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Heat transfer over an exponentially stretching continuous
surface with suction
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SimMiLARY SOLUTIONS of the laminar boundary layer equations describing heat and
flow in a quiescent fluid driven by an exponentially stretching surface subject to suc-
tion are examined numerically. The direction and amount of heat flow were found
to be dependent on the magnitude of “y " (parameter of temperature) for the same
Prandtl number. Nusselt number increases with increasing “+ " and the Prandtl num-
ber. The effect of decreasing suction parameter is found to be significant particularly
for the Prandtl number.

1. Introduction

THE CONTINUOUS SURFACE heat transfer problem has many practical applica-
tions in industrial manufacturing processes. Such processes are hot rolling, wire
drawing, glass fiber production, and paper production. Since the pioneering work
of SAKIADIS [1], various aspects of the problem have been investigated by many
authors. Most studies have been concerned with constant surface velocity and
temperature (see, for example TSoOU et al. [2]) but for many practical applications
the surface undergoes stretching and cooling or heating that cause surface veloc-
ity and temperature variations. CRANE [3] and VLEGGAAR [4] have analysed the
stretching problem with constant surface temperature while SOUNDALGEKAR
and RAMANA MURTY [5] investigated the constant surface velocity case with
power law temperature. ALI [6] has examined flow and heat transfer characteris-
tics on a stretched surface subject to a power velocity and temperature. Recently
MGyARI and KELLER [7] have analysed the exponential stretching problem by
discussing a further type of similarity solution of the governing equations. These
solutions involve an exponential dependence of the similarity variable as well as
of the stretching velocity and temperature distribution on the coordinate in the
direction parallel to that of the stretching.

Suction or injection of a stretched surface was introduced by ERICKSON et al.,
[8] and Fox et al., [9] for uniform surface velocity and temperature. GAUPTA
and GAUPTA [10] extended Erickson’s work in which the surface was moving
with a linear speed for various values of parameters. Furthermore, stretching
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surface subject to suction or injection was studied by Avi [11] for uniform and
variable surface temperature while ELBASHBESHY [12] investigated the uniform
and variable surface heat flux.

The present work analyses the heat transfer over an exponentially stretching
continuous surface with suction.

2. Formulation of the problem

The laminar velocity and thermal boundary layers on a continuous stretching
surface with velocity U,, = U, (z) and temperature T, = T,,(x) moving axially
through a stationary incompressible fluid with constant physical properties and
temperature T, may be described using the normal boundary approximations
by the following continuity, momentum and energy equations |7, 11]:
du 0Ov

+ i

du du 9 u
2.2 o o Y e i
(2:2) “az+”ay U(’)yz’
Oz dy ~  0y2’
with the boundary conditions
u=Uyp(z)=Upexp(z/L), v=-Vu, P=T atbg=0,
u =0, T =Ty 'at Yy —> 09,

(2.3)

(2.4)

The z-axis runs along the continuous surface in the direction of motion and
the y-axis is perpendicular to it, u and v are the velocity components in the
directions of = and y respectively, v is the kinematic viscosity, T' is the temper-
ature, « is the thermal diffusivity, T is the free stream temperature, Up is a
constant, L is the reference length, w is the condition at the surface and y — oo
concerns the condition at the ambient medium.

The solution of Eq. (2.1) may be written in terms of the function ¢ (z, y)
defined by the relations

a2 . o0y
oy’ T 9z’

Introducing the usual similarity transformation and dimensionless temperature

: =
(2.5) n=y\57 exp (z/2L),
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(2.6) Y(z, y) = V20 LU f(n) exp (z/2L),
i L mom
1) o= Toexp(yz/2L) °

Where v and Tj are parameters of the temperature distribution in the stretching
surface.
The momentum Eq. (2.2) and energy Eq. (2.3) can be written as

(2.8) " atpt=21%=0,

(2.9) 0" +Pr(f0 —vf0)=0,
with the boundary conditions

f0)=1I, f(0)=1, 8(0)=1,

(2.10)
flloc) =0, o) =10,

. . el 4 2L
where the prime denotes differentiation with respect to , and I = V,, i
vy

3. Numerical solution

Equations (2.8) and (2.9) can be written in the integral form

n
(3.1) ﬂ+ff=s+f+3/f@mn@h
0
7
(32) ?+ﬁJG=H+ﬁ+lﬂ*ﬂmfmeMm.
0

where § = f"(0) and H = 6'(0).

For n =00
1

(3.3) I+8=-3[ f%n)dy,
/

(34) H=—w+nPg[mmfmm»
0
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Forn=0
(3.5) f'(0) =2- 81,
(3.6) 6"(0) = Pr .

We return to the integral Eq. (3.1). By integrating this equation once more,
we get

n n
1 1
(3.7) f’+-2—f2=§I2+1+In+Sn+3/(/f’?(m)dm)dng.
0 0

The iteration algorithm has to be started by substituting on the right hand
side (RHS) as adequate zero-order approximation fj(n) for f'(n). By so doing,
the procedure is reduced to the sequential solution of the Riccati-type equations:

(38) B+ s fi=RES(fi.),  n=1,2 ...

We suggest for the initiating function of the iteration scheme the expression

(3.9) fo(n) =exp(—Sn),
yielding
(3.10) foln) = I+ [1_"‘"1’5(,“8”)].

By substituting this into the right hand side of Eq. (3.10) and by requiring
that the first iteration f) on the left-hand side satisfies the boundary conditions
(2.10), one obtains in the zero-order approximation

I+VI? +6
S=S="Y"", f1(0)=5.
The equation for the first-order iteration f; becomes
e 1 o 3 I? +6 3
+=-fi=1+-IF+|=I+ -
fitah 2 (2 3 . I+Vi +s)”

—( . ) (1-exp [- (14 VE¥8) 1]).

6+212 +2IVI?2 +6
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We now turn to solving the energy Eq. (2.9) by using f and f’ the zero-order
approximation. Introducing a new variable £ as

§=—Prexp(-S5n),

and substituting the solution for f into Eq. (2.9) gives

0%0 o L e .
(3.11) 63—62+|:1—PI' ——]3€+"}’9—0,
1+171 b E 59N N
where Pr* = (?—) Pr, v § with the approximation boundary conditions
0(—Pr) =1, 6(0)=0.

It can be readly demonstrated that the solution (3.11) in terms of Kummer’s
function [14] is

(3.12)

g [E)T M(P:* =4 P2 41, 6)
5 M (Pr* —«, Pr* —1, Pr*)

where

- z"
M(a, b, z) = Z—-’l—
— bn a!

an=a(e+1)(a+2) ... (a+n-1),
bn=bMb+1)(b+2) ... (b+n—-1).

The local dimensionless surface temperature gradient corresponding to
Eq.(3.2) is
Pr* (Pr* —y) M(Pr* —y+1, Pr* +2, —Pr*)

13) €'(0) = —Pr*
(218, <Aual Y TP ¥1)  M(PP —7, BF +1, —PP)

The accuracy of the numerical solutions has been verified - (for the case
I =0) - by comparing them with published results [7], (see Table 1).

Table 1. Results for — f”(0) for different values of |

1 0 0.2 0.4 0.6
77(0) 1.28181 1.37889 1.4839 1.59824
1.28180*

* results by ref. [7].
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4. Results and discussion

The shear stress on the surface is defined by

ou ; 1o
Tw=p= , (u is the viscosity)
dy y=0
.. U [Re 3EN i
(1) rw=u7 5 e (57) £00),

where f”(0) is the friction coefficient and Re = L U,/ v is the Reynolds number.
The total Nusselt number for heat transfer in the present case is defined by

Nu=:::?£ /(Tw_Too)}
ay y=0
Nu il Upz

Results for the dimensionless temperature profiles and Nusselt numbers are
obtained for various values of Prandtl numbers 0.72, 1, 3 and 10 for different
values of v and I. The nondimensional shear stress at the stretched surface
presented by Eq. (4.1) is shown in Table 1 for various values of I. It is clear from
the table that the friction coefficient increases as suction decreases. Also from
Fig. 1, it is seen that the velocity decreases with suction.

Table 2. Results for — #' (0) for different values of I, Pr and ~

— 6 (0)
Pr |y=-15 [vy=-10 [y=-05 |y=00 [4=10 |+y=30
0.0 | 0.72 | -0.304049 | 0.0 0.234344 0.434717 0.767778 1.274760
1.0 -0.377410 | 0.0 0.299874 0.549641 0.954779 1.560290
3.0 - 0.923855 | 0.0 0.634114 1.122090 1.869070 2.938530
10.0 | -2.200988 | 0.0 1.308610 2.257430 3.660370 5.628200
0.6 | 0.72 -0.235096 | 0.595220 0.7453955 | 1.014517 1.463863
1.0 -0.265921 | 0.802771 0.9872843 | 1.313957 1.851375
3.0 -290646 2.166029 2.4933760 | 3.063438 3.986393
10.0 -0.111818 | 6.560464 7.0727307 | 7.987197 9.518049
From Table 2, it is observed that for v = — 1 and no suction (I = 0 ), there

is no heat transfer between the continuous surface and themedium, and for
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v > -1 and I > 0 it was found that the heat is transferred to the moving surface.
For v > 0, I > 0 the heat is transferred from the surface to the medium.

From Fig. 2, it is clear that the suction decreases the thermal boundary layer.
In other words, the suction can be used as a means for cooling.

1
0.8
0.6 I=-0.6, 0, 0.6.
')
0.4 /
0.2

12 3 4 567 8
n

Fic. 1. Velocity profiles for various values
of suction

FiG. 2. Temperature profiles aganis 7 for
selected values of / at Pr=0.72

Sample of the boundary layer temperature for v = 1 are presented in Fig. 3.
The effect of Prandtl number is such that the thermal boundary layer decreases
sharply with increasing Prandtl number. Figure 4 is constructed to present the
effect of increasing vy (parameter of temperature) on temperature profile for Pr
= 0.72 and the heat is transferred from the continuously stretching surface to
the fluid medium.
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Fig. 3. Teperature profiles for /=0.6,
Pr=0.72 aty=-05,0, 1, 3.

1
0.8
68 Pr=0.72, 1,3, 10
0(n)
0.4 /
0.2

IR R e o
n
FiG. 4. Temperature profiles for /=0.6,
y=1, atPr=0.72, 1. 3, 10.

5. Conclusions

The heat transfer over an exponentially stretching continuous surface with
suction have been examined and compared with the well known results. The
heat transfer characteristics for the suction parameter I, temperature parameter
v and the Prandtl number are analyses. The magnitude of v in the presence
of suction affects the direction and quantity of heat flow. For vy = - 1 and no
suction (I = 0), there is no heat transfer occurring between the moving surface
and medium. In other words, the suction enhance heat transfer coefficient and
friction coefficient.

The suction can be used as means for cooling the moving continuous surface.

The thickness of the thermal boundary layer decreases with increasing pa-
rameter of temperature and suction for all the Prandtl number.
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