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Semi-inverse solutions in nonlinear theory of elastic shells
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THE SEMI-INVERSE METHOD is applied to the solution of static problems in the non-
linear theory of elastic shells. This method consists in construction of particular
solutions in such a way that the initial system of equations is reduced to a system of
a smaller number of independent variables. Two nonlinear models, one of the Love
type and another of the Cosserat type, are considered. For these models, several
two-parameter families of finite deformations are found; then the system of partial
differential equations of equilibrium reduces to a system of nonlinear ordinary differ-
ential equations. The semi-inverse solutions found are valid for prismatic and toroidal
shells, as well as for shells of revolution. These solutions are of practical significance.
They describe torsion of a prismatic shell under large angles of twist, strong flexure
of a thin-walled cylinder of arbitrary cross-section, spatial bending of a shell having
the shape of a sector of a surface of revolution, straightening of a toroidal shell to a
cylindrical surface, and some other types of large deformations.

1. Basic statements

Let o be the reference (undeformed) surface of a shell. We refer the position
vector of a particle of o to Gaussian coordinates ¢* (o = 1,2) and r(¢},¢%) =
T11) + Totg + z313. Here, zx (k = 1,2,3) are Cartesian coordinates of a point of
o, and 2 (k = 1,2,3) is a fixed orthonormal basis. The coefficients of the first
and the second fundamental forms of the surface o are
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where m — is a unit normal to o and &4 is the Kronecker symbol.
The surface X of the shell after deformation is referred to the coordinates ¢®
as well, and the position of a particle of ¥ is described by the position vector
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600 L. M. ZuBov

R(q',¢%) = X141 + Xo43 + X3i3, Xj being the Cartesian coordinates of the point
of the surface ¥ whose normal vector is IV,
The components of the fundamental forms of X are

R JdN
GaﬁzRa'Rﬂ1 80;3:'3_"3"'N=_Ra"6—§)
( OR
RQ=W, R .R,=02, RP.N=0.

First we consider the model of a nonlinearly elastic shell of the Love type
(KOITER (1], PIETRASZKIEWICZ [2,3], GALIMOV [4] and ZuBOV [5]). The equa-
tions of equilibrium of the shell expressed in terms of the stress and couple
resultants are

Vo(®® — u®B?) — Bl u® + FP =0, (B=1,2),
(1.3) VaVsu®? + Bog(v®® — Bu®) + F =0,
F=F.N, FP=F.RP, Bf=B,;G*, G* =R°R,

where F is the vector intensity of the force load on ¥, v*® and u®? are the
resultant stress and couple tensors, respectively, and V, is the symbol of the
covariant derivative in the metric G4g. The constitutive equations take the form

o [Con_ W G o W
g aGaﬁ, q chxﬁ’

(1.4) G =GGy — G%m g9=g1192 — 9:1221
_ )L, a=p
=Y ‘nuip

For a homogeneous isotropic shell, its specific (per unit area of surface o) poten-
tial energy of deformation W is a function of the following nine variables:

gaﬁbo,@s gaﬁGa& QGﬁBaﬁa (bllb'z'z —b?g}/g, G/Q,
(1.5) (BuBz — Biy)/g, b*Gap, b Bap, 99"’ GayBps,
b8 = g*%gPrbgs, P =1f.rh,
Suppose that 0%, the edge of the shell in the deformed configuration, is

loaded by a distributed force of linear density Q@ = Q® R, + QN and distributed
moment of linear density d x IN. Now the boundary conditions take the form
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‘/gma(v“ﬂ —2Bfu*%) = £(Q® - BS)d*), (B=1,2),

|G af
—Mam = d®,
(1.6) P Bl EMg
|G g  d |G d
o af -2_4 af | — -1_4
5 mgVap™ + o ( “—g e T mgGasp ) £Q + P (E T dg) .

d=d°R, =dgR?, m=mar®, 7= r5, €= /T%75Gp.

Here m and 7 are the unit normal vector and the unit tangent vector to the
boundary contour do in the undeformed configuration of the shell, and s is the
length parameter of do.

In what follows, we shall consider particular exact solutions of the equilibrium
equations (1.3). These solutions refer to shells of certain geometries. The solu-
tions constitute some families (classes) of finite deformation for which the initial
nonlinear system of partial differential equations of two independent variables,
q*,¢°, reduces to a system of ordinary differential equations whose unknown
functions are functions of only one variable.

2. Spatial bending of a cylindrical shell

Suppose that a shell in the reference configuration is a cylindrical surface
with its generator parallel to the zj-axis. The cross-section of the surface by
the plane zsz3 is an arbitrary closed or nonclosed curve having no points of
self-intersection. Its equation is given by functions z;(s) and z3(s), s being the
length parameter of the curve. Let us take the Gaussian coordinates ¢' = z, and
g% = s. Let a prime denote a derivative with respect to s. We have

(2.1) ri=1%, o= 2:'23.2 = '1:313

It follows that the quantities go3 and byg do not depend on z;. Let us consider
the following family of deformations of a cylindrical shell:

X1 = y(s)sin(az; + A(s)),
(2.2) Xo = a(s) + lzy,
X3 = (s) cos(azy + A(s)),

where a and [ are constants and .y, and A are functions of one variable. When
l = X = 0, the formulae (2.2) describe bending of the shell in the plane z,z3
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such that each generator of the cylinder becomes a part of a circumference. If
l # 0 and X # 0, the generator is a helical line. Using (2.2) we find that

Ry = ay(s)e1 +liz, Rp=1y(s)N(s)e1 +d/(s)iz +7(s)es,
(2.3) e, = 1) cos(az) + A(s)) — 3 sin(az; + A(s)),

es = 1) sin(az; + A(s)) + %3 cos(az; + A(s)),

N = Ni(s)e; + Na(s)iz + N3(s)es,

R, R, OR, y
(2.4) a—ql=a'}‘e3, 5(}7=W=a7e1—a7)~63,
86_‘!;'22 = (Q‘TIAI + 'TA”)E[ + 0‘”1:2 + (T" s - ’Y)tm)e?w)

The vectors ey, i3, e3 constitute an orthonormal basis. With regard to (1.2)
and (2.3) we can conclude that the quantities G, Bag do not depend on z;.
The Christoffel symbols I‘EJ that participate in the covariant derivatives V, also
depend only on the length parameter s. For an isotropic homogeneous shell, by
(1.4) and (1.5), the tensors v®? and ®? are functions of s only. Let us suppose
that the external surface load F?, F', as well as for a nonclosed cylinder the forces
Qgs,Q,d" acting on the direct edges of the shell s = s; and s = s, do not depend
on z1. Now the equilibrium equations (1.3) supplemented with the boundary
conditions (1.6) at s = s; and s = s9 constitute a nonlinear boundary value
problem for a system of ordinary differential equations with unknown functions
a(s),v(s) and A(s). When [ = A(s) = 0 we have G2 = By = v'2 = p'? = 0.
Under conditions F! = 0 and Q' = d' = 0, one of the equations of equilibrium
(1.3) as well as one of the boundary conditions (1.6) is satisfied identically.

3. Twisting of a cylindrical shell

Let us change the Cartesian coordinates z; to the cylindrical coordinates
r,p,z using the formulae z; = rcosyp,z9 = rsing,r3 = 2, and consider a
prismatic cylindrical shell whose generator lines are parallel to the z-axis. The
curve in the cross-section of the surface o by the plane z = const will be defined
by the function r = r(p). We take ¢! = z,¢> = ¢ as the Gaussian coordinates
on 0. Now we have

ry=13, To=r'e,+ T€p, r' = dr/dyp,
(3.1) er =11 Co8¢p + 128Ny, e, = —%;8iny + i3 cos ¢,

gin=1, g12=0, gx= r'? +r2,
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Let us denote by R, @, Z the cylindrical coordinates of a point of the deformed
surface ¥ so that X; = Rcos®, X, = Rsin®, X3 = Z. Consider the following
family of deformations of a cylindrical shell:

R = R(p),
, & =
(3.2) @ + ¥z +v(p),
Z = az+ap+ w(yp),
¥,a,a = const .

These formulae describe torsion of the shell with the angle of twist %, longi-
tudinal stretching, and longitudinal shift. In this, the cross-section of the shell,
z = const, has a deplanation characterized by function w; besides it is deformed
in its plane what is described by the functions R(¢) and v(¢). When the shell
is deformed according to (3.2), the generators of the initially cylindrical surface
become helical lines. If the cross-section of the shell is a closed line, the functions
R,v, and w must be 27-periodic, and the quantity 27a is equal to the modulus
of the Burgers vector of a screw dislocation.

By (3.2) we have

R, = ai3 +YRey, Ry = (a+w')iz+ Reg+ R(1+v)eq,

JR OR
—1—1 = —’Rep, —21 = B—Rf = —ypR(1 +v')er + Y R'eq,
(3.3) dq d¢*  Oq
3R2 " "2 " ’ i ":
i [R" — R(1+v')’ler + [Rv" + 2R'(1 + v')]es + w3,
ep =11 cosP+128in®, ey = —1;8inP + 25 cos P,
(34 G = +¢?R%, Gy =ala+w') +YR*(1 +v'),

Gor = (a + w")z + R2(1 = 'U")2 + R2

From (3.3),(3.4) it follows that the quantities Gug,Bag,FgA do not depend
on z. Thus, for an isotropic homogeneous shell, (1.3) is a system of ordinary
differential equations with respect to the unknown functions R(g),v(¢), w(p).
Here, the components of external surface forces F'®, F' and edge load Q, Q%,d®
at ¢ = ¢ and ¢ = ¢, (for an open shell) should not depend on z.

If ¢ is a sector of a circular cylindrical shell, at F® = 0, the above system
has the simple solution

(3.5) R=Ry, v(p)=Ap, w(p)=0, Ro,A=const.
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Let us consider the problem of a screw dislocation in a closed circular cylin-
drical shell which in the initial state, before dislocation, has the radius rg. It
is easy to verify with the use of (3.1) and (3.4) that there is an isometric de-
formation (it is the bending) of the cylindrical surface that is defined by the
formulae

R(p) = Ro = |/} — a2,

(@) =0, w(p)=0
(3.6) 4 a?
a0t N el
Tg\,l‘r‘g———GQ L}

By (3.6), the cylinder is twisted and its radius decreases. Deformation (3.6) is
a solution of the equilibrium equations (1.3) for a momentless elastic shell when
the external forces are absent. Indeed, now, due to the momentless state of the
shell, u®¥ = 0 and v*? = 0 since the deformation is isometric. For a sufficiently
thin shell the assumption that the shell is momentless is quite accurate.

4. Bending, shifting, and twisting of a sector of a shell of revolution

Let the surface o be a surface of revolution or a sector thereof. Let the
equation of the meridian in cylindrical coordinates r, ¢,z be r = r(z). As the
Gaussian coordinates we take ¢! = z,¢* = ¢. For the reference configuration we
have

(4.1) T = r’e, +13, To= T€y.

Let us consider the following family of deformations using the circular cylin-
drical coordinates r,p,z and R, ®, Z:

(4.2) R=R(z), ®=Kp+8(z), Z=Ilp+v(z), K,l=-const.
By (4.2) we find that

Rl = R'en + R,B’e‘b + ‘Y"«':g,, R2 = KREd) + h:g,
N =N, (z)eR e Nz(z)eq> = N3(Z)‘i3,

i %—? = (R" — Rf?)er + (2R'B' + RB")es + 7"13,
%—?—2]— = %?13 =—-KRB'er+ KR'ey,
8R2 2
‘&a" =-K RER.
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It follows that the coefficients of the quadratic forms G,g,Bes and the
Christoffel symbols F?A for the surface £ do not depend on . Thus for an
isotropic homogeneous shell, the stress and couple resultants v*? and p®? are
functions of one variable z and now equations (1.3) are ordinary differential equa-
tions with respect to the unknown functions R(z), B(z),v(2) if the loads F?, F
do not depend on ¢. Expressions (4.2) include the following important particular
deformations:

1. K = 1,1 = 0 corresponds to twisting and axisymmetrical deformation of

a shell of revolution. This special case of the semi-inverse solution (4.2)
was found earlier by ZuBov [5]. The results of numerical solution of the
problem of twisting and inflation of a shell of revolution made of highly-
elastic material are presented by ZuBov and OVSEENKO [6].

2. K = —1,l = 0 corresponds to the twisting and axisymmetrical deformation
of a shell of revolution that is turned inside out.

3. K > 0,0l =0 corresponds to the twisting and axisymmetrical deformation
of a shell with a disclination. If | = 0, 8(2) = 0 then twisting of the shell is
absent. Now G1g = Bya = 0,2 = '? = 0 and if F? = 0, then one of the
three equations of equilibrium in (1.3) is satisfied identically.

5. Straightening and twisting of a sector of a shell of revolution

Let the equations of the meridian of the surface of revolution be r = r(s),z =
z(s), where 7, ¢, z are cylindrical coordinates in space, s is the length parameter
of the meridian, and ¢' = s, ¢? = @ are taken as the Gaussian coordinates. Using
the Cartesian coordinates of the deformed surface X; we define the following
deformation of the shell:

X1 = u(s) sinne + v(s) cos ne,
Xz = &p + w(s),
X3 = u(s) cosnp — v(s) sinnp,
&,7 = const .

By (5.1), we obtain

r =re; + 243, ry=re,,
Ry =v'h; +w'is + uh;, Ry = nuh, + ety — nuha,
hy =1, cosnp — t3sinnp, hg = i, sinnp + 23 cos Ny,
N = Ni(s)hy + Na(s)iz + N3(s)hs,

http://rcin.org.pl



606 L. M. ZuBov

aa—ji =v"hy + w"iy + u"h3,
IR OR
(5.2) _56% = “a—q-lg = nu'hy — ' hs,
86—1:22 = —?’]2110'31 — T}z‘u.h3.

Using (5.2) we can prove that the quantities Gog, Bag, v*%, %, T%; do not
depend on ¢. Let F# F in (1.3) be independent of ¢. Then we again obtain a
system of ordinary differential equations with respect to u(s),»(s),w(s).

The case n = 0,w(s) = 0 in (5.1) corresponds to the deformation of unbend-
ing (straightening) without twisting of a sector of the shell of revolution into a
cylindrical surface. Now Go = By = v!2 = u!? = 0, and if F2 = 0, then one of
the three equilibrium equations (1.3) is satisfied identically.

A careful analysis of the above semi-inverse solutions (2.2),(3.2),(4.2), and
(5.1) shows that the assumption of homogeneity of the shell is not necessary. It
is sufficient if the shell is homogeneous along only one coordinate. This means
that, besides the arguments (1.5), the specific energy of the shell, W, can also
depend explicitly on one of the coordinates ¢' or ¢2.

6. Semi-inverse solutions for elastic shells of the Cosserats type

Unlike the classical model of the Love type employed above, in the Cosserats
theory of a shell, a particle of the surface ¥ is characterized not only by its
position in space R(q", ¢?) but by its orientation given by the rotation H(q', ¢*),
where H is a proper orthogonal tensor. The equilibrium equations of a shell of
the Cosserats type are ZHILIN [7] and ZuBov (8]

(6.1) div(P-H)+ f=0, div(K -H)+[(gradR)T-P-H]x +1=0,

_ 0W(U,L) _OW(U,L)
(6.2) P= 30 K= — L
1 JH
Iy o= A o Sy
U= (gradR) -H", 5" ®(3qﬂ= H)X,
(6.3)

s ot 200 e OB
grad¥ =r ®3"’ div¥ = 5
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Here W is the specific energy of the shell, U the surface stretch tensor, L is
the surface bending tensor, f is the vector intensity of the force load on o, 1 is
the vector intensity of the couple load on o, and P and K are the resultant stress
and couple tensors, respectively. The symbol A, denotes a vector invariant of
the second order of the tensor A.

Equations (6.1) can be transformed to a form that is more appropriate for
us:

divP — (PT .- L)y + f* =0, divK— (KT .-L+PT.U),+1"=0,
(6.4)
ft_:f_HT, l‘=!'HT.

Since in the Cosserats-type shell the field of rotations H(q', ¢?) is kinemati-
cally independent of the field of displacements of the surface ¢, the above semi-
inverse solutions (2.2), (3.2), (4.2), and (5.1) should be supplemented with the
field of rotation H. These expressions will be written out for each of the four
families of semi-inverse solutions.

Spatial bending of a cylindrical shell:

(6.5) H(s,z1) = Hpa(8)tm @ &5, (m,n=1,2,3),
ey = tg.

From (2.2), (6.3) and (6.5) we obtain

U= Umn(s)im D, L= Lmn(s)im ® ip.
Torsion of a cylindrical shell:

(66) H('\P1 Z) = Hmn(‘P)afm ® Ap,

a=e, ar=e, az=1t3, A =ep Arx=ep, A3z=i1;.

From (3.2), (6.3) and (6.6) we obtain
U = Unn(p)am ® @n, L = Lnn(p)am ® an.
Bending, shifting, and twisting of a sector of a shell of revolution:
(6.7) H(z,p) = Hu(z)a, ® Ay,  (p,t =1,2,3).
From (4.2), (6.3) and (6.7) we obtain

U="Uy(z)ap®a;, L= Ly(z)a,® ay.
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Straightening and twisting of a sector of a shell of revolution:
(6.8) H(s, ) = Hp(s)ap ® hy, hy = 49
From (5.1), (6.3) and (6.8) we obtain
U =Up(s)ay®a;, L=Ly(s)a,® ay.
In (6.5)-(6.8) Hyp and Hpy are the proper orthogonal matrixes.
Notice that in a general case, the potential energy of deformation W of the
shell dependes on the tensors U and L, and some parameters, being fixed during

the deformation process. These parameters may depend upon the coordinates
q',q*. Therefore, the grad W, in general, is not coincided with the vector

oy (OW U" oW oLt
ou  0q™ oL 8q* )
If the relation

BW (‘ij“ + 6W 8Lmn
aUmn aff:] aLmn 3:81

(6.9) iy grad W =

is satisfied, then we shall call the cylindrical shell of the Cosserat type the ho-
mogeneous along the coordinate ), count of along the cylinder generator.
If the relation

OW U, = OW Ly

6.10 e, grad W =
16:10) KSprogts Uy Op 0Ly Op

is satisfied, then we shall call the shell of revolution of the Cosserat type homo-
geneous along the coordinate ¢.

We see that for deformations described by (2.2), (3.2), (4.2), (5.1) and (6.5)-
(6.8), the components of the tensors U, L depend on one variable only. If the shell
is homogeneous along a coordinate then, by (6.2), (6.9) and (6.10), this is also
valid for quantities Ppy = & P2, Kipn = 2 K-4y, Py = ap-P-ay and Ky =
a, - K -a;. Thus, under the condition that the components of the external loads
i f* 41", ap- f* and a, -1 depend on only one coordinate, the equilibrium
equations (6.4) are ordinary differential equations. In these systems of equations,
besides the unknown functions participating in equations (2.2), (3.2), (4.2), and
(5.1), the proper orthogonal matrixes Hy,pn, Hp, from the relations (6.5)-(6.8)
appear as unknowns.
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7. Conclusions

In the conclusion we would like to emphasize that a set of one-dimensional
deformations of nonlinear elastic shells is analysed in monographs of ANTMAN
[9] and LiBA1 and SiMMONDS [10]. The solutions describing pure bending of a
cylindrical shell, torsion, inflation and extension of a circular tube, eversion of
a spherical shell, axisymmetric deformation of shells of revolution are contained
there as well as some other kinds of deformations. Two-parameter families of
solutions (2.2), (3.2), (4.2), and (5.1) represented in our paper contain a much
wider class of one-dimensional deformations of shells than those of ANTMAN [9]
and LiBAI and SIMMONDS [10]. The statements (2.2), (3.2), (4.2), and (5.1) in
particular, contain the following new one-dimensional deformations: twisting of
a cylindrical shell with a dislocation, straightening and twisting of a sector of a
shell of revolution, eversion and twisting of shells of revolution, formation of a
disclination in a shell of revolution.

Such statements as (6.5)-(6.8) being constructed for the rotation fields corre-
sponding to one-dimensional deformations of the shells of the Cosserat type are
also obtained for the first time.
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