system is, there-
fore, stable or unstable. It is clear from (5.4) that o; may be zero or non-zero,
meaning that the modes may be non-oscillatory or oscillatory. In the absence of
kinematic viscoelasticity, stable solute gradient and magnetic field (and hence
Hall currents), equation (5.4) reduces to

1 ara®
h g

€ v

o
cn
(3]

|

Ep\I3|0; =0,

and the terms in brackets are positive definite. Thus o; = 0, which means that
oscillatory modes are not allowed and the principle of exchange of stabilities
is satisfied for a porous medium, in the absence of kinematic viscoelasticity,
stable solute gradient and magnetic field (and hence Hall currents). This result
is true for the porous as well as non-porous (CHANDRASEKHAR [1]) medium. The
oscillatory modes are introduced due to the presence of kinematic viscoelasticity,
stable solute gradient and magnetic field (and hence Hall currents), which were
non-existent in their absence.

6. The case of overstability

Here we discuss the possibility of whether instability may occur as oversta-
bility. Since we wish to determine the critical Rayleigh number for the onset of
instability via a state of pure oscillations, it suffices to find conditions for which
(3.10) will admit the solutions with oy real.

If we equate real and imaginary parts of (3.10) and eliminate R; between
them, we obtain

(6.1) Agc] + Ascd + Aact + Ajer + Ag =0,

where we have put ¢; = O‘f ,b=1+x and

1 =2F\’[/1 =°F Ep
oo L3 g Uil i 4 |
€ B € P P
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1 2P\’ r .
(63) A= [(;—”—P——) (2E7¢ +13)

b

Epp? (1 w?F)2+ 6E2¢*Mn2F (1 ﬂﬂp)

P P eP € 2
. o(Epi (1 #%F\?2 M 72F\?
T ) e Y e VS L ol 2
+ 2F q{ P (s 2 3 + M 2 b
, 1 #2F\(p: 3Q, 3Qn%F
2o 4 SR e Ot 1
i {E '”’*(e P ){P2 g ep

EpE?¢* [ p»  2Q1  2Q.\7°F 1 w?F)\? ;
+p2 — '}55'——6—"' P +S51(b—1)p2 T (Epl—Eq) ‘
Since o) is real for overstability, the four values of ¢; (= a'f) are positive. The

4
Ay
It is clear from (6.2) and (6.3) that A3 and A4 are always positive if

sum of roots of (6.1) is ———, and if this is to be negative, then A3 > 0, A4 > 0.

mF 1 ., Ep (1 =*F\° M 3Q, P2
(6.“;) P < gs Ep] >F q, T)_ (E - T) Eg“ po > -
2M
d s
and @ > P

which imply that

& . . 2
ol E-> 5= B ""—‘[ £ ] :
£ K K € )

P e 4dnNe (ky — v/
0
iy {Lj_a; (3;.;3H2) i (&)2 (ngm)

ed? \ 4vpy e\ Po
i.e.

ki v v k] CHR‘} 4
6.6 '« — E—- E—=,—
(6:6) s £ K’>ma.xl K"’ e{4ane(k1—su’)}
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and g .

klpe 3H kipe { Ne

5] (—4d?v) <v< oea = 2mn.
Thus :

h vk ey
v < E =B [E K e {4ane[k1 *f-:v')} ]

and

2
— ) 2
EPo (4d‘2v) e Epo \ ¢ i

are the sufficient conditions for the non-existence of overstability.
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