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THE PRINCIPLE OF MATERIAL frame indifference, as it is usually stated, actually
consists of two distinet assumptions. Firstly, that the stresses transform like objective
tensors under change of the observer, and secondly, that the constitutive equations do
not depend on the observer (form-invariance). As a consequence, superimposed rigid
body motions also do not effect the material response. In the present work these three
statements are formulated independently. The mutual relations between them can be
clearly and generally worked out by group-theoretical concepts. If only two of these
principles hold for a certain class of materials, then reduced forms exist, i. e. forms of
constitutive equations that identically fulfil these principles. A general definition of
reduced forms is given, its existence is proven, and a method for their construction
is formulated and applied to the case of simple elastic materials.

1. Introduction

IN HIS DISSERTATION published in 1955, NOLL stated that under a change
of frame, the stresses transform in an objective manner. By this “principle of
isotropy of space”, or of “objectivity of material properties” as he called it later,
he obtained reduced forms for simple materials that identically satisfy this prin-
ciple. This notion of objectivity became quite popular. It was exploited in all
branches of continuum physics where material equations are formulated, in order
to reduce them. More recently, TRUESDELL/NOLL (1965 Sec. 19 p. 44 ff.) dis-
cussed the history of the concept of material frame-indifference. Here, one finds
the statement. “In fact, fwo principles have been stated and studied. According
to the first, which may be called the “Hooke-Poisson-Cauchy form”, constitutive
equations must be invariant under a superimposed rigid rotation of the body.
According to the second, which may be called the “Zaremba-Jaumann form”,
an arbitrary change of observer is allowed.” This fact could not be expressed
clearer. In contrast to this, however, in the rest of the article, the only distinc-
tion between the two versions is attributed to orientation, always positive for the
Hooke-Poisson-Cauchy form, and either positive or negative for the Zaremba-
Jaumann form.
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654 A. BERTRAM and B. SVENDSEN

To our knowledge, the consequences of the distinction between these two
approaches or interpretations has apparently never really been considered, or
worked out, in detail. One purpose of the current work is to attempt just to do
this, building on an earlier work (SVENDSEN and BERTRAM [16]). As it turns
out, with the help of precise group-theoretic definitions for change of observers or
frames, sometimes called Euclidean observer transformations, on the one hand,
and for superimposed rigid body motions on the other, one can identify three
distinct concepts contained in standard formulations of “objectivity” or “frame-
indifference”. In a sense, the weakest of the three, Fuclidean frame-indifference
(EFI) requires physical quantities associated with Euclidean observers such as
stress and heat flux to transform corrotationally between them. Secondly, form-
invariance (FI) requires (the form of) the constitutive relation to be independent
of observer. Lastly, indifference with respect to superimposed rigid-body motions
(IRBM) requires the material response to be independent of arbitrary rotations
of the material body with respect to a single observer. As shown in this work,
EFI and FI together represent the concept of material frame indifference as
stated by Truesdell/Noll. In addition, we show that material frame indifference
is equivalent to IRBM. More precisely, one can show that any two of the concepts
EFI, FI and IRBM imply the third one. Or in other words, if one of these
principles holds, the remaining two become equivalent.

As discussed in detail in earlier work (e.g., SVENDSEN and BERTRAM [16]),
the concepts of FI and IRBM or material frame indifference are constitutive in
nature, while EFI represents a general principle, apparently holding for all mate-
rials!) As such assumptions, IRBM or material frame indifference appear to be
quit reasonable for most material classes subject to non-extreme (i.e., in terms of
acceleration and spin) conditions. As is clear from the work of Noll and others,
the exploitation of material frame indifference leads to a drastic simplification
of or reduction in the form of constitutive equations. Indeed, invariance with
respect to superimposed rigid body motions or, equivalently, material-frame
indifference, lead to reduced forms. Neither more, nor less can be obtained?

DThe subtlety of the concepts and issues inherent in the notion of “objectivity” has led
to a number of disagreements between various authors in the literature. One such disagree-
ment had to do with the material behaviour of rarified gases. Using the results from IKEN-
BERRY/TRUESDELL [6], MOLLER [8] showed that such gases violate IRBM, or equivalently
material frame indifference. More recently, MurDOCH [9] attempted to refute Miiller's conclu-
sion by showing that such materials actually satisfy material frame indifference. Because, like
Truesell/Noll before him, he tacitly assumed FI from the start in his treatment, however, he
could not have shown this, despite his conclusion to the contrary. Indeed, in effect, what he
showed was that such gases satisfy EFI. Note that, in contrast to his successors, NoLL [11, 12]
clearly stated “In any system of reference, Galilean or not, the constitutive equations must be
the same”,

N AppLeBY and KADIANAKIS [1] clearly demonstrate that Euclidean frame-indifference is
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A second purpose of the present work is the development of a general repre-
sentaion for such reduced forms and the formulation of a procedure for their
construction. More precisely, with the help of an abstract group-theoretic rep-
resentation for constitutive equations, we are able to (z) define the concept of a
reduced form in a rather abstract way, (i) show their existence, and (¢i) give a
general procedure to construct them.®)

2. Kinematics in the euclidean space

Let 7 be the three-dimensional vector-space associated with the Euclidean
point space. For brevity, we introduce the following tensor sets:

S, = the set of all tensors or linear mappings on 7"

S

the set of all invertible tensors

S#. = the set of all skew-symmetric tensors

Fyom = the set of all symmetric tensors

-@_,m := the set of all symmetric positive-definite tensors
k= the set of all orthogonal tensors.

A subscript + indicates the subset of tensors with positive determinants.
Thus, e. g., Ok is the set of proper orthogonal tensors. As usual, R stands
for the reals. For two sets .%7and ?gﬁ let y

. J@ <7 28 denote the set of all mappings from Zinto

° @/M@ denote the set of all bijections from Fonto X
We now come to the basic Euclidean kinematics. As usual, an observer or
a frame of reference can be represented via a reference point for the position

not enough to obtain reduced forms, by expressing the whole matter in a frame-independent
or “intrinsic” way. “It is interesting to note that this approach does not eliminate the need
for an invariance principle for equations of state equivalent in effect to the principle of frame-
indifference”. They use invariance with respect to superimposed rigid-body motions in the
form of “invariance under rotations of space time”, i. e. essentially the same as we do. This is,
however, by no means equivalent in effect to Euclidean frame-indifference

#In WANG [20, 21] and in WiLLIAMS [22], the theories of invariant forms have been suggested,
which fulfil the restrictions imposed by these three principles and by an assumed material
symmetry at the same time. However, these presentations become rather complicated and not
practical. The present suggestion is not based on either of those and takes only into account
the universal restrictions and not the individual ones.
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656 A. BERTRAM and B. SVENDSEN

vectors and a vector triad. Let & represent a material body manifold, 7 an
open time interval, and £ an observer, and

ne:@x%%

(P,t} = Ie

the motion of the body .@during 7 with respect to £, assigning to each material
point P and each instant ¢ the position vector in the Euclidean space.

This mapping is subject to certain regularity requirements which depend on
the specific context and thus, shall not be specified in general. The same holds for
all time-dependent mappings in the rest of this work, without further mention.

As usual, we have the velocity

Pn_aqmn_%wn

and the acceleration
2

d

ot?
Further, the spatial differential of k¢ is the linear mapping from the tangent
space . 7p A to the body manifold at P onto the space of the Euclidean shifters

Ke(Pt) =dre(Pt): Fp DB~ 7~

aE(P:t} = K’E(Pa t) = KE[P|t)..

t (P, t), called the local placement at P and time ¢ in the motion x¢. It is
customary, but not necessary (as we know from NOLL [11, 12]), to use a reference-

placement
Kg : .@—} 7
P - X
of the body, and to define the motion of the body relative to it by

Xe(X, 1) := re(rg ' (X), 1).
which induces the mapping
Xe Ko rGx IS5 7~
(X.t) = xg

Note that the time derivatives of x¢ and k¢ coincide

Vel (X),8) = DxelX, 1),
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1 0
af(ﬂ"a (X)rt] = aﬁx&(xat)v

whereas the corresponding differential, the deformation gradient, is according to
the chain rule

Fe(X,t) = dxe(X,t) = dre(drg ' (X),t) = K¢ Kg' € e,
The function
(2.1) Xe (Y, t) := xe(X, 1) + Fe(X, t)(Y — X)

stands for the motion of an infinitesimal neighborhood of X; in what follows,
this will be referred to as an infinitesimal motion around X. The determinant

det Fe(X, 1) = 2oX)

P{(X, t)
relates the mass density in the reference placement to that of the current place-
ment. For invertibility we have det F¢(X,?) # 0 at all times and points. So, its
sign is either strictly positive or negative, but never changes sign. As the choice
of the reference placement is arbitrary, one can do it in such a way, that det F¢
> ( without loss of generality. The advantage is twofold. Firstly, we avoid the
ambiguity in the above expression. Secondly, it is then possible (but not neces-
sary) that the body occupies the reference placement at some time during its
motion.
Other important kinematic quantities are the spatial velocity gradient

72

o -1 C -
LE = F£ FE (S 72y

1 T o i
Df = § (LE + L{ ) € e./ﬁaw,
and its skew-symmetric part, the spin tensor
1 TN - G
such that
Le = W + D,

T denoting the transpose of a tensor.
The deformation gradient can be subjected to the polar decomposition

Fi =Rl € ", U ¢ Ghm ‘R € Gt

with the right stretch tensor Ug and the local rotation tensor R .
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3. Euclidean observers

Again, all these kinematical concepts generally depend on the Euclidean ob-
server denoted by the suffix £. As usual, any such observer can be represented
via a reference point for the position vectors and a vector triad, both appearing
time-independent to the observer by definition.

Although each observer has his own reference instant ¢ = 0, this plays no
role in continuum mechanics, as most concepts are based on time differences.
Consequently, this effect of change of observer will not be taken into account
here. On the other hand, the spatial part of the transformation is of central
importance. If we change the observer from £ to 7, the position vectors are
subjected to the Euclidean transformation

(3.1) r, = Qire+c;

with Qf, € Gt + and cf, € 7,/1 both time-dependent. Although it is possible
that different observers use different orientations, we assume for simplicity and
without loss of generality, that det F > 0 for all observers. Consequently, all
Euclidean transformations are orientation preserving, and Q is proper orthog-
onal at all times. We emphasize that Qf and cf? are uniquely determined (as
functions of time) by the two involved observers £ and 7, being the same for all
bodies and all motions. As such, the pair E := {Q, ¢} of time-dependent Q in
O™ and ¢ in %ﬂcompletely determine such change of observer or Euclidean
transformation.
Now, let 1, &, (, be three observers. Analogously to (3.1), we have the trans-

formations

re = QEI‘H + Cg
and

re = Qgrg - cE

between them, which yield
Q¢ =Q{Q;
and
c? = Qécy +¢;.

For the inverse Euclidean transformation we find

Q7 = Q)" =(@Q)"

and
n_ A€
¢ = —Qgcp,
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or, equivalently,
E={Q,c} & E'={QT,-Q%c}.

Trivially, there is a neutral Euclidean transformation I = {I, o} such that Q is
the identity tensor I and c is the null-vector o at all times. Clearly,

EoE'!=I=E'0E

holds for all Euclidean transformations E. Here, o denotes the composition of
mappings. In fact, by these properties the Euclidean transformations form a
group under composition, the Euclidean group (f)

Euclidean transformations with ¢** = o and Q®* = 0 are called Galilean
transformations which become important as the invariance groups of balance
equations, what is beyond the scope of the present considerations.

Clearly, the set of all observers is equipotent to the set of all time-functions
with values in (Gt x 7. Therefore, it is equivalent whether a certain prop-
erty is () valid for one observer and remains valid under all transformations in
Zf/,) or is (#) valid for all observers.

As almost all physical quantities depend on observers, we have to specify
the actions of Euclidean transformations on these quantities. For kinematical
quantities, these actions can be uniquely derived from (3.1). It is a common
practice to introduce the reference placement to be the same for all observers.
This is by no means necessary, but it simplifies some transformations without
real loss of generality.

The actions of an Eg € i{_:f)on the following quantities are

e on the velocity

Vi = Qf}vf + Qg' Qf}(rg - cg) + c‘};',
e on the acceleration
a; = Qdac +ci** +2Q5 ve + Q5™°re,
e on the infinitesimal motion around X
XX(Y, 1) = QS [xe(X, ) + Fe(X, 1)(Y — X)] + ¢§ = QO (Y, 1) + 5,

¢ on the deformation gradient
(3.2) F,=QF;,
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e on the velocity gradient
Ly = Q;L:Q] + Q§*Q],
e on the deformation rate
D, = Q$D¢Q},
e on the spin tensor
W, = QiWeQ{ + Q5" Qy,
e on the right stretch tensor
Un = Uf,

e and on the local rotation tensor
R, = Q{Re.

If we also include the mass density, the temperature 6¢ € @?, and the (spatial)
temperature gradient g¢ € 7, we assume in addition the actions of ‘?

e on the densities
Pn = P&; Pon = Pog;

e on the temperature
9'? = 8&,

e on the temperature gradient
gr,l = Q% g{'
Generally speaking, the action a of a group ?—/47011 some set -7 is a group-

(homo) morphism
a: Co Gor A

from ((—6 to the group of all automorphisms (= bijections) of .7 This means
that it is compatible with the four group axioms

e a(Ey o Ey) = a(E3) o a(E)
e a((E3 o Ey) o E;) = a(E3 o (E o Ey))
o a(l) =1,

o o(BY) = a(B)!

http://rcin.org.pl



ON MATERIAL OBJECTIVITY AND REDUCED. .. 661

By the above examples, we see that the actions of rﬁon different quantities are
in general different. While some of them depend on both Q and ¢ (like velocity,
acceleration), others do not depend on ¢ (like all gradients), or depend neither
on Q nor on ¢ (mass density, temperature). Most, but not all of the above
actions are instantaneous, i. e., only the momentary values of Q and ¢ enter
the transformation. To make this clearer, we write the arguments of an example

for such an action, namely that of the deformation gradient
F,(X,t) = Q§()Fe(X, ).

As a counter example, the action for the spin tensor is not instantaneous in
this sense, as also Q%" enters.

In many cases, there are more actions than just that induced by the unique
identity I= {I, o} in (fj that leave some physical quantity unchanged. And for
some E € i//: there are often more inverse actions than just the one belonging
to E~! € % 1t also happens that certain actions commute, whereas & is
clearly a non-commutative group.

Two kinds of physical quantities are very important for what follows, namely
the corrotational ones and the invariant ones. We call a quantity ¢ corrota-
tional (sometimes also called objective or tensorial) if

Py = Pe for scalars,
Py = Q% e for vectors,

Pn = Q% V¢ QE for tensors,

and invariant if

©Yn = P¢ in all cases.

Clearly, the actions on corrotational and invariant quantities are instanta-

neous.

Note that only Qf, acts on corrotational and invariant quantities. In par-
ticular, the translational acceleration c,ﬁ" and the angular velocity Qf,' do not
influence corrotational quantities. Examples include:

e for invariant quantities: p, 6, U,

e for corrotational quantities: p, g, D,
whereas
e F R are acted on instantaneously, and

e the others v, a, L, W are neither corrotational nor instantaneous.
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4. Superimposed rigid body motions

Apart from (and independent of) observer changes, another transformation
class is very useful in continuum mechanics, namely that of superimposed rigid
body motions. Here, all quantities of this section are taken with respect to a fixed,
but arbitrary observer, if not otherwise stated.

DEFINITION 1. Let x be the motion of a body & Let {Q(t), c(t)} be func-
tions of time with values in (G’ + x 7. Then

(4.1) X' (X,t) = Q(t)x(X,t) + e(t)

is called superimposed rigid body motion (RBM) of x.

Clearly, x* is a motion of D ift x is. Conversely, then, x is also a super-
imposed rigid body motion of x*. Mathematically, the superimposed rigid body
motions are identical to Euclidean transformations, and thus form the same
group ;“,a Physically, however, two observers watching the same motion is some-
thing quite different from one observer watching two different motions. This
distinction must be kept in mind, even if formally the same notations appear in
the formulas.

As a consequence, the actions of RBMs on all kinematical quantities are the
same as those of the Euclidean group in the preceding section, if we drop the
observer indices € and 7. If the temperature is considered as a material state
property, then the same holds for the temperature and its gradient. For other
quantities, however, the actions of Euclidean transformations can be different
from those of RBM'’s, as we will see later.

5. Constitutive equations

In continuum mechanics, it is customary to consider the kinematical quanti-
ties as independent variables, and all dynamical ones such as stresses, couples,
forces, etc. as dependent ones. If generalized to thermodynamics, motion and
temperature are considered as independent, whereas heat flux, energy, entropy,
stresses, etc. are taken as dependent.

For elastic materials, only the current values of the variables appear in the
constitutive equations. For materials with memory, however, past values can also
influence the present values of the dependent variables. In such cases, higher time
derivatives, finite kinematic process segments or even the (semi-infinite) history
of the motion may appear as arguments in the constitutive equations.

Let & be a set or space of such independent variables of a certain class of
materials, and 7 a set of corresponding dependent variables. In most cases,
the identification of 2 is clear and the same for a broad class of materials.
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The set év_a? however, depends on the specific framework and/or materials under
consideration.

For non-polar, purely mechanical behavior, for example, Zis just the set
of all symmetric tensors (C—/ycm.} each of them being a candidate for the Cauchy
stress tensor. On the other hand, for simple materials, & could be chosen as

o the set of all semi-infinite deformation histories F(7), -oo < 7 < t;

e the set of all finite deformation processes F(7),0< 7 < t.

The easiest case is that of a simple non-polar elastic material. Here, the
Cauchy stresses are assumed to depend on the current value of the deforma-
tion gradient F(t), and £ equals the set of all invertible tensors with positive
determinant.

For a simple viscous gas or fluid, the stresses depend on the mass density p
and the current velocity gradient L, and £Z7is the set-product of the positive
reals and second order tensors.

The identification of the spaces of variables is, in general, not a trivial task
(see BERTRAM [2,4]). But it becomes easier to solve, if it is restricted to specific
material classes.

With this we can give the notion of a constitutive equation a rather general
form.

Principle of Determinism: For a given class of materials, there exist two sets,
Zand % and for any observer £ a constitutive equation f; € ./é*gﬁ Y

We assume that a change of observer, represented by an element of (fﬁf in-
duces the actions

e on the independent variables

a: G GprZZPZ7|E ~  ap:=a(B);
e on the dependent variables
b: C ZrZ Y| E v~ bg:=b(E).

If these actions are specified, then the action
e on the constitutive equations

c:G— @{%/ﬁ%%ﬁ”f&} | E = cg:=c(E)

is determined by

(5.1) fo=ce(fe) :=bgofeoay VEe &
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So, if a constitutive equation has once been identified by one observer, then
by virtue of EFI it is determined for all other observers.

How can these actions be determined? As the members of <7 are kinematical
quantities, their transformations can be deduced from (3.1) uniquely. For the
dependent variables, however, the action b cannot be deduced from (3.1), but
rather is the subject of another principle. In particular, Cauchy stresses, heat
flux, internal or free energy, and entropy are assumed to be corrotational. Nobody
has ever been able to prove this assumption generally, and it will probably never
be possible to do so. Therefore, the following assumption is axiomatic in nature.
EFI: Euclidean frame-indifference (ZAREMBA, 1903; JAUMANN, 1906)*) The
dependent variables in 7 are corrotational (or objective) under the action b of
the Euclidean group.

This means for the Cauchy stresses

(5.2) Tr} = QS,I T¢ Qf}Ts

for the heat flux
a, = Qq

and for certain scalar variables ¢ like internal or free energy, entropy, etc.

©Pn = PE.

Clearly, the corrotationality of the dependent variables does not hold for
all choices of them. If the Cauchy stresses are corrotational, then the 2. Piola-
Kirchhoff stresses are invariant under Euclidean transformations. Therefore, the
above form of EFI depends on the specific choice of 7 as spatial ones.

As an example, we consider an elastic material, where the independent vari-
ables consist of the current deformation gradient F, and the dependent ones of
the Cauchy stress tensor T. Hence,

% Iﬂ11+, Y= c%wz.
Then, by (3.2), and the EFI in the form of (5.2), we obtain the transformation
ff,r(Ff}) = Qg fE(QgFﬂ) Q%

between the constitutive equations via the relative rotation QE’ :

In general, the constitutive function also depends on the observer. Only for
certain classes of materials constitutive equations themselves are invariant and
the following principle is valid (see BERTRAM [3]).

“For historical sources see TRUESDELL/NoLL [18], p. 47, App. 19 A, TruespeLL [19], Ch. 3.
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FI: Form-invariance® The constitutive equation f is invariant under Eu-
clidean transformations, i. e.

(5.3) fn = fe

holds for all observers.
Note that together, EFI and FI imply that the induced action cg (5.1) of the
Euclidean group on ,@//)?Z/ is the identity, i.e.

(5.4) celfe)=f¢ VYEe &

The consequences of this principle will be investigated later.

Let us next consider the actions of superimposed rigid body motions on the
constitutive equations. The action of ":!_fjon dcéwresulting from (4.1) is formally
the same as that of the Euclidean group. In contrast to EFI, and like FI, the
principle to follow does not generally hold, as counterexamples show.

IRBM: Indifference with respect to superimposed rigid body motions
(Hooke 1678, Poisson 1831, Cauchy 1829)

The dependent variables are corrotational under the action of the superim-
posed rigid body motions ig’?( which thus coincides with b).%
Since the observer £ is held fixed, here, this takes the form

(5.5) feoap=bpo fe or cp(fe)=fe,

formally analogous to (5.4).

For a mechanical material, this would mean that the Cauchy stresses will
simply be rotated together with the body, but not modified otherwise. This
condition does not hold for rarified gases under fast rotations (see MULLER [8]),
what is discussed in another paper SVENDSEN, BERTRAM, [16].

By (5.5), we iinmediately see the following

PROPOSITION 1. Let f¢ € ,ff{y; 2" be a constitutive equation which ful-
fills IRBM or F1 . Then the following implication holds for all Euclidean trans-
formations E :

ap is the identity on 2= bg is the identity on ff/c?cf;ﬁi

This will be trivially the case if F is the identity. But this is, by no means, the
only case.

Now, by comparison of the different invariance principles in the forms (5.1),
(5.3), (5.5), we immediately obtain the following

1n relativity EINSTEIN [5] called the analogous Principle of Relativity.

S'LE1GH(]7], as an exception, introduces this carefully seperated from EFI and FI. See also
MuscHik [10] and SpezIALE [15].

http://rcin.org.pl



666 A. BERTRAM and B. SVENDSEN

PROPOSITION 2. Let f¢ € u%ﬁ/g Zbe a constitutive equation. Then the
following implications hold:
e EFIAFI=IRBM : ce(fe)=fn AN fa=Ffc = celfe) = fe,

e EFINIRBM = FI : cg(fe)=fn A ce(fe)=fc = fn=1TIe

e FINIRBM=EFI : fao=f¢ A ce(fe)=fc = ce(fe)=F

In many papers and books, influenced by TRUESDELL/NoOLL [18], form-
invariance is tacitly assumed as a part of material frame indifference, which
is here equivalent to EFI and FI together. As the above proposition shows, EFI
and IRBM are then indistinguishable. In such a theory, materials, the response
of which is affected by superimposed rigid body motions, cannot be described.

6. Reduced constitutive equations

If a material satisfies EFI, it is sufficient to identify the constitutive equation
for one single observer, since by (5.1) it can immediately be transformed to any
other Euclidean observer. By this procedure EFI is identically fulfilled, i.e., no
further restrictions are imposed on the constitutive equation by EFI.

If in addition to EFI, IRBM or, equivalently, FI holds, the number of candi-
dates for constitutive equations in some ../%75 (s drastically reduced. In
the rest of this section, this reduction will be worked out. For this purpose, we
consider exclusively materials for which both EFI and IRBM are satisfied, so
that FI also holds. Let us denote all such constitutive equations in u@u’%ﬁ%
by Glrr Y

Our aim is to find representations for this set of constitutive equations.
For this purpose, we will define two sets A7 and @Z/ called reduced sets
of independent and dependent variables, respectively, such that any element
of ,@/W@% unigquely corresponds to an element of Ptr 2724 This
means that G2 % and %/.%@@a:e isomorphic by means of a
natural bijection.

Note that 922 and 977 are not necessarily subsets of & or 7, respec-
tively, but rather independent. Let us put this in precise terms by the following
concept of reduced forms.

DEFINITION 2. Let G272’ 20C Mapr "% be as before. Let G2 and
P2 e two sets, \ € J%ﬁ/ﬁ.@%a surjection, 3 € .Aﬁ;ﬂ/a%wx G
and p € D{ R’ Mgpr R RBZ) . Then (BL RN, B, ) is

called a reduced form, if

(6.1) f@)=Blz,u(f) o Mz)] Yz eZ Vie R U
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The practical benefit from such a reduced form is the following. We could
pick out any function of %W@gﬁ, and this would correspond uniquely
(by u~1) to a constitutive equation in %ﬁ% which automatically satisfies
the three principles, and hence is in RBatil 2

o &
xl ‘B
R Ry

H(f)

The following construction not only assures that the concept of reduced forms
is not vacuous, but also gives a general procedure to construct the reduced forms.

7. Construction of a reduced form

The construction consists of three parts. Firstly, we will construct the reduced
spaces of the independent variables, secondly, of the dependent variables and
finally, the bijection p is defined so that the condition (6.1) will be fulfilled.

1. Construction of the reduced state of independent variables

We introduce an equivalence relation ~ on <7 in the following way. Let 2,
Ty eﬁf}then T ~ @y, if there exists an E € %<, such that ap(z;) = 22",
Let &2 be the quotient space of ~, and € : 2= ZZ be the natural surjec-
tion of ~. Moreover, let 77 be a section of the fiber bundle 22 (sometimes
called a selection function), i.e., an 7 : Z% %such that € on = Iy,
the identity on &2 In general, n is not unique.

We define F27" = (n o €) 727, which is clearly a subset of &2 Then

A:=noe:é?p—}.%9

is surjective by definition. Consequently, A has the following property:
Az) ~ z,Vz € & therefore an E(z) € gexists such that A(z) =
ﬂE(z)($)-

2. Construction of the reduced set of dependent variables
Let 2= 7, simply.

" This means that z; and z2 lie in the same orbit of a.
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3. Construction of the bijection p
Let f € Ghoatri?” 2 We define

by the restriction

p:fe flar
and
B: 2% R 7
by

Bz, y) = bty ()

with the specific E(z) € f/f)t.ha.t gives A(z) = ag(, (z), and therefore generally
depends on z. Then, by IRBM and this E(z),

be@) © f(z) = f o apy(@) =f oAz) = flaro Mz) VzeZ

and

Blz, u(f) o M=)] = Blz, fwro Mz)] = Blz, f o ap(e)(2)]
= Ble,bge) © f(@)] = by © be) o f2) = fz) Vo €27
The inverse of p is given by
'ig(e) = fa) =PlegoMa)] Vo €T

We will next show that such p~'(g) fulfils the invariance-requirement (5.5)
for all g € Jfgﬁ rRBLARZ We take an arbitrary transformation Q € f{/’/p
Clearly, ag(z) lies in the same orbit as A(z) and z: A(z) ~ z ~ ag(z), for all
z € & Thus

A(z) = A o ag(z).

We now evaluate the above expression for f := u~!(g) at ag(z) and obtain
flaq(z)) = Blag(z), g © AMag(z))] = f o aqg(z) = Blag(z),g o A o ag(z)]
=bg-1 0 g0 Ao ag(z) =bg-10go0 Az)

with the specific transformation E := E(ag(z)) € (t;that gives A(ag(z)) =
ag(ag(z)). It can easily be seen that E = E(z) Q! as

Mz) = ag)(z) = A o ag(z) = ag o ag(z) =agg(z) Vze 2
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Therefore

br = bp)g-1 = be@) © bg-1 & bp-1 = bg © by,

We continue with this
f o ag(x) = bq o b, © g ° Az) =bq o f(z).

Thus, p~(g) € LBtr X7 Y. e
We show that g o p~! is the identity on ,@/%’Zo@zf/

wo p Y (g)(z) = Plz,g o ANa)]|.pr Yz B

= b[.;(lz) ° go ap()(r)
with
A(z) = apg)(z).

In this particular case with the restriction to 927 X is the identity and so
is ag(z). By Proposition 1, bg(,) as well as b;:(lm] are also identities. Thus

po wlg)z)=gle) Vze L Nge MyrRL RY,
On the other hand
pt o p(f)(z) =Plz, u(f) o Az)]
=Bz, f |70 M=)
=p[z, f © ap(z)(z)]
=Pz, bg(z) © f(z)]
=bp(z © bE) © f(2)

=fz) VzeZ Vfe B’

Therefore p~! o p is the identity on DBt 2, and p is shown to be a
bijection. Thus we have proven the following

THEOREM. Let G Z” Z0be non-empty. Then ( G22° RN, B, 1) is a

reduced form.

REMARK 1. In the construction no use has been made of the corrotationality
of Zunder the action b. The theorem remains valid for any other action b.
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REMARK 2. The construction of this reduced form is based on the choice of
7 . Apart from trivial cases, this selection function is not unique, and each choice
gives rise to a different reduced form.

To illustrate these concepts, a simple and well-known example shall be given
next.

ExAMPLE. Let us choose the class of simple elastic materials, in which the
stresses at a material point are assumed to depend on the current infinitesimal
motion around the point. For a fixed X € Hand t € -7-)("( is uniquely de-
termined by the vector r = x¢(X,t) € 7 and the 'tensor Fe(X, t) € W e
according to (2.1). The following identifications specify the sets and functions
for this class:

W I A
and

Ee et

Each element {r, F} € A stands for an infinitesimal motion, and each ele-
ment T € f/;;m for the Cauchy stress tensor. An elastic constitutive equation is
then, according to the principle of determinism,

+
f: %2 -_ﬁé&;" —p C:yw&

{r,F} » T.
The action of gon Zis (see 3.1, 3.2)

=+ +
ag : (T T

{r,F} » {Qr+¢,QF}  with E={Q,c},

and on &
bg : -,_C/‘;w:, =% yn

T+ QT QT
with £ = {Q, c}, i. e. corrotational. Now Doty Z° 2 consists of all fe ,fz;.,; 22
such that

Qf(r,F)Q” = f(Qr+¢,QF) Vce 7 VvQe Gu«".

We now exemplify the three steps of the above Proof for this class of material.
1. Two pairs {ry, F1}, {ro, Fa} € Zare considered as equivalent, if there
existsac € Zand a Q € Cist’t, such that ro = Qry + ¢ and Fy = QF,.

The first condition can always be fulfilled. By the polar decomposition F;
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= R; Upv=1.2: Ry € (7:4{’*, 1= (F;r F;)/2 ¢ '_@3};”;, the second one
is fulfilled ifft U; = Uy , i. e.

{r1,F1} ~ {r;, F2} & (FTF,)'/2 = (FIF,)'/%

Thus, our choice is E= {Q R; RT, ¢ = ry- Qr;}. We identify =
{0} X u_%?yfnc % /X ._/e::u

40 % -_/C;;I. — {0} X c_%wa

{r,F} — {o0,U = (FTF)'/?},

which is clearly surjective. Obviously, A(r, F) = {0, U} ~ {r, F}, so that
withc=-Qre Zand Q=RT € ﬁffﬁ we obtain

A(r,F) = ag)(r, F) = {o, U}

with

= {R? = (FTF)"2F" ,-RTr} e &
Thus {o} U ;73;,”; stands for the quotient space gc_%: and the selection
function 7 is the inclusion of {0} U G in O

. We take P 7= %»:, whose elements stand for the back-rotated or rel-

ative stress tensor

T, := RTT R.

. Let

ﬁ({rrF}a rel) _br(x)( ) Q TreIQ T

and
f) :zfl{o}x.*f,,..-

Now we have by (7.1)

be() © f(r,F) =RTf(r,F)R = f(0,U) = f o A(r,F) = f| (6}x %..(0, U),

and

ﬁ[{r!F}'}P"( ) o /\(I‘ F ] _ﬁ[{r F} f‘{o}x (0 U)]
=p[{r,F}, f(o,RTF)]
=B[{r,F},RT{(r,F)R]) = T = f(r,F).
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As the first argument o of p(f) is trivial, we can drop it. Hence, IRBM does
not allow the stresses to depend on r. Moreover, the dependence of the stresses
on F = RU is only arbitrary in the stretching part U, but rather specific in the
rotational part R.

As mentioned before, the selection function 7 is not unique, and this is not
the only reduced form. One could also have taken the right Cauchy-Green tensor
C = U? or the Green tensor 1/2(C - I) instead of U, etc.

In the literature, one often finds the following argument. Let

W: 2% Sk - 2= R
F — 9(F)
be the hyperelastic energy. Then by IRBM
(7.3) YE)=P(QF) VQe Gk, VFe fu
and by the polar decomposition one obtains the reduced form

P(F) = 4(U)

with Q = R7, and one concludes that any function 3(U) identically fulfils the
IRBM. Of course, this reasoning is a shorthand® for saying: iff ¢ fulfils (7.3),
then it can be represented by

P(F) =] 4. 0 Ay(F)
with ]
Ah{, Ve (;ntl+ — !%7)2!

F — U= (FTF)'/2

8. Conclusions

Euclidean frame-indifference (EFI) determines the action of changes of ob-
server or Euclidean transformations on the dependent variables such as Cauchy
stresses. On the other hand, IRBM describes the effect of superimposed rigid
body motions on the stresses. It is violated, if the response of the material de-
pends on accelerations, spins, ete.

8)This shorthand is essentially correct, but has been misunderstood [see RivLiN and SmiTh,
[14]. Unfortunately, also these critical anthors overlooked the fact that the condition (7.2) has
nothing to do with Euclidean frame-invariance].
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Although there exist certain mathematical similarities, these two principles
represent completely distinct notions. In SVENDSEN and BERTRAM [16], as well
as in the current work, we have attempted to work these and other aspects
of these principles out in detail. While EFI appears to be generally valid on
the basis of our understanding of stresses, IRBM is clearly violated for certain
materials such as kinetic gases. As such, both classes of materials, namely those
that do satisfy the IRBM, and those that fail to do so, are described in the
current formulation.

When investigating the reasons for the long and controversial debate on this
issue, a third assumption comes into play. The dependence of the constitutive
equations on the observer can be further specified as form-invariant.

It turns out, that this assumption is equivalent to IRBM, if the validity of
EFI is assumed. As such, EFI and IRBM are indistinguishable whenever the
observer dependence of the constitutive equations is not taken into account, i. e.,
whenever FI holds. And this is common practice.

We have stated FI with certain emphasis, although it is rather formal and
difficult to interpret physically. This has two reasons. Firstly, it is often assumed
without mentioning. And secondly, it has strong consequences for the material
theory, as we have seen.

Once having understood the structure of the mutual dependences of these
principles, the following approach seems to be natural and physically adequate.

1. State EFI as a fundamental principle which is generally valid in continuum
physics.

2. Define a special class of materials by the condition IRBM, but not as a
general principle for all materials. Under EF1, FI is necessary and sufficient
for IRBM to hold.

3. For this specific class of materials that obey IRBM, obtain the reduced
forms via the procedure developed in the last section.

We have shown a way to define and to construct reduced forms in a rather
general context. The underlying structure is the same for many different appli-
cations in physics and other fields. One has a set of independent and dependent
variables, Zand respectively. Then one considers mappings from Zto &
that are restricted by invariance-properties under certain transformation groups.
The problem is to find two sets G2 and G2, such that any mapping from
DB o 9P corresponds to exactly one mapping from <7 to 7 that fulfills
these invariances. Clearly, the stronger these conditions are, the greater is the
reduction.

The suggested procedure to construct reduced forms is a mathematical refor-
mulation and generalization of what NOLL [12] suggested in the context of elastic
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674 A. BERTRAM and B. SVENDSEN

materials.?) This procedure has to be specified for the individual class of mate-
rials under consideration so that we can really benefit from this reduction. For
many classes of materials, this has already been done long ago. For complicated
material classes such as higher-order (non-simple) materials, non-local materials,
Cosserat materials, mixtures, materials with micro-structure or internal length
scales, this analysis of reduced forms can be expected to be advantageous in the
future.
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