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An orthotropic constitutive model for secondary creep of ice
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AS POLYCRYSTALLINE 1CE undergoes creep deformation over long time-periods, it de-
velops a fabric (oriented structure) and associated, strain-induced anisotropy. In the
paper, a frame-indifferent orthotropic constitutive model for secondary creep of ice
is formulated, in which the strain-rate is expressed in terms of the deviatoric stress,
strain, and three structure tensors based on the principal deformation axes. As an
illustration, the model is used to determine the evolution of the creep response of ice
to continued uniaxial compression and simple shearing,.
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Notations
B left Cauchy-Green deformation tensor
bl = 1,2,3) principal values of the deformation tensor B
D strain-rate tensor
B, axial enhancement factor
E, shear enhancement factor
e (r=1,2,3) unit vectors of the principal stretch axes
F material deformation gradient tensor
h material response function
I unit tensor
Jp (k=1,...,21) invariants of second-order tensors
K trace of the deformation tensor B
M) (r=1,2, 3) structure tensors
Q. q material response functions
R rotation tensor
S deviatoric Cauchy stress tensor
v left stretch tensor
v velocity vector
Ty (1=1,2,3) spatial rectangular Cartesian co-ordinates
Xi (i=1,2,8) material rectangular Cartesian co-ordinates
o isotropic ice fluidity
Ta axial fluidity
e shear fluidity
K shear strain
X lr=1,2,8) principal stretches
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1o isotropic ice viscosity
o Cauchy stress tensor
¢; (j....,12) material response functions

1. Introduction

ICE cAPS COVER approximately 15 million square kilometres of Earth’sland in
Antarctica and Greenland and, subject to seasonal variations, about 18 to 23
million square kilometres of Arctic and Antarctic waters. The presenceof such
huge masses of ice affects the thermodynamics of both the atmosphere and ocean
and has a considerable impact on the global climate. In order to properly lescribe
the processes taking place in polar regions, e.g. for predicting the climate hanges
in the future, it is necessary to understand the mechanical behaviour of ce and,
in particular, to formulate adequate constitutive relations that are cajable of
capturing the observed behaviour of ice, both on large and small scales.

Ice is a complex material. In natural conditions it usually exists at high
homologous temperatures (that is close to the melting point on the :bsolute
temperature scale), therefore its behaviour resembles very much the behaviour of
many metals and rocks prior to melting. Ice displays a wide range of nechani-
cal responses that include: pure elasticity, nonlinear viscoelasticity (decderating
primary creep, also referred to as transient creep or delayed elasticity), md irre-
versible secondary (“steady-state”) and tertiary (accelerating) creeps. Tle latter
two types of creep, characteristic for the ductile behaviour of ice, occurat rela-
tively low stress levels. At high stresses and strain-rates, the ice changesconsid-
erably its behaviour and becomes a very brittle material (more brittle tian, for
instance, glass).

In this paper we concentrate on secondary creep of ice, as this defomation
mechanism dominates the flow of polar ice masses, and is also importart in sea
ice applications (since usually during this stage of deformation, a floaing ice
cover sustains maximum stresses, and hence for these stresses engineeriry struc-
tures are to be designed). An important process associated with the irreversible
creep of ice is the formation and subsequent evolution of anisotropy iran ini-
tially isotropic material when it is subjected to changing stress and defomation.
Such a phenomenon, known as induced anisotropy, is of crucial imporance in
the case of polar ice. As ice cores drilled at different sites in Antarcica and
Greenland have shown (Gow and WILLIAMSON [7], RUSSELL-HEAD anl Bupbp
[15], THORSTEINSSON et al. [21]), polar ice reveals strong fabrics, slown by
significant alignment of individual ice crystal c-axes along some prefereitial di-
rections, developing as ice descends from the free surface to depth it an ice
sheet. The anisotropy of the medium affects considerably the flow of jolar ice
masses, what has been proved by the results of numerical simulations carried
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out by MANGENEY et al. [10], MANGENEY et al. [11], and STAROSZCZYK and
MORLAND [19]. In the case of sea ice, due to relatively short time-scales (years
compared with thousands of years for polar ice), the process of fabric evolu-
tion plays a negligible role. Nonetheless, the constitutive relations developed
for anisotropic polar ice can still be used for describing sea ice behaviour, since
this type of ice is usually anisotropic (most often transversely isotropic) from the
very moment of its origin. The macroscopic anisotropy of ice is due to underlying
processes occurring in the material on the micro-scale of individual ice crystals,
as the latter are very strongly anisotropic: shear stresses applied in planes nor-
mal to the crystal basal plane give strain-rates up to two orders of magnitude
higher than the strain-rates resulting from shearing performed in planes parallel
to the basal plane (PATERSON [14]). The main microscopic processes involved in
the creation and evolution of the anisotropic fabric in ice are: (1) the rotation
of crystal c-axes towards principal axes of compression and away from principal
axes of extension, and (2) the process of rotation recrystallisation (or polygonisa-
tion), in which new ice grains with orientations similar to old grains are created
(LLIBOUTRY and DuvaL [9]).

In order to construct macroscopic constitutive equations for polycrystalline
ice, three different methods can be applied. The first method is to derive an
average response of an ice aggregate from the properties of individual grains and
assumptions on crystal interactions (AZUMA [1], VAN der VEEN and WHILLANS
[22], CASTELNAU et al. [4]). Since this method, which can be called a discrete-
grain approach, requires that the behaviour of several hundred grains at a given
material point is followed to yield the macroscopic response, the constitutive
theories of this type can be hardly implemented in current large-scale ice sheet
numerical models.

Therefore, in order to significantly reduce the number of variables involved
in the description of ice fabric, a group of micro-macroscopic models have been
developed (LLIBOUTRY [8], SVENDSEN and HUTTER [20], MEYSSONNIER and
PHILIP [12], GODERT and HUTTER [6], GAGLIARDINI and MEYSSONNIER [5]).
In these models the polycrystalline aggregate is treated as a continuum, whose
directional properties are described in terms of a so-called orientation distribution
function (ODF), defining continuous weightings to the grain c-axes orientations
in space. Unlike the discrete-grain models, in which the behaviour of each grain
has to be considered, in the micro-macroscopic approach the evolution of only a
few functions has to be followed at each node of an ice sheet model.

The third method is to assume that the macroscopic response of ice can be
described in terms of the fabric induced entirely by macroscopic deformation, and
to ignore all microscopic processes taking place at the crystal level. This leads to
a phenomenological model formulated by MORLAND and STAROSZCZYK [13] and
further extended by STAROsZCZYK and MORLAND [18]. The adopted assumption
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that the induced anisotropy of ice depends only on the current macroscopic strain
and does not depend on the deformation history is a significant simplification,
since, in general, the fabric evolution is a path-dependent process. Neverthe-
less, the model allows a good agreement with observations and its predictions
correlate well with the results given by the discrete-grain and micro-macroscopic
models (STAROSZCZYK and GAGLIARDINI [17]). It is also believed that such an
approximation provides the simplest approach to an evolving anisotropic fow law
which can be tractable in large-scale ice sheet dynamics, since it requires that
only current deformation gradients are calculated in addition to the velodty and
stress fields.

The orthotropic constitutive law formulated by STAROSZCZYK and MORLAND
[18] expresses the deviatoric stress in terms of the strain-rate, strain, ard three
structure tensors defined by the outer products of three orthogonal vectos along
the current principal stretch axes. In the present work we formulate an inverse
orthotropic flow law, in which the strain-rate is expressed in terms of the stress
and deformation. Such a form of the flow law is a conventional glaciology form,
despite the fact that it is less useful in applications, as it is more conveiient to
use with the momentum balance equations the stress — strain-rate forn of the
constitutive relation. However, it is possible that the inverse form wil reveal
different, features which can improve correlations with experimental data

The proposed law is derived from a general, frame-indifferent, ortlotropic
tensor representation given by BOEHLER [2]. The general law is subsequently
reduced by retaining only those tensor generators which contribute to vis:ous re-
sponses that can be detected by simple shearing performed in different directions
on different planes. Apart from three structure tensors, needed to descibe the
orthotropic symmetries in the material, the model involves two material response
functions with dependence on the principal stretches and an invariant mesure of
total deformation. These functions are constructed by correlating the predicted
model response with the observed limit behaviour of ice at large strairs. The
constitutive theory is then used to illustrate the evolution of the creep msponse
of an initially isotropic sample of ice during indefinite uniaxial compresson and
simple shearing.

2. General orthotropic constitutive law

Newly formed compacted polar ice is assumed to be macroscopically iotropic
due to the random distribution of individual crystals in the material. As tie poly-
crystalline aggregate starts to deform, all crystal glide planes move in sud a way
that the crystal c-axes (the axes which are orthogonal to the grain basalplanes)
are rotated towards principal compression axes and away from principa exten-
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sion axes. This movement of glide planes leads to the formation of an orthotropic
fabric in the material, with orthotropic symmetry axes coinciding with the initial
principal stretch axes. It is supposed that, due to the symmetric distribution of
all glide planes about the principal directions of strain, the reflexional symme-
tries with respect to the three orthogonal principal stretch planes are maintained
throughout the whole process of deformation, even though the orientations of the
principal stretch axes change as the material creeps. Since the ice crystal basal
planes are those planes over which the material can shear most easily, this im-
plies that macroscopic shearing on the principal stretch planes should have ease
of shearing, with fluidities (reciprocal viscosities) ordered by the respective mag-
nitudes of normal compressions (the inverse stretches). Furthermore, the relative
magnitudes of such fluidities should depend on, at least, the principal stretches.
Therefore, the constitutive flow law should include the dependence on at least
the principal stretches as arguments of the response functions, or more generally,
on the deformation. The most simple approach which captures an evolving or-
thotropic fabric is then to relate the strain-rate to the Cauchy deviatoric stress
and strain. As a deformation measure we adopt here the left Cauchy-Green defor-
mation tensor which, like the Cauchy stress tensor and the strain-rate tensor, is
a frame-indifferent quantity and as such can be used in an objective constitutive
equation.

Let Oz; (2 = 1,2,3) be the spatial rectangular Cartesian co-ordinates, OX;
(i = 1,2,3) particle reference co-ordinates, and v; — the components of the veloc-
ity vector v. Then the material deformation gradient F and strain-rate D have
the components

_ Oz 1 (0w  Ov
&4 Fi=gx, D=3 (aa,-j e Bzi) ‘

By the polar decomposition theorem (SPENCER [16]), the deformation gradient
tensor F can be expressed in the form

(2.2) F = VR,

where R is the rotation tensor and V is the left stretch tensor. The principal
stretches A, (r = 1,2,3) along the principal stretch axes defined by the unit
vectors el”) (r =1,2,3) are given by

(2.3) Vel = \el”,  det(V—-AI) =0,

where I is the unit tensor. The left Cauchy-Green deformation tensor B and
its principal values b, equal to the squares of the principal stretches A,, are
defined by

(24) B=V2=FF", Bel) =pel”, det(B-bI)=0, b=
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The three structure tensors, needed to describe the orthotropy of the material,
are defined by the outer products of the principal stretch unit vectors by

25 MM =ege, (r=1,2,3), MY 4+M? MO =1
By ice incompressibility, a common glaciology approximation, we have
(26) divv =0, detF = A\ A2A3 = det B = biboby = 1,

with Ay = Ap = A3 = 1 and b; = by = b3 = 1 in an undeformed isotropic state
F = I or in a rigid rotation motion F = R. The deviatoric Cauchy stress S is
defined in terms of the Cauchy stress o and the mean pressure p by

(2.7) S=o0+pl, p= -é—tra, trS =0,

where tro denotes the trace of ¢. Due to ice incompressibility, p is a workless
constraint not given by a constitutive law, but determined by the momentum
balance and boundary conditions.

Any constitutive relation should satisfy the principle of frame-indifference, or
objectivity, to ensure that material properties are independent of the observer.
Here we are concerned with a frame-indifferent law that relates one symmetric
tensor (strain-rate D) to other two symmetric tensors (the deviatoric stress S
and the deformation B). For such a constitutive law the general orthotropic
representation, given by BOEHLER [2], is

3
(2.8) D= [¢-M" + ¢, 3(MT8 + SM") + ¢,.,4(MB + BM™")]

r=1

+ ¢108? + ¢11B? + ¢12(BS + SB),

where the 12 response coefficients ¢; (i = 1,...,12) are the functions of the 19
invariants formed from the tensors M("), 8 and B:

Jp = ttM"S,  Jou3=trMB,  J, = trM782,
(2.9)  Jppg = ttM™B2,  J 10 =trMMSB  (r = 1,2,3),
Jig = trBS%,  Ji7 =trB?S, Jig=detS, Jjg=detB.

Due to the constraints that the strain-rate tensor D has zero trace and the
material is incompressible, only 11 coefficients ¢; are independent, and only 18
invariants are nontrivial, as Jig = det B = 1. Since we suppose that in any state
the strain-rate D vanishes when the deviatoric stress S vanishes, we require that
the coefficients @1, ¢z, ¢3, d7, b3, P9, P11 vanish when S vanishes; that is, when
the invariants Ji, Jo, J3, J7, Js, Jo, Ji3, Jia, Jis, Jig, Ji7, J1g vanish.
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The general constitutive model defined by equation (2.8), with 11 indepen-
dent response functions and 18 invariants as their possible arguments, is far be-
yond the theory that can be correlated with available experimental data. There-
fore, the relation (2.8) has to be significantly simplified by reducing the number
of the functions ¢; and the invariants J;.. This needs to be done in such a way
that the main features of the observed creep response of ice are still captured
by a reduced model, and all the model coefficients can be determined from a
limited number of simple laboratory tests, most commonly uniaxial compression
and simple shearing. In order to simplify the general orthotropic relation (2.8)
we follow here a method proposed by MORLAND and STAROSZCZYK [13, 18],
based on the concept of so-called instantaneous directional viscosities that can
be measured in a series of simple shear tests carried out on different co-ordinate
planes.

Consider distinct axial stretches Ay, Ay, A3 along the fixed co-ordinate axes
Z1, T9, T3, corresponding to the deformation

(2.10) oy =MX1, z2=22Xe, z3=7X3 MAA3=1,

where X , X5, X3 are particle co-ordinates in the initial isotropic reference state.
The left stretch tensor V, deformation gradient F, rotation tensor R and the left
Cauchy-Green deformation tensor B are given by

M 0 0 A 0
(Z11) V=F=| 0 % 0 |, R=L B=| 0 X% 0
6 0 As 0 0 M

The principal stretch axes (") coincide now with the co-ordinate axes, therefore
the structure tensors M(") (r = 1,2,3) are the single diagonal element matrices

100 00 0 00 0
212y MV=1000|, MP=lo010]), M®=[0 0 0
00 0 00 0 00 1

Now remove the stress and strain-rate, so the fabric defined by the current
stretches Ay, Ay, A3 is frozen, and consider instantaneous responses to shearings
performed in different directions on different co-ordinate planes. For simple shear
in the z; direction on a glide plane normal to the z; direction (i # 7), with no
summation implied by a repeated suffix, the new deformation field is defined by

(2.13) zi = NXi + 8 X5, 3= 0X5, 3= Xk,

where 4, j, k are distinct permutations of 1,2,3, and k;; is a shear strain. For the
shearing occurring in the plane Oz;z;, all the components of the deviatoric stress
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tensor are zero except the symmetric entries S;;. Such a stress configuration
induces a viscous response, described by (2.8), in which the strain-rate tensor
has, in general, three nonzero diagonal components and two nonzero off-diagonal
symmetric components D;;. Instantaneously, at the frozen values of Ay, Az, Ag,
the tensors B and M(") (r = 1,2, 3) are given by the diagonal tensors (2.11) and
(2.12). The symmetric tensor generators in (2.8) have for i # j the following
instantaneous (ij) components, equal to the (jz) components:

(") )y, = I8y (r=1 or r=4)
(2.14) (M8 +sM®),; {0 bt i ik s
(2.15) (M"B +BM™),. =0, (8?);,;=0, (B%),;=0,
(2.16) (BS +8SB),; = (bi +b;)Si; -

There are also nonzero diagonal components of the instantaneous strain-rate D,
other than those defined above, these are however of no interest at this point,
since they cannot be detected in the shearing tests.

The (ij) component (i # j) of the constitutive law (2.8) is therefore given by
the following relation

(2.17) D;j = [pis3 + dj4a + (bi + bj)h12]Si;

defining an instantaneous fluidity 7;; (reciprocal viscosity) for shear in the z;
direction on a glide plane normal to the z; direction by

2D;;
(2.18) W = 5y

= 2[¢is3 + dj43 + (bi + bj) 2],

which depends for each (ij) only on the response functions ¢ii3, ¢ji3 (1,] =
1,2,3), and ¢y9; the other terms in the general law (2.8) do not contribute to the
directional fluidities. In view of (2.18), the ratios of the instantaneous directional
fluidities are defined by

m3 _ $atde+ (br+bs)bio  m2 _ st ds+ (b +b2)dno
s 5+ ¢+ (ba+b3)dra’ m3  Ba+ e+ (b +b3)pr2

(2.19)

If the values of b; and by are interchanged in the first ratio, for any bs, then that
ratio must become 793 /713 with the original values, and, similarly, interchanging
the values of by and by for any by in the second ratio, must yield ny3/m2 with
the original values. Thus ¢;2 must not change when by, by, b3 are permuted, the
values of ¢4 and ¢5 are interchanged when b; and by are interchanged, the values
of ¢5 and ¢ are interchanged when by and b3 are interchanged, and those of ¢4
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and ¢g when b; and by are interchanged. Therefore, the function ¢13 can depend
in the frozen fabric only on the combinations of two invariants

3 3
(2.20) Jo =3 Jyz=tB, Jn=) Jrg=trB?

r=1 r=1

while the functions ¢4, ¢5 and ¢g can have common dependence on Jog and Jo;
and common dependence on Jy = by, J5 = by and Js = b3, respectively.

3. Reduced model

Following STAR0SZCZYK and MORLAND [18] we consider only those terms in
the general constitutive relation (2.8) which contribute to the instantaneous di-
rectional fluidities (2.18), that is we retain only the terms with the fabric response
functions ¢4, ¢5, ¢ and ¢12. We further assume that the response functions de-
pend on only two invariants of the deformation tensor B, namely J.;3 = b, and
Jop = trB, which constitute a minimum set of invariants the model has to incor-
porate in order to satisfy the directional fluidity ratios (2.19). Accordingly, we
express the response functions by

(3.1) br4+3(Jrs3, J20, J21) = %0 h(b:), ¢12(J20,J21) = % q(K),

where h(b,) and q(K) are single-argument response functions, K = trB = by +
by 4+ by > 3, and 1y = no(trS%,T) is the fluidity of isotropic ice, a function of
the second invariant of the deviatoric stress S and temperature T. With the
definitions (3.1), the reduced orthotropic constitutive model takes the following

form:
3

_M (r) ) _ 2
(32 D=X {Zh_(b,)[M S+SM™ - (M)

r=1

+ q(K)[BS + SB — %tr(BS)I]},

where the terms with isotropic tensors are introduced to recover zero trace, noting
that the included scalar (M()8) = J,, and the scalar tr(BS) is the sum of Jy12.
We require that when B = I, that is when K = 3, the relation (3.2) reduces
to the isotropic fluid flow law S8 = 20D, where o = 1/7 is the viscosity of
isotropic ice; thus

(3.3) h(1) +¢(3) = 1.
By Eq. (3.2), the instantaneous directional fluidity (2.18) becomes
(3.4) g = 185 + h(b) + (5 + b;)a(K))
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and since this must remain bounded for any axial stretch b, increasing indefinitely,
we rewrite ¢ and the normalisation (3.3) as

(3.5) oK) = KQ(K), h(1)+3Q(3)=1.

We now employ the orthotropic constitutive relation (3.2) to simulate the be-
haviour of ice in simple configurations corresponding to those applied in typical
creep tests, and in particular we predict the evolution of axial and shear fluidi-
ties during the uniaxial compression and simple shear experiments. In the first
test, unconfined compression of an initially isotropic ice sample along, say, the x3
axis, there are equal lateral stretches A\; = Ay > 1, and, due to the incompress-
ibility condition (2.6), the axial stretch (a compression) is A3 = A72 < 1. The
deformation field for this configuration is defined by the relations (2.10), and the
corresponding deformation tensor B and the structure tensors M) (r =1,2,3)
are given by (2.11) and (2.12), respectively. The deviatoric stress tensor has only
diagonal components

Su ©0 0
(3.6) S= 0 Sn 0 ;
0 0 -28

and the invariants entering (3.2) are
3.7) tr((MYS) = tr(MP8) = 5y, tr(MP)8) = -25;;,
tr(BS) = 2S11(b1 — brz),

and K = trB = 2b; + by 2. With the above definitions, the constitutive law (3.2)
yields the following viscous response of ice in uniaxial compression:
Q(K) Tla

2, (1-2 ~2y _ Ta

2p10D1y .t 21190 D33 = 1
Su S33 3

(3.8)

where 7,/no defines the ratio of the fabric induced axial fluidity to isotropic
fluidity. BUuDD and JACKA [3] have determined experimentally the limit value of
this ratio for indefinite axial compression, together with an analogous limit ratio
for indefinite shearing in a plane deformation. These limit ratios, commonly
described in glaciology as enhancement factors, are used here to determine the
limit values of the response functions h and Q. Hence, as by — oo, then K ~ 2b;,
and from (3.8) we obtain

(3.9) :—0 - gh(O) i %h(co) - -léQ(oo) = E,,

where E, is the axial enhancement factor.
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Next consider a simple shear test on ice. For more generality, assume that
the material is not isotropic at the beginning of shear deformation, that is it has
already developed a fabric in a plane creep, the strength of which is described by
the principal stretches A3 = A,"l, A2 = 1. Now let us start shearing in the plane
Ox1z3, driven by a shear stress S13. The deformation field is described by

(3.10) Ty = MX1+£KX3, 3= X, $3=)\i_lX3,

where & is a shear strain in the plane Oz;z3. The deformation, deviatoric stress,
and strain-rate tensors are now given by

M+wt 0 Ahs Su 0 Si
(3.11) B = 0 I 0 ; S= 0 Sy 0 i
ATl 0 A2 Si3 0 Ss3
1,
D= 0 0 0 ;
1
-4 0 0
2'7

with Sy1 + S22 + S33 = 0 and ¥ = A\;k. The principal stretch squares b;, (i =
1,2,3), the eigenvalues of B, are

(312) bp=1, by=b7, 2y =M+x2+a2+/ (A2 +R22 -4,
and the associated principal unit vectors el”) are defined by
(313) €@ =(0,1,0, =0, Akl +(\2-b)ey) =

(] + [P =1 (s=1,3).
The structure tensors are given by

000 e(la)e(ls) 0 .9(13):3?;J
314) M@=[o010 |, M®= 0 0 0 (s=1,3),
00

0 e(;"eg“’ 0 egs)e:(f)
and the invariants are
(315)  tr(M®S) = Sp, tr(M©)S) = Sp1el? el + Spp e{ el + 2513 e{Vel”,
(s=1,3), tr(BS) =811 (A2 +K%—1)+ Sa3(A\72 = 1) + 2813\ '5,
K=tB=b+1+b'=M+A"+r"+1
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The tensor combinations appearing in (3.2) are defined by

— S99 0 0
(3.16) M@s4+smM® — gtr[MmS}I = % 0 285 O :
0 0 —Sx»

A9 o AY
(3.17) M(")S+SM{5)—§tr(M“)S)I= 0 AY o (s=1,3),
4 0 4y

where
2 8 ] 5 8 S
(3.18) A(l";] = 3 (QSueg }eg - Sggegs)eé ) + Slgeg_ }eg )) ’
2 5 5 8 &
(3.19) AE,Z) ==3 (S”eﬁs)eﬁ ) Es 533eg )eg ) + 25138&818;& )) !
2 s .3 5 5
(3.20) AQ = = (-Suelel? + 28elef? + Siaelef?”)
(3.21) A = (811 + S33) Vel?) + Su3,
and

9 ( Cu 0 Cun3 )
(322) BS+SB- u(BSI=| 0 Cn 0 (s =1,3),
Ciz 0 Cs3
with

(3.23) [S11 (223 + 262 + 1) — S33 (A72 = 1) + S1a A7 ',

Q
—

Il
e o

2 ;
(324) Cog = —5[81[ ()\? 1= K e 2) + S33 (A]—z + 2} + 28544 /\;lﬁ],

(3.25) Ca3 = %[ — 811 (02 + k%2 —1) + Sa3 (2A72 + 1) + S13 AT k),

(3.26) Ciz = (Su + S33) A s + S13 (M + A72 + &%)

In wiev of (3.16), (3.17) and (3.22), the constitutive law (3.2) gives for the shear
strain-rate D3 the following relation:

327)  2oDis = - (Su + Sus) [(br)ePel + (b7 + LE) y-1,
(327)  2uoDiz = 5 (Su + Ss3) |h(br)e; ey’ +h(b )er ey + — K
1 K .

+ 5513 [h(bl) + h(b7?) + Q%(—)(,\f + 7%+ nz)} ,
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which involves three stress tensor components, Sy;, Ss3, and Sy13. In order to
express the shear strain-rate in ferms of the shear stress alone, two more equa-
tions relating the three stress components are required. These two equations are
obtained from (3.2) by determining two axial strain-rate components, say Dy,
and D33, and then setting them to zero, since in the simple shear test all the
axial strain-rates are zero due to lateral constraints imposed on a sample. Hence,
for the axial components, Eq. (3.2) yields

(3.28) 2;;01)1,:-5” [zh,(bl)pl el + n(1) + 2n(b7 )P el

+ Q(f{{)) (222 + 262 + 1)J e %333 [—h{bl)e3 JelM + h(1) — h(b7")eD el
4 1 3

- L0 - 1) + 350 [bo)el e + o5 )elef?

+—Qg{))\uln =,

1
(329) 20D = 3Su [~h(b)eel" + h(1) - h(by el Vel

= —Qg{) B +x2-1 )] - -;7333 [28(61)c8 el + h(1) + 267" )e el

I3 e .
+ _—Qg{ Lo+ 1)] - %313 (b1 )ef e + h(b7)elel”

+—Q§f}/\_1n] =0

Equations (3.28) and (3.29) provide two relations to eliminate Sy, and Ss3 in
terms of Sy3, so that (3.27) becomes a relation between D3 and Sy3. The latter
relation, expressed in the form 2pugD3/513 = ns/no, describes the evolution of
the normalised shear fluidity in terms of the shear strain x. In the limit, as
k — oo with A; finite, then b, ~ k2 and K ~ k2, and, further, e(!) — (1,0,0)
and e®) — (0,0,1), so Eq. (3.27) implies that

1s 1 1 il o
(3.30) = 3 h(0) + 5 h(oo) + 3 Q(o0) = E
where FE; is the shear enhancement factor.
The two relations (3.9) and (3.30) express the three limit values of the re-
sponse functions, h(0), h(oo) and Q(o0), in terms of the two enhancement factors
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for compression and shear (the other limit value of the function @, at K = 3,
is defined by Eq. (3.5)). In order to determine uniquely the three limit val-
ues we derive a third equation by following STAROSZCZYK and MORLAND |[18],
who derived a set of equalities and inequalities which should be satisfied by in-
stantaneous directional viscosities p;; (reciprocal directional fluidities 7;; defined
by Eq. (3.4), pi; = n&l, i,j = 1,2,3, i # 7). Their relations are based on
the assumption that the alignment of ice crystal c-axes towards the direciion
of compression (and away from the direction of extension) depends on the rel-
ative magnitudes of the three principal stretches A\, (r = 1,2,3). The smaller
a given principal stretch is compared to the other two stretches, the stronger is
the alignment of c-axes towards the direction of this stretch and, therefore, the
easier is the crystal basal gliding on the plane normal to this principal stretch
axis (that is, the smaller is the corresponding shear viscosity). For any ordering
of stretches Ay, say A\; > Ay > A3, there are six distinct sets of relative values of
Ar , and for each of them corresponding relations order pjo, p13 and po3 in the
co-ordinate frame of the principal stretch axes A, . By using the viscosity relation
corresponding to the plane flow, that is when A2 = by = 1, and hence b3 = bl_l
and K = by +1+b7", it is possible to relate Q(K) to h(b,) explicitly; namely by

K

_bl —p] [h(bl) = h(bi_l)]s
1

(3.31) Q(K) =

where

(3.32) Ohy =K~ 14K -1P—4 ;, 22

The limit of (3.31) as by — 1, K — 3, combined with the normalisation (3.5)2,
yields

(3.33) h(1) = K'(1) = 1,

which is a restriction on h(b,) at b = 1. Further, the limit of (3.31) as b; — oo,
when K ~ by, provides the relation

(3.34) h(0) — h(co) — Q(o0) = 0.

The system of three linear equations (3.9), (3.30) and (3.34) for h(0), h(occ) and
(o) has a solution

(3.35) h(0) = Es, h(co) =6E, —5E;, Q(o0) = 6(E;s — E,),

which, together with the relation (3.33), defines the general properties which
the response functions h(b,) and Q(K) should satisfy in order that the reduced
constitutive model (3.2) yields the limit responses observed in uniaxial compres-
sion and simple shear tests. More specific properties of the response functions
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should, ideally, be inferred from experimental results covering the whole range
of axial and shear deformations which an ice sample undergoes as it develops
anisotropy from its initial isotropic state, instead of using only the limit viscosi-
ties represented by the enhancement factors E, and Ey, as has been done here.
Unfortunately, such detailed experimental data are not available yet, therefore
we adopt simple monotonic response functions satisfying (3.33) and (3.35) to
explore the behaviour of ice as predicted by the orthotropic law (3.2).

4. Illustrations

For illustration purposes, the following response function h(b,) is adopted
to investigate the creep behaviour of ice in uniaxial unconfined compression and
simple shearing:

(41)  h(by) = h(o0) — [h(oc) — h(0)] exp(—ab™), @ >0, m >0,

where m is a free parameter, and « is determined by the restriction (3.33). The
other response function, Q(K), is related to h(b,) by Eq. (3.31). Two kinds of ice
are considered: so-called warm ice and cold ice. The former is the ice which is near
the melting point, and the creep behaviour of such ice has been extensively tested
at various stress levels by Bupp and JACKA [3]. Their results have shown that
warm ice softens very considerably under both the compression and shear, and
for large deformations the compression and shear enhancement factors approach
the respective values of E, =~ 3 and E = 8. However, it has turned out that
in polar ice sheets the creep response of ice to compressive stresses is different
from that observed for ice near melting, and its viscosity increases with axial
deformation (which means that the enhancement factor for compression is less
than unity). Recently, MANGENEY et al. [10] suggested the value Fs =~ 1/3
for ice near the bottom of the Greenland ice cap, evaluated on the basis of the
data provided by THORSTEINSSON et al. [21]. The shear enhancement factor for
ice at the bottom of the Greenland ice sheet near its divide (centre) has been
calculated to be E, ~ 2.5, though it seems that further away from the divide
(where shear strains are much larger than at the divide) a higher value is more
relevant. Hence, the chosen enhancement factors E,; and E; for warm and cold
ice and the related limit values of the response functions h and @, defined by
(3.4), are:

(42) E,=3, E,=8: h(0)=8, h{oo)=-22, Q(o0) =30,
(43) E,=1/3, Ey=5: h(0)=5  h(cc)=-23, Q(o0)=28.

Plots of the selected response functions h(b,) for cold ice (for warm ice they
are very similar) are presented in Fig. 1, in which labels indicate the curves
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corresponding to the values of the free parameter m in (4.1). The same labelling
is applied in subsequent plots illustrating the creep behaviour of ice.
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FiG. 1. Adopted forms of the fabric response function h(b;).
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F1G. 2. Evolution of the normalized axial viscosity with increasing stretch A; in uniaxial
compression for different response functions h(b,) (warm ice).

The results of simulations carried out for warm ice are shown in Figs. 2 and 3.
The response of ice to uniaxial compression is illustrated in Fig. 2, in which the
evolution of the dimensionless axial viscosity S11/(210D11), the reciprocal of the
axial fluidity described by Eq. (3.8), is shown for different values of the parameter
m in the response function h(b,). Comparing these results with those given by
the stress — strain-rate formulation of the constitutive law (STAROSZCZYK and
MORLAND [18]), in which analogous response functions have been applied, we
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note that the present model predicts much faster softening of ice (decrease in
viscosity with increasing deformation). The results of simple shear simulations
are plotted in Fig. 3, illustrating the evolution of shear viscosity S13/(2pu0Dh3),
the reciprocal of the shear fluidity calculated from the relations (3.27) - (3.29).
Comparison of these results with those obtained from the constitutive model [18]
shows again that the inverse constitutive law predicts much faster softening of ice
during its shearing, that is the limit shear viscosity defined by the enhancement
factor Ey is now much faster approached as the shear deformation, started from
an initially isotropic state of ice, proceeds.
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normalised shear viscosity
2
T
o
(4]
|

=
[
q
(A% ]
1

0.0 L L I 1 I 1 | I I
00 05 10 15 20 25 30 35 40 45 50

shear strain

F1G. 3. Evolution of the normalised shear viscosity with increasing strain & in simple
shear started from an isotropic state for different response functions h(b,) (warm ice).

The creep behaviour of cold ice is illustrated in Figs. 4 to 7. Figure 4 shows the
evolution of the axial viscosity for different values of the free parameter m in the
function (4.1). It is clearly seen that the value of this parameter, particularly for
m < 1.5, considerably affects the predicted response of cold ice to compressive
stresses. Such sensitivity of the results to the adopted form of the response
function, which is an undesirable feature of the constitutive model significantly
restricting its flexibility, has not been observed in the case of the stress — strain-
rate formulation [18], as shown by the results of simulations for cold ice presented
by STAROSZCZYK and GAGLIARDINI [17]. Figure 5 demonstrates the evolution of
the normalised shear viscosity of cold ice with increasing strain x started from the
isotropic state (A = Ag = 1). Contrary to the uniaxial compression, the results
for simple shearing change smoothly with varying values of the free parameter
m in the response function (4.1). Comparison of the shear viscosities yielded by
the inverse model proposed here with the results predicted by the model [18] and
presented in [17], shows that, alike the case of warm ice, the limit shear viscosity
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for indefinite shear strain is now approached faster. Additionally, we note that the
present constitutive theory leads to the monotonic softening of cold ice with shear
strain & increasing from zero at the isotropic state, while the previous stress -
strain-rate formulation [18] predicts initial hardening of ice, with maximum shear
viscosities occurring at strains & ~ 1, followed then by a progressive decrease in
ice viscosity until the limit value, defined by the shear enhancement factor, is
reached at large strains (STAROSZCZYK and GAGLIARDINI [17]).
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FIG. 4. Evolution of the normalised axial viscosity with increasing stretch A; in uniaxial
compression for different response functions A(b,) (cold ice).
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Fi1G. 5. Evolution of the normalised shear viscosity with increasing strain s in simple
shear started from an isotropic state for different response functions h(b;) (cold ice).
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Finally, in Figs. 6 and 7 we illustrate the behaviour of cold ice in simple
shearing started from anisotropic states induced by an initial plane compression
along the z3 axis, defined by the stretches A = 1 and A3 < 1. Figure 6 shows,
for different values of the free parameter m in the response function h(b,), the
variation of the dimensionless shear viscosity Si3/(2uoD13) with the strain &
for ice that has been axially pre-compressed to the stretch Az = /\fl = (.5
Corresponding to the previous plot is Fig. 7, in which, for the function h(b;)
with m = 1, the evolution of shear viscosity in simple shearing started from
different anisotropic states defined by the axial stretches A3 is presented.
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F1G. 6. Evolution of the normalised shear viscosity with increasing strain x in sim-
ple shear started from an anisotropic state defined by Az = 0.5 for different response
functions h(b,) (cold ice).
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FiG. 7. Evolution of the normalised shear viscosity with increasing strain s in simple
shear started from different anisotropic states defined by Az for the response function
h(b,) with m = 1.0 (cold ice).
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5. Conclusions

In the paper an orthotropic constitutive law for viscous flow of ice has been
formulated. The law expresses the strain-rate in terms of the deviatoric Cauchy
stress, current deformation, and three structure tensors describing the evolving
symmetric properties of the material. Since the results of laboratory tests on
ice which have been conducted so far are insufficient to correlate the theory
with experiment, simple forms of the response functions have been adopted in
order to explore the predictions of the proposed theoretical model. The results
of numerical simulations for maintained uniaxial compression and simple shear
have been compared with the results given by the analogous stress — strain-rate
model (STAROSZCZYK and MORLAND [18]). It has been found that the present
strain-rate — stress formulation predicts much faster softening of the material
during simple shear for both the warm and cold ice, as well as during uniaxial
compression of warm ice. The results for the response of cold ice to uniaxial
compression have shown that the present model is more sensitive to the specific
forms of the response functions, which renders it less flexible than the former
stress — strain-rate form of the law [18]. Before more definite conclusions have
been drawn, however, the model response functions need to be correlated with
the detailed experimental data once they are available, since at the moment these
functions have been constructed only on the basis of the limit viscosities measured
for indefinite deformations.

The proposed constitutive model can be used to describe the phenomenon
of induced anisotropy in other materials, for which the current response is in-
stantaneously viscous. It also seems that it is relatively simple to incorporate
in the model other micro-mechanisms occurring in polycrystalline materials, for
instance the process of dynamic (migration) recrystallisation, whose inclusion in
discrete-grain or micro-macroscopic models is much more complex than in the
case of the continuum approach pursued in this work.
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