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Variational principles of bending problems of thin plates
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IN THIS PAPER, via the semi-inverse method proposed previously by the present au-
thor, a family of variational principles of bending problems of plates is derived directly
from their governing equations and boundary conditions, without using the Lagrange
multiplier method. In this method, an energy-like trial functional is constructed with
a certain unknown function, which can be identified step by step. A new generalized
variational principle is obtained.
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1. Introduction

CHIEN [1] STUDIED THE GENERALIZED variational principles with multi-variables
of bending problems of thin plates by means of the method of high-order La-
grange multipliers [2] and the involutory transformations, for the purpose of
reducing the order of differentiations for the variables in the minimum potential
energy principle and minimum complementary energy principle. Reissner gave
several generalizations for elasticity [3] and the plate theory (4], WasHizu [5]
suggested a functional to deal with the “corner forces” which appear on the edge
at the points of discontinuity of the torsibnal moments. Classification of various
variational theorems was given by CHIEN in [6].

In using the Lagrange multiplier method to eliminate the constraints, how-
ever, one might always come across variational crisis [1,2, 7-12] (some of La-
grange multipliers become zero during the process of variation, or some con-
straints can be eliminated even in the case the multiplier can be identified; in
some special cases, wrong field equations might be obtained after substituting
the identified multiplier into the augmented functional). We explained this phe-
nomenon in our previous publications [7,8,9,11] and pointed out in [12] that the
so-called variational crisis is the inherent attribution of the Lagrange multiplier
method. Several ways have been proposed to eliminate the crisis: a modified
Lagrange multiplier method is suggested in [10], and a semi-inverse method is
proposed in [13,14]. Some applications of the semi-inverse method can be found
in [15-17].
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It has been shown in [1] that we cannot obtain a generalized variational
principle by the Lagrange multiplier method due to the variational crisis ( see Eq.
(7.5) in [1]); in this paper, we apply the semi-inverse method [13,14] to derive a
family of generalized variational principles directly from the differential equations
and boundary conditions, and no variational crisis occurs due to absence of
Lagrange multipliers in our procedure.

2. Generalized variational principle of thin plate bending problems

The differential equation of deflection due to bending of a thin plate reads
[1,18]
I
D 1
where D is the flexural rigidity, f is the given lateral load, w is the lateral deflec-
tion of the plate. It can be seen clearly that the differential equation (2.1) requires
strong local differentiability (smoothness). While the variable in its correspond-
ing variational partner(see Eq. (2.2)) is in second order of differentiations, it can

be written in the form (the boundary conditions will be taken into consideration
at the end of this section)

(2.2) J(w) =//-{%(V2w)2-—gw}dxdy.

The field associated with w must be continuous and must possess continuous
second-order derivatives. In the context of finite elements, it is well known that
satisfaction of the continuity of the second-order derivatives across the element
boundaries is difficult to achieve [19]. So the high order of differentiation in the
variational functional (2.2) leads to complications in the finite element calcula-
tion, and consequently, inconveniences appear in numerical computations. For
the purpose of simplification in the finite element computation, we often intro-
duce some additional canonical variables by means of involutory transformations
[1] to reduce the order of differentiations. According to CHIEN [1], we have the
following transformations:

(2.1) ViV2w =

(2.3) Po = Wa,
(24) kaﬁ = —Waf,
1
(2.5) Wap = 5(a,s +¢pa);
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(2.6) Qa = Map,p,

(2.7) Maﬁ = Daﬁuék*ﬂia

where the Greek indices are the dummy indices taking the values 1 or 2, w o3 =
02u1/8$08mg, w,qo is the slope of the deflection surface, Q, and M,p are the
shearing force and the bending moment, respectively.

The equilibrium equation (2.1) can be rewritten in the form

(2.8) Mag,as + f =0.

As illustrated in [1], it is difficult to search for a generalized variational prin-
ciple with five sets of independent variations (w, @qa, kag, Mag, Qa) by Lagrange
multipliers. However, it is a straightforward approach to deduce various gener-
alized variational principles by the semi-inverse method [13, 14].

In order to establish a generalized variational principle with five sets of in-
dependent variations (w, @q, kag, Mg, Qa), whose stationary conditions satisfy
the field equations (2.3), (2.5), (2.6), (2.7) and (2.8), we can construct a trial
functional in the form

)
(29) J(ws ‘pnvkaﬁs Maﬁs Qn) = // (§Daﬁu6kn,@ku6 = F)dxdy

Note: Egs. (2.4) are still considered as constraints.

There exist other ways to construct the trial functionals, details can be found
in the [13,14]. Let us illustrate the procedure of identification of the unknown
function F' step by step.

STEP 1

Taking variation with respect with kqg, i.e.

8 = / / (Daguskys + OF/5kop)dkagdzdy = 0,

we have the following trial Euler equation:

oF
(210)1 D(‘rﬁuﬁkmj R Os
6kn3
where dF/dp = OF [0p — (0F/0¢p,q) « is called the variational derivative.
The above trial Euler equation (2.10); should satisfy Eq. (2.7), accordingly
we can set

oF

91 Lo
( 0)2 5kaﬁ af
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The unknown F' can be preliminarily identified as follows:
(2.11) F = —kogMos + f.

The trial functional (2.9), therefore, can be rewritten as follows:

1
(2.12) i / f (5 Daguskaghvs — kagMap + f)dsdy,

where f is a newly introduced unknown, and should be, in general, free of the
variations kqg and their derivatives.

STEP 2

By the same manipulation as that used in STEP 1, we can obtain the following
trial Euler equations for 6 M,g.

of

SMap &

(2.13); 0Map : — kap +

We assume that the above Euler equations (2.13); satisfy the field equations
(2.5), and in view of constraints (2.4), the above trial Euler equations reduce to

of 1
6Maﬁ ==Weap= —5(‘100,5 o ‘Pﬁ,a)-

(2.13)9

Thus we can preliminarily identify the unknown fas follows:

(2.14); [ = —0asMag + g1,
or
(2.14), f=0aMugp+ 92,

or in a more general form
(2.14)3 f = —mpsgMag +npaMapp+g, with m+n=1,

where ¢, g1 and g, are unknowns to be determined later, and they should be
expressed by the functions w, @,, Q. and/or their derivatives.
Substituting (2.14)3 into (2.12) we obtain a modified trial functional

1
(215) T = [ [ (GDasushaskys — hasMas — mipasMas +npaMap,s +9)dady.
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STEP 3
Continually we have the following trial Euler equations for d¢pq:

(2.16); 0pa (m+n)Mapp + ff; =0,

which should satisfy the equations (2.6); therefore we have

dg
(2.16)2 P —Qa-

From above relation, we can express the unknown g as follows:

(2.1?) gi= —QaPa + h,

where h is a newly introduced unknown to be determined later, and should in
general be expressed as w, Qo and/or their derivatives.

STEP 4

Substituting (2.17) in (2.15) to modify the trial functional, making the mod-
ified trial functional stationary with respect to Q,, we have

(2.18); 0Qq :

which should satisfy the equations (2.3); accordingly, we have

oh
(218)2 -(E: = W a,
(219) h= Qaw,a -+ hf)

where A’ is an unknown to be determined, and should be only the function of w
and/or its derivative.

STEP 5

Substituting (2.19) into the last modified trial functional, finally we can ob-
tain the last trial Euler equations:

(2.20), ow : Qo+ 3 =0,

which should satisfy Eq.(2.8). In view of (2.6), we have
oh' =

(2‘2{])2 E = Ma,@,aﬁ = _f'}

(2.21) h = —fw.
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Finally we obtain the following functional:

(2.22), J= /f Ldzdy,

in which
1 !
(2.22); L= §Da{iuékaﬁku6 — fw — Mag(kag + mpa,g)

+ npaMag,s — Qala — wa),

and where m and n are arbitrary constants with m + n=1. It follows that the
continuity requirements for the variables in (2.22) are less stringent. The presence
of free parameters (m and n) offers an opportunity for a systematic derivation
of the energy-balanced finite elements [15].

Next we will illustrate how to use the semi-inverse method to eliminate the
constraints of boundary conditions. The boundary conditions usually encoun-
tered are given below,

(2.23) Hn — .Hn, on I-‘g

(2.24) w=w, on [y

where Hy, = Qn + My;, and I' =T’y + Iy, covers the complete boundary.
To eliminate the constrains (2.23) and (2.24) , we construct a trial functional
as follows:

(2.25), Jaovp =//ﬂdzdy+/GdS+deS,
Lo

w

where G and P are unknowns to be determined, and L is defined as (by setting
m =1, n=0 in (2.22),)

=)l »
(2-25]2 L= §Dnﬁu6kaﬁku6 = fw 2 Maﬁ(kaﬁ i ‘Pa,ﬁ} = Qa(‘pn — w,a)‘

With the help of Green’s theorem, on the boundary I'; we have following
trial Euler equations:

ow
(2.27) dps : ac = My,
0ps
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G
.) e — T -
(2.28) 6Mps i 3= =0

The above trial Euler equations should satisfy the boundary conditions (2.23)
or the identities including the equations (2.3)-(2.8).
In view of (2.23), from (2.26) we have

5G

===

(229) (E . Mns.s]'

Accordingly, the unknown G can be written as follows:
(2.30) G = —Hw — Mp,ws + Gy,

in which Gy should be free of w or its derivatives.
In combination with (2.28), and in view of (2.3), we obtain

6Gy E
(2.31) oM. W,s =Py

From (2.27) and (2.31) we can determine the unknown G, as follows:

(2.32) Gi = Musips.

Therefore we have finally identified the unknown G which is written in the
form

(2.33) G = —Hw — Mps(w,s — @s).

Using the same procedure we have the following trial Euler equations on the
boundary I'y:

(2.34) fu: 00 = —Qn,
(2.35) dips ;Z =Msq,
(2.36) 500 : aéci =5
(2.37) LT Jj; =0,
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From (2.34) and (2.35), we determine the unknown P as follows:
(238) P = —Qpw + Mpsps + Py,

where P; should be free of w and ¢, or their derivatives; if not, the unknown P
should be determined again.

In combination with (2.36), and in view of the boundary conditions (2.24),
we have

(2.39) ggl =w=1,
(2.40) P = Qo+ P

Substituting (2.38) and (2.40) into (2.36), we obtain

OP
2.41 Sl me S
( ) aMns (ps w,s

We temporarily express the unknown P, as follows:

(2.42) P, = —me,s + P3.

It should be stressed that in P, there exist the terms involving w4, therefore
the unknown P should be determined again. The unknown P can be rewritten
as follows:

(2.43) P = _Qn(w _— !I’) + Mns((ps - w,a) + P‘?”

where P3 should be expressed as w or its derivative.
Substituting (2.43) into (2.33), and in view of (2.34), we obtain:

0P

Sw

(2.44) = _Mns‘s-

Accordingly, the unknown Pj can be written, in general, as follows:

(2.45) Py = —My; s(w — w).

It can be proved that such unknown Pj satisfies, in view of equations (2.3)
and (2.24), the equations (2.37). Finally we obtain the following generalized
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variational principle

(2.46) Jgvp = // Ldzdy + / {-H’w - Mps(w,s — &ps)}dS
e

+ / {"(Qn + Mns,s)(w = 'lI-’) + Mps(ps — w‘s)}dS.
Mw

where L is defined by Eq.(2.25)s.

P r oo f. Making the above functional stationary, we have the following
Euler’s equations:
0kap : equations (2.7);

OMog : Kag + @ap = 0;
dQ4 : equations (2.3);
d¢pq : equations (2.6);
dw : equations (2.8);

on the I'y:
dw : equation (2.23);
6(,0_., ; "Mna + Mns = 0;
IMps i ws — s =0;
on the I'y:

ow:Qn—Qn=0;
0ps : —Mpg + Mps = 0;
0Qy, : equation (2.24);
OMps : —(w — )5 + (ps —w,s) = 0.

It can be clearly seen that on the boundary, some of Euler equations are
identities or they satisfy the boundary conditions or they have been already
derived as Euler equations in the process of variation.

Let us consider the singular points where M, is discontinuous. The singular
corner might exist on the surface I'y, or I'; or at I';, NT',. In this paper, we only
discuss the later case. We assume that on the boundary, the corner exists at
transition points from I'y to I'y, and wice versa, while all the remaining parts of
the boundary are assumed to be smooth.
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1

Fic. 1. Singular point

By a similar analysis, we can transform Eq. (2.45) into another functional

(2.47) Jovp = / / Ldzdy + / {—Hw — Mys(w,s — ¢,) }dS
I'o

y 2 / {"(Qn = Mns.s)(w i ﬁ’} + Mps(ps — w.s)}ds

I'w

—_ Z —‘HJ Qn‘}‘ﬁ’-rnss_gn)

" : ]
IMu

where Hy, = Qn + Myss, and the notation 37 (-)(-)||, has the same meaning as
that in [6,18], which means summation over all the I',. If Eq. (2.23) is replaced
by

(2.48) M,;=M,,, onTl,

then the last term at the right-hand side of Eq. (2.46) should be replaced by

"Z nc Mns) u

From the generalized variational principle (2.46), various variational princi-
ples with smaller number of independent variables can be readily obtained by
constraining the functional (2.46) by some field equations or boundary condi-
tions. For example, enforcing the functional (2.46) by the field equation (2.3)
results in a new functional, which reads

(2 49 J| /f { n{iuékadﬂyﬁ - fw — ﬂf(n;( ‘af T Pa,f d]}dl‘d?j + 1B,
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where

(2.49), IB = / {—Hw — Mps(w,s — @) }dS

e

) / {"(Qn H: Mns,s)(w = ’JJ) + Mns((Ps = w,x)}ds-
Mo

The functional (2.49); is under constraints of the Eqs. (2.3) and (2.4).
Constraining the functional (2.47) by the Eq. (2.4), we obtain

1 o
(2.50) Jp = / / {ipt,;,,,ﬁkuﬁk,,ﬁ = fw}dxdy +1IB,

which is in agreement with the Eq. (2.2).

3. Conclusion

In this paper, the author has systematically discussed the semi-inverse method
of establishing generalized variational principles in thin plate bending problems.
The variational model can be readily obtained without any variational crisis. A
family of generalized variational principles can be readily obtained by specifying
the parameters m and n. The Lagrange function (2.22);, as far as the author
knows, has never appeared in any literature.
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