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THIS WORK PROVIDES a consistent and systematic framework for the gradient ap-
proach in coupled damage-plasticity that enables one to better understand the effects
of material inhomogeneity on the macroscopic behavior and the material instabilities.
The idea of multiple scale effects is made more general and complete by introduc-
ing damage and plasticity internal state variables and the corresponding gradients
at both the macro and mesoscale levels. The mesoscale gradient approach allows one
to obtain more precise characterization of the nonlinearity in the damage distribu-
tion; to address issues such as lack of statistical homogeneous state variables at the
macroscale level such as debonding of fibers in composite materials, crack, voids, ete.,
and to address nonlocal influences associated with crack interaction. The macroscale
gradients allow one to address non-local behavior of materials and interpret the collec-
tive behavior of defects such as dislocations and cracks. The development of evolution
equations for plasticity and damage is treated in a similar mathematical approach
and formulation since both address defects such as dislocations for the former and
cracks/voids for the latter. Computational issues of the gradient approach are intro-
duced in a form that can be applied using the finite element approach.

1. Introduction

ENGINEERING MATERIALS contain defects that lead in some cases to specific pat-
tern formation due to a coupling of inelastic mechanisms of microcrack and mi-
crovoid growth with plastic flow and fracture. Initially, loading of heterogeneous
materials causes non-interacting microcracks and microvoids; however, experi-
mental observations indicate that further loading will cause failure mechanisms
to occur at localized zones of plasticity and damage where a lot of interaction
and coalescence of microcracks and microvoids take place. These interactions
lead to a degradation of the global stiffness and to a subsequent decrease of
the load carrying capacity of the material. As damage localizes over a narrow
region of the continuum, the characteristic length scale governing the variations
of damage falls far below the scale of the state variables of strain and damage
used to describe the response of the continuum. This leads to the case where the
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wavelength of the damage distribution is predicted to be much smaller than the
size of the material heterogeneities [1].

The classical local approach does not adequately capture a decreased length
scale, and it is therefore necessary to look for alternative strategies for the solu-
tion of the problem such as micromechanical characterization, Cosserat continua,
and nonlocal approaches. In the case of the nonlocal approach, a common pro-
cedure is to introduce the nonlocal terms either through an integral equation [2]
or through a gradient equation [3].

Localization problems due to plasticity and damage can be handled by us-
ing the gradient approach at the macroscale. However, it is observed that for a
given value of macroscopic damage variable variation, the macroscale response
function associated with the representative volume elements (RVE) consisting
of different distributions of defects are attributable to the differences in the size,
orientation, and spatial distribution of defects within the RVEs. These are im-
portant factors that make the evolution function statistically inhomogeneous
below the RVE scale. Macroscale strain and damage gradient approaches can-
not capture this sub-representative volume element (SRVE) length-scale effect.
Lacy et. al. [4] proposed a mesoscale gradient approach in order to obtain more
precise characterization of the nonlinearity in the damage distribution, nonlocal
influences associated with crack interaction, and statistical inhomogeneity of the
evolution related damage variables.

Damage and plasticity internal state variables and the corresponding gradi-
ents at both the macro and mesoscale levels are introduced. By including both
internal state variables of plasticity and damage, this work provides sufficient
details of defects and their interaction to characterize physically the material
behavior. By incorporating the gradient of these internal state variables, this
work also addresses the non-local effects. The combined coupled concept of in-
troducing gradients at the mesoscale and macroscale enables one to address two
issues simultaneously. The mesoscale gradients allow one to address such issues
as lack of statistical homogeneous state variables at the macroscale level such as
debonding of fibers in composite materials, crack, voids, etc. On the other hand,
the macroscale gradients allow one to address non-local behavior of materials
and interpret the collective behavior of defects such as dislocations and cracks.
This coupled proposed gradients formulation allows one to model size-dependent
behavior of the materials together with localization.

2. Gradient model using non-local internal state variables

In order to introduce long-range microstructural interaction, the stress re-
sponse at a material point is assumed to depend on the state of its neighborhood
in addition to the state of the point itself. The use of nonlocal continua theory is
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made in order to achieve that. KUHL et. al. [5] and MUHLHAUS and AIFANTIS [6]
have derived a gradient continuum enhancement as a special case of the general
concept of nonlocal continua. At the position x, the nonlocal tensor A can be
expressed as the weighted average of its local counterpart A over a surrounding
volume V' at a small distance |(| < L, from x such that

(2.1) =~/h A(x+¢)d

where L, is an internal characteristic length [6] and h(() is a weight function that
decays smoothly with distance and in this work is given by h({) = I h({)where I
is an identity tensor. However, the identity tensor I may be suitably substituted
by another tensor in order to induce further anisotropic behavior of the material.

The local tensor A in Eq. (2.1) can be approximated by a Taylor expansion
at ¢ = 0 such that:

(2.2) A(x+¢) = A(x) + VA(x)( + %VQA(x)CC + %V:"A(x)(jcc +

where 7' denotes the i-th order gradient operator. Assuming only an isotropic
influence of the averaging equation, the integrals of the odd terms in Eq. (2.2)
vanish. Furthermore, making use of Eqgs. (2.1) and (2.2) and truncating the
TAYLOR series after the quadratic term, leads to the following expression for the
nonlocal tensor A [5]:

(2.3) = —/h{g (x)dV + 2111/ h(C)V2A(x)CCAV.

v

This relation can be expressed as a partial differential equation such that [5]:
(2.4) A=A+ ﬁ f [R()]¢CAV | VEA = A +aV?A
v

where %J[h((]]dV = 1. In Eq. (2.4), a is a constant proportional to a length

squared and weights each component of the gradient term identically. If one as-
sumes a more general tensorial character for h not necessarily confined to the
expression in terms of an identity tensor, then one obtains a different weighting
of the individual coefficients. This will give a weighting function with a tensorial
nature a containing several different integration constants a;;. We have thus in-
troduced the gradient term as72 A as an approximation of the difference between
the nonlocal tensor A at x and the local tensor A at x
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A similar expression for the non-local internal variable A may be obtained
at the mesoscale to characterize interface damage such as debonding of the fiber
from the matrix such that A = A + ay A This allows one to describe A at
a SRVE where the internal variable can only be statistically homogeneous at a
subvolume of the RVE and 62;& is its corresponding gradient.

3. Representative volume and sub-volume elements

The internal state variables are divided into two categories. The first cate-
gory is statistically homogeneous at the RVE, while the second is statistically
homogeneous at the SRVE. The definition of the RVE and SRVE is detailed in
the work of NEMAT-NASSER and HoR1 [9)].

In the literature, the RVE is the necessary minimum observation window that
is used for the determination of the statistically homogenous elastic stiffness. The
RVE is considered to be a cube with dimension Lryg such that the following
conditions are fulfilled:

(3.1)

LrvEe < |og,

30'?]-
< 1, L. < Lpve <L, s
RVE Oz

where d is a characteristic size of the micro-constituents, L¢ is the heterogeneity
correlation length, L is the characteristic macroscopic structural dimension, a?j
is the mean field stress and z;,z9, are x3 the components of the Cartesian
coordinates. The RVE implied in this work is the matrix with a single fiber in
the middle of the RVE (Fig. 1).

The other category of internal state variables are those that can only be

statistically homogenous at a subvolume of the RVE. For an RVE made of two

Effecitive
Homogenous /—\. Matrix V e
Continuum »
T i °\ H
a8l
e TR
—— Ly —p
- L L

FiG. 1. Schematic representation of RVE
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phase materials, the defect in each constituent and in the interphase (debonding)
cannot be categorized as statistically homogenous for the RVE unless a very low
order of measure of these defects is used to characterize damage or plasticity.
The subvolume characterization of damage and plasticity at a level below the
RVE allows one to adequately characterize the details of these defects. This
SRVE definition for the composite material in the case of multi-scale analysis
is introduced by defining an equivalent minimum observation window for each
constituent of the composite where the response function of each constituent is
statistically homogenous within the equivalent RVEs (Fig. 2). Then the sub-RVE
damage distribution of each constituent can be characterized at a point within
the corresponding RVEs.

ﬁ i

P (Z" | Interface

Fiber

FiG. 2. Sub-RVEs for multiscale composite materials

4. Macroscale-mesoscale coupled plasticity and damage gradient the-
ory using nonlocal internal state variables

The thermoelastic Helmoltz free energy may be expressed in terms of the
nonlocal internal state variables as

(4.1) ¢ =¥(®e;, T, a;, P, (d)ﬁf’g;‘),{d}’?ﬁ,(“) , Dz where u =m, f,i,

where the subscribed letters after the variables indicate the tensorial nature
of the variables. To the left of the variables, the bracketed superscript e implies
elasticity-related internal state variable, p implies plasticity-related internal state
variables, and d refers to the damage related internal state variables. The super-
scribed letter u to the right of the variables indicates that the different internal
state variables are used to characterize the types of damages associated with
the different material constituents. The composite material is divided into three
components: matrix (m), fiber (f), and interface (7).

In the above equations, the nonlocal internal state variables p and @;; vari-
ables characterize the isotropic and kinematic hardening flux variables in plastic-
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ity, respectively; the nonlocal internal state variables %(,) and '?S‘} characterize
the isotropic and kinematic hardening flux variables in damage, respectively. We
define the kinematic hardening of the yield surface to be the cumulative effect
from the flux-related backstresses. The ¢ is the nonlocal damage second order
tensor. Additive decomposmlon of the strain is assumed with 6 ; being the elastic

component and E being the corresponding plastic component such that:
(4.2) Eij = E;J- = E:;

The components of the macroscale gradient terms and the averaged mesoscale
gradient terms of the macroscale internal state variables of both plasticity and
damage may be used as additional higher order internal variables. In lieu of
Section 1, with regard to using gradients to describe the non-local behavior of
the material, the following relations are given here in a form similar to that given
by Egs. (5.1) and (5.2) such that:

(4.3) G = iy + D) A V205 + 8) 4T,

(4.4) =p+ BV p+ (B V25,

(4.5) 7 =2 + 5 AW V) + QA T3,
(4.6) R = k) 4 DB y2e0) 1 @B F2z0,
(4.7) ¢ ¢ C(u] V2 ¢ (d)C(u) V2¢(“).

The constants {r%A'—‘ Ef))B E‘?A(“) EdiB(“) dgng(“) are constants similar
to the constant a given by Eq. (2.4). If one chooses the same weight function
h(¢) for both the plasticity and damage macro-related internal variables, then

one obtains

()4 — P p - @ 40 _ @pe) - Do
) oA =B = @A"Y = GB" = 0" =4
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However, this will not be the case for the micro-related internal variables
since the region of the sub-volume will change for different internal variables.

The isotropic hardening variable of plasmmty, P, is a scalar quantity and is
expressed in terms of the second order tensor, 5 describing the plastic strain
rate. The gradient terms of p characterize measures of the dislocation density
[7]. The gradient terms referring to the backstress characterizes the internal
embedded stress variations introduced by dislocation pile-ups, etc. The average
mesoscale gradients of kinematic and isotropic hardening in plasticity may be
used to characterize discrete dislocations in the formulation, if that is paramount
to the analysis.

For the case of damage, the second order tensor, ¢;; characterizes a kine-
matic measure of damage due to volume or surface reduction associated with
the evolution of voids or cracks, respectively [10-12]. The eigen values of define
the Jacobian that describes the change in volume due to the micro-cracks and
the micro-cavities. The damage is characterized through the individual dam-
ages of the matrix, qb{m) the fiber, d}m and the interface, f,bg-} The gradients of
the damages can also be used in thls analysis. For the case of matrix damage,
qubt(-;"} is used, while for fiber da.ma.ge,qubg) is used. However, for the interface

damage, the averaged mesoscale gradient V‘"?gﬁz;) is used which is averaged at the
sub-volume of the RVE. The overall damage is obtained directly from VOYIADJIS
and PARK [13].

The cohesive zone concept [14] applied to metal matrix composites is one
of these processes that attempt to use evolution equations at the mesoscale
and averaged at the macroscale level. To address the evolution behavior of such
SRVE internal variables one must follow one of two approaches. The first and
most robust one is to use evolution equations at the SRVE level to obtain the
current state of characterization of these defects. These defects are then used to
obtain gradients of these internal state variables that are averaged over a domain
of subvolumes in order to recover the internal state variables at the macroscale.
The alternative and more efficient but less precise approach is to integrate the
evolution relations over the SRVE sectionally in order to obtain the evolution
relations at the macroscale.

To simplify the formulations, a new notation for the internal state variables
used in the Helmholtz free energy can be defined as follows [4]:

1 PP GQF:
(4.9) mf_f_Vm’E / () fdVevEe
VrRvE
(4.10) (N — y2(g

(2) (1)
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(g — G2}
(4.11) e =Valie

where the (‘;}f = f in these equations represent an RVE-averaged internal state

variable eva.luated using the macroscale coordinate system x and may be a tensor
of any order. | 1}f represents the local sub-RVE internal state variable evaluated

using the mesoscale coordinate system x, and {3}1' represents an RVE average
of a mesoscale internal state variable which measures the mesostructural vari-
ability within the RVE [4]. The gradient operators V and V involve spatial
derivatives at the macroscale and mesoscale, respectively. The macroscale inter-
nal state variables given by Eq. (4.9) as well as the corresponding gradient terms
given by Eqgs. (4.10) and (4.11) are regarded as independent internal state vari-
ables with respect to each other. Consequently, independent evolution equations
should be obtained with respect to each of these internal state variables that are
subject to the appropriate boundary conditions for the corresponding internal
state variable.

Incorporating the relations given by Eq. (4.8) - (4.11) into Eqs. (4.3) to (4.7)
gives the following relations:

(4.12) 5 = (o + Agyeu + GAG
i =L+ Ao+ B
o A = B9+ A + QA
(4.15) R — ?3 k) 4 Agggﬁm 4 g; B(uJEgg KW,
(4.16) 3 = Dol + Aoy + (oDl

5. Macroscale-mesoscale coupled plasticity and damage gradient the-
ory using local internal state variables

In this paper, the terms A and VZ?A given in Eq. (2.4) are regarded as two
independent internal state variables with different physical interpretations and
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initial conditions. This approach is used since certain internal variables such
as the dislocation density expressed through V?p and the accumulated plastic
strain, p, do not necessarily have the same evolution equation. They each have a
different physical interpretation that guides one to use different evolution equa-
tions for V2p and p. Using the non-local internal variable p similar to Eq. (4.4)
such that

(5.1) p=p+ P BV,

will enforce both internal variables to have a single evolution expression. How-
ever, the term p is physically a macroscale measure obtained through the plastic
strain rate while the term V2p is interpreted as a macroscale measure compa-
rable to the mesoscale measure identified as the dislocation density [7]. This
term maybe obtained computationally through the use of discrete dislocations
and continuum plasticity. Similar arguments may be used for the flux-related
back-stress plasticity tensor:

(5.2) &ij = aij + P AV ay;.

FLECK and HUTCHINSON [8] incorporated the measure of the average dislo-
cation density into the flow strength. Allowing «;; and V2aij to be independent
internal state variables instead of the single quantity &;; allows one to introduce
computationally the independent macro and mesoscales. It also allows these two
different physical phenomena to be identified separately with different evolution
equations.

Equation (4.1) may now be expressed in terms of both the macroscale internal
state variables and the averaged mesoscale gradients as

(53)  ©=9(Wey, T, Bay;, Bp, Doy, D, D), £=1,2,3

We use Eq. (5.3) because Eq. (4.1) will lead to coupling terms of the nature
@;;V*(;), etc. These coupling terms may not have a physical interpretation in
material behavior. In this work, the authors do not introduce gradient effects
directly through the strains and stresses by introducing terms such as &;; and
aij. They are introduced only through the internal state variables associated
with plasticity and damage. Stresses and strains are macro-variables that maybe
computed using the macro-, meso-, and micro-structure internal state variables
of the material.

Since the internal state variables are selected independently of one another,
one can express the analytical form of the Helmholtz free energy given by Eq.
(4.1) as the quadratic form in terms of its gradient-dependent internal state
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variables as:

3
1 " ]_ ) (
P = e =) B =) + 3= 108 Q1o 2 )
k=1

3
(@) () (d) (@) (@) () L)) (@) ) @ ()
kZ(g(k) ®Y k)Y T3mY @ ®E

:m

where the matrix Ejjx = Eijg (qb( )) is the fourth-order damaged elastic stiffness
tensor. In Eq. (5.4), the coefﬁcmnts are dependent on material and geometrical
properties of the composite. In the case of composites, the geometrical properties
may include size, shape, and spacing of the fibers. In the case of the gradient
theory these coefficients become also dependent on the gradient of the fiber size
and fiber spacing variation. The functional dependence of these coefficients can
be obtained by studying the interaction problem of an inclusion embedded in
an infinite homogeneous matrix subjected to a macroscopic stress rate and the
corresponding strain rate at infinity [7].
One can express the time derivative of Eq. (5.3) as follows:

ov () v ().
(5.5) U= £; i + T+ E ( Qi + —=— D
3 (p) (k)“ (p) (k)

Oc}; k) 45 )P

(@) . (w) 0¥ (d) . (u) ov ()
& Z Z (atd) W 6N T g@ g W o y (0%
m,fi k=1 \9(k)Yij (k)" k) %i;

By substituting of Eq. (5.5) into the Clausus-Duhem inequality one obtains

- av N ov " '
(5.6) (ﬂ'ij - pa;,—) e ’O((?T + 3) T4 0ij€ij ?3 -VT

ij

23: ( T (0% + P o Eﬁp)

) i Py
PN AL 3P

(d) < () 0¥ (d), () v ) >
Z Z D (@) oY y ()Y P S i e o) ) (kl% =
A= ( 9k Vij 9 s O Pij

from which the thermodynamic state laws given in Table 1 are obtained. In this

table, Ek; ij> %R, Ekilﬂgu), Ei))l"g), and UJK(“) are defined as the thermodynamic
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conjugate forces corresponding to the internal state flux variables, respectively

0. 0). (@) ) (@) (w) . ()
i (P (08> (7 and (D).

Using the equations in Table 1 along with Eq. (5.4), the definitions for the
thermodynamic conjugate forces shown in Table 2 can be obtained.

Table 1. Thermodynamic State Laws

Elastic deformation o, =P (3‘1’/ g )
Thermoelastics Laws
Thermal entropy s=-0¥/or
_ Kinematic hardening 0x,=p(@¥/0%0a,)
Plasticity
Isotropic hardening HR=p (atp/a or)
Damage tensor Or =p(@¥/one)
Damage Kinematic hardening @re’ =p (e/olDyy
Isotropic hardening K™ =p(2¥/ox™)

The value of the thermodynamic conjugate forces can be obtained through
the evolution relations of the internal state variables. They are obtained by as-
suming the physical existence of the dissipation potential at the macroscale.
With regard to the evolution equations for the averaged mesoscale based gradi-
ents, discrete elements, or micromechanical based models may be used to develop
such relations.

The total power of dissipation can now be expressed as the sum of the plastic
dissipation and damage dissipation as follows:

(5.7) =11 + 114

where the dissipation processes are given as the sum of the products of the
thermodynamic conjugate forces with the respective flux variables as follows:

; R Wy, B2 . o () o
(5.8) II? = 0;€;; — Z((i)xu s + (pR(k)p)
k=1
3
: ra (@) @50 | @) ) @ ) | @y ) @)
e i kZ((an WY T K™ ©EY + Y5 ) )
u=m,f,1 =1
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Table 2. Thermodynamic Conjugate Forces

Kinematic hardening {(f)) X :f))a t(i;
Plastici
ty [sotropic hardening :f)) R= {(f))b (f}) P
Damage tensor (dyy®) I 0 E. (8 -] )
& whi =5 a(d)¢{u) —&; )E; (en — &4
Damage A
$ Ki ic hardeni mrtu) — (d) () (d),,(w)
nematic enimng {*) (*]a (*)Yu
Isotropic hardening ((:))K[") :f))b("l ((‘HK{")

Since the plastic strain rate will be developed in the current deformed and
damaged configuration, its corresponding evolution equation will be a function
of the damage tensor. Similarly, the evolution equation of the conjugate force
due to damage will be a function of the stress. The evolution equations for the
plastic strain and the damage are interdependent [12], and therefore the two
dissipative mechanisms shown above are implicitly interdependent through the
stress and the conjugate forces due to damage.

The total power of dissipation can also be expressed by the sum of the dis-
sipation mechanism due to plasticity and the dissipation mechanisms due to
damage in each of the material constituents as follows:

(5.10) =17+ + m 4 e

where the dissipation processes for each constituent are given as follows:

3
dm™ _ _ (m) (d) (m) | (d) pr(m) (d) (m) (d)
(5.11) 1II Z((k}ru Gy + (K™ (R + (v (e )
3
d) _ (d)p(f) (@) 5 (f) 4 (@) g (f) (@) o(f) o @y (f) (d)
(612) I kZ( P; T+ KD (il +(k)yf.7 L}qbu))

3
49 _ _ N (Dp6) @60 L @ @) @46 4 @y (
(513) =Y (rd 39 + Gr® a0 + Qv 040).
k=1

The dissipation potentials of the damage in each of the constituents are
interdependent through dependence of the damage tensors on the stress.
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In this work, the evolution equations of the macroscale internal state vari-
ables are obtained through the use of the generalized normality rule of thermo-
dynamics. In this regard the macroscale dissipation potential is defined in terms
of the gradient-dependent internal state variables as a continuous and convex
scalar-valued function of the flux variables [12]:

B . B @ 6);
(5.14) o= e( e Ty By, p, D08 B (o (u))

By using the Legendre-Fenchel transformation of the dissipation potential
O™ one can obtain complementary laws in the form of the evolution laws of
flux variables as functions of the dual variables which can be decoupled into the
plastic and damage dissipation potential parts as follows:

(5.15) et = @ (O},J,Ei))xljg Ep]R (d)y(u ((”K('u} (d)F(u))

Y (k)T (k) Y (k)"
= () (P) (d) y/(u) (d) (d) ()
m, ,t

As noted previously for the dissipation mechanisms, there is an implicit cou-
pling between the plastic and damage dissipation potentials through the stress
and the conjugate damage force.

6. Gradient-dependent thermodynamic conjugate forces

Assuming a similar definition for the nonlocal conjugate forces as for the
conjugate forces given in Table 2, one obtains the following relations:

(6.1) Xij = Pad; = Pa(ay; + AV2ay + HAY a,:,)
(6.2) R=5p=0b(p+ AV +{BV),
(6.3) fi}a} — (d)z(w) ,ﬁ;) = (d)a{u]( (w) sz’?’;(;) + Es)A{u} V?,Yz{;‘))’

(6.4) KW — @pw g0 — @pw (Em L AV2™ 4 Eg B f??&{u)).

One now makes use of the relations in Table 2 to obtain
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69 Rt BAGK, Bl
5_@a®p L @a0)p . 050
(6.6) E= BB + 5B pR+ 5B 3Gk,
S(4) _ (d) () (D p) |, (@) () @p@) |, (@ () @n@)
(6.7) I3 —(1)‘4( ]{1}Fij +(2)A{u}(‘2)rt‘j +(3)A(u)(3)rij ;
(u) _ (d) pu) () pr(u) | (d) pu) (@) gr(u) | (d) B(u) (d) -(u)
(6.8) K™ = )B™ ) K™ + 9y B™ () K + (3 B () K™,
where the constants are given by
( (A ) (
0 7 (r) = (r ok ) oa
(6.9) A= a0 (“)A =1, 4= A),
(k)
) (B (r)
N _ (r)% r _— ") p _
(6.10) B =50 (GE=1,05=4].

(k)

In the above equations, 7 = d for damage and r = p for plasticity.

Here it is assumed that the relationship between the nonlocal thermodynamic
force for damage and the nonlocal damage tensor is a linear relationship in the
same form as Eqgs. (6.1) to (6.4), which gives the following equations:

L =2 .
(6.11) 7 = @z gl = g (Qs(tfl + AV + B AV ¢§;‘)) ,

ij

(1) _ (d) Au) (d)y,(u) | (d) A(u) (d)y () | (d) Au) (d)y(u)
612) %57 = (O GYG + G0 oY + 50" Gy
where the constants are given by

(d)

C
(d) & _ (d) (k) e _q e~
(k)
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7. Evolution equations for the internal state variables

The theory of functions of several variables is used with the Lagrange multi-
pliers ;\p and A4 to construct the objective function € in the following form:

The theory of functions of several variables is used with the Lagrange multi-
pliers and to construct the objective function in the following form:

7y Q=+ o Ln® - LF - L™+ e 4 eW)

where F' and G*) are plastic and damage potential functions, respectively, and
will be defined in subsequent sections. In order to obtain the plastic strain rate
and the damage rate, the following conditions are used to extremize the objective
function:

anN
(7.2) T 0,
O Yij

From these conditions for the case when F > 0 and G > 0, the corre-
sponding coupled evolution equations for the plastic strain and the damage are
given as:

0 & OF .(aG(m) EYeltd) ag(il)
+ + :

7.4 = Ay ——
( ) gv 4 60’,;5.' +’\d 30;'3' 30;‘_;.: 30‘;'3'

. . . oG : . . G
() Wy 5 98 Ly 00 k) (_,\paaF g 0 )

()% @y @) @y (1) = (w) (u)
91y Yij 0 Yij Yy 9Y;;
: (u . OF . 0GW™ (d) A . OF . 0GW)
(7.6) (Bl = )y —4; = @& [ 4 —a
: @y @ @y — (2 P o) —@w |
92 Y 92 Yis oYy, aY;;
. . . (u) " . e
(1.7) (5é = "\Patd?i(u} —Aa ;dfytu) = 5" (‘)‘P a?—,i) 4 )‘dzg(u))'
(3) %15 (3)%ij ij ij
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However, plastic strain is assumed to occur only in the matrix. Therefore,
the evolution of the plastic strain given by Eq. (7.4) is reduced to:

s« OF . .8G™

However, one can still use Eq. (7.4) by insisting that fiber damage and damage
due to debonding can produce permanent non-recoverable strains that should be
added to the plastic strain.

Taking the time derivative of the definition for the non-local damage tensor
&E;‘} given by Eq. (4.15) results in the following formula:

=(u } d d d d (u

Substitution of Eqgs. (7.5) to (7.7) into this equation gives the evolution of
the damage tensor as:

=(u) 5 JdF JdF @) ~u)  OF oF
(7.10) §5; =—A ( + A + @
i Dy@ @y @ T () @y @
9)Yij e 95)Y;5
g ( ic}:(u()) i ﬁtGm 5 C" i?(t)))
oYy oy Yy O3 Y

which from Eq. (6.12) becomes:

s _ (5 0 5 90"\ (@aw . 4@ (@ o) (@ G,
i LY)

Coupling occurs between the evolution equations of the damage tensor and
plastic strain due to the dependence of o;; on qb () and Y(“) on o;;. It can be

seen that if F < 0 or, G™®) < 0, the evolution equatlonq for the plastic strain
and the damage will become decoupled [12].

7.1. Thermodynamic Potential of Plasticity and Yield Criterion

In order to obtain evolution equations for the internal state variables, a proper
analytical form of the potentials that are defined in Eq. (5.15) needs to be ob-
tained. In order to satisfy the generalized normality rule of thermodynamics, the
following form of the plastic potential function, F', is defined here:

(712) = f T+ %Xﬁ X,‘J'.
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In Eq. (7.12), k, is a constant used to adjust the units of the equation, and f is
the yield function and can be defined such that

1/2
(7.13) f= {%(Sij — Xij)(sij — Xij)} ~ [oyp+R] =0
in terms of the non-local conjugate forces X;; and R where is the deviatoric
component of the stress tensor Oij.

Gradient-dependent evolution equations of the internal state variables for
plasticity can be obtained using the generalized normality rule of thermodynam-
ics along with Eqs. (7.12) and (7.13)

) . JOF i) Of =
SET;X,‘J‘ Y 1]
. . OF s ;) Of .
(7.15) Egiaﬁ ==dp—5— = —A 3 A{ —— + ky, X5 7,
@) P (2) — T Rp Aij
85 X5 0Xi;
; . OF . i) Of
(7.16) By = —dy——— =\, A{—_ +kp Xij 3,
(») P (3) = el
3(§}X,-j a‘XU
{pla - 5 oF o ®adf _ i 5
i1) @ = ~dezmz = ~mBag = ey

(1)

W._ 3 OF a350f _: 0z
(7.18) e Ap—agpgR =—h (BaE =% (3B,
2

e 5 OF S ini=8F & ()s
(719) (3)p = *‘/\péﬁ}}" = - p(3)Bﬁ = Ap (3]B
3

An alternate approach to evolution Egs. (7.15) and (7.16) is to obtain an evo-
lution equation for a;; only using the potential, F', as indicated by Eq. (7.12).
The evolution equation for the corresponding gradient term of ay; specifically,
V24, is to be obtained directly by operating on @;; with the laplacian. An evo-

lution equation for the averaged mesoscale gradient term,‘@’z&ij, is to be derived
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at the mesoscale level using &;; through crystal plasticity, etc. and averaged over
the RVE instead of Eq. (7.16). The same arguments apply for the subsequent
evolution equations of plasticity and damage.

The plastic multiplier, /'\,, can be obtained using the consistency condition
for plasticity such (f = 0) that

e Bp o g W e s
(7.20) f = BO'U . U‘J 6¢‘J ¢3J BXU X:J + —R 0-

7.2. Thermodynamic potential of damage

The following form of the damage potentials for a composite is defined here:
K i) %
(7.21) W= gy DT,

Similar to Eq. (7.12), k4 is a constant to adjust the units of the equation,
and g*) represents the non-local, gradient-dependent damage criterion and is
defined as follows

(7.22) g™ = (75 - 1) PG (7 -T) -1 <0

The fourth order tensor P;-J-M describes the anisotropic nature of the dam-
age growth and the initiation of damage. Its form is given as a function of the
hardening tensor h:

= =1
(7.23) B h{‘" A
h(") is the inverse of the tensor A%,

(7.24) R = (,\n(’"‘( ) 3+, Av)

where £,7m,A, and v are material parameters related to damage [12| and the
non-local damage term &%) is defined by Eq. (4.16).

Using the generalized and normality rule of thermodynamics, the evolution
equations can be defined for the internal state variables for damage as follows:

' (u) RPN 74
@) = _3, 96 _ _5 @) 5w 99
L) " —A a((“? K (w) a1y B aKfu) :
1
Ve )
@z — 3, _9C (@ pw 99
k¥26) " . G@kw | @T pKw’
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(w)
(d) s (u) — _3 aG™ ¢ () aw 99
(7.27) 3" '\da{{“)) KW \a (3B AK ™)’
3
(@sw) _ 5 OGW @ 7 ) 9™ . )
(7.28) 03 _/\da“”r(“} —3q(® AW o Rl s
(1)" 1) ij
i) (w)
o) g OGS L (@) ) 99 =(u)
(7.29) ) = —Aa—g—— = —Aaly) AW =L~ 4 kg T 3,
i e () ) ij
AT ar':

» . oG () 39 u) ()
(7.30) Eggq-,.(j)_ Bt Oy (0 + kgD
i @ p(u) W ~ ~74)

The damage multiplier A4 can be obtained using the consistency condition
for damage (¢ = 0). The damage consistency condition is given as follows:

Hgw 9o . Haw) - g™ -
fu) . S 9 (w) . 99 (w) . 99" "  fle) _
(7.31) g = 1o+ pek Y} aR(“)K i ey I =0.
1]

8. Computational issues of the gradient approach

In this work, for the specific examination of interfacial damage, the internal
state variables are reduced as will be discussed. The remaining set of differential
equations involve macroscale second order gradients of the internal state vari-
ables for both plasticity and damage, and a mesoscale second order gradient of
the damage tensor. In order to solve such a higher order problem, the finite ele-
ment approach is used here. Both the yield and damage conditions can be only
satisfied in the weak form respectively.

8.1. Thermodynamic potential (augmented by some gradient terms)

In the formulation presented here the internal state variables are augmented
as shown in Table 3. The average mesoscale gradients of kinematic and isotropic
hardening in plasticity are eliminated since no analysis at the mesoscale level
will be conducted for discrete dislocations. The average mesoscale gradients of
kinematic and isotropic hardening in damage are discarded from the analysis
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since no mesostructure will be used for the analysis of these variables. Also,
only interface da.mage will be incorporated in this work such that qﬁ,j = qu =

¢£j} + [d}CVQ¢Ej) in order to simplify the formulation.
Egs. (4.3) to (4.7) can now be written as follows:

(8.1) & = aij + AV204j,
(8.2) p=p+AV?p,
(8.3) ¥i; =71 + AV,
(8.4) &= k@ 4 AV20),
(8.5) 15,'3‘ = QSE;J + % @2455;)

Table 3. Reduced internal state flux variables

S oy p— P ;
in RVE in RVE Gradient in SRVE
Elastic Internal ; i
i El (e} =
Vicialils astic strain £ g;
Kinematic hardening | o, = @, Yo =Va,
Plasticity Internal Ll S :
Flux Vanables ; ; o) V:
Isotropic hardening mP=P rz;P
() ) _ pti) td) t-} tu
Damage tensor ) ¢|}' ¢i; & ¢
d) (i) _ W _ 2,0
Damage Intemal | o0 oe hardening oo = a‘fj] mau' =Via;
) d) i
Isotropic hardening ij 0 = O r‘;jx( 0= i

8.2. Discretization of the displacement field

Starting with the displacement field discretization one can write [15]:
(8.6) / SaT (B 0y )V =1,
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where the superscript T is the transpose symbol, denotes the variation of a term,
and L is a differential operator given as follows:

[0 d -

£ 0 0 £ 0 2

(8.7) L'=|0 £ 0 £ & 0
a a [ij

005 0 & 5

;41 contains the stress components and can be decomposed as o; + do where
do is defined as follows [12]:

!

(8.8) do = Ede + d—a—&— SEE

where E is the damaged elastic stiffness tensor and E is the undamaged elastic
stiffness tensor. M is an overall damage effect tensor such that

(8.9) g = Mo

where ¢ is the undamaged stress tensor. VOYIADJIS and PARK [13] have shown
that the fourth order tensor for damage M(*) for each constituent may be ex-
pressed in terms of the second order damage tensor ¢*) where u=m,f,i. Also,
VoY1ADJIS and PARK [13] have shown that the total damage tensor M may be
expressed in terms of the individual damages as:

(8.10) M= (E(m}M{m)g(mJ o EU}M(IJI‘;U))MH)

where B(™) and B/) denote the effective undamaged configuration stress con-
centration tensors for the matrix and fiber, respectively, and &™) and &/) denote
the effective undamaged configuration volume fractions for the matrix and fiber,
respectively. Since we are just considering interfacial damage here, the overall
damage effect tensor is given as:

(8.11) M = (Etrm;g(m) 4 aif)lﬁ(ﬂ) M@ = M@ = p@

where I is the identity tensor. One can now obtain ¢ from M and use ¢ in Eq.
(8.8) to obtain do.

Substitution of the evolution equations given by Egs. (7.8) and (7.11) with
the appropriate simplifications gives:
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3 cof\ oMt [. af . agW
(8.12) do—E(dE—/\p %)‘ 3¢ (’\Pa?w“\"a?(*)

(d) &) 4 (d) ~()(d) A6) | e’
(mc + (3 C" (3)C'J)Ee

which can be written as follows:

(8.13) do = E(ds - ;\,,x,,) — AaXds

where the following tensors have been introduced:

_of oM~ Of (wae), @6 @a6 ) e
(8.14) Xp—'§‘;+—ag“3?(i}((l)c +(3)C (330 e

_ M 9 (4 =)
(8.15) Y= 3% oY ® (mC

The standard boundary conditions and small deformation strains, € are de-
fined in the following equations [15]:

(d) ~(i) (d) A(3)
+{3)C (3)0 )a.

(8.16) Sy, =t, u=u,,

(8.17) &= Lu,
where ¥ is the stress tensor in matrix form, vy is the outward normal to a surface
S and t is the boundary traction vector.

Integrating by parts and using the standard boundary conditions, Eq. (8.6)
can be rewritten as follows [15]

(8.18) / 6T do dV = f du” t;,1dS — / de” ojdV.
v 8 |4

where t; are the tractions on the boundary. Using Eq. (8.13) in Eq. (8.18) one
can obtain the following relation:
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(8.19) / 67 {E (de = Apxp) — AaxapdV = / suTt;1dS — / 0eTo,dV.
Vv S Vv

The discretization procedure for the displacement field u requires C° contin-
uous interpolation functions assembled in the shape function N, such that

(8.20) u = Na

where a is the nodal displacement vector. The discretization of the strain from
the linear kinematic relation is given as follows

(8.21) ¢ = Ba = LNa,
where B is a matrix that relates the strain and the displacement.

The discretization of the multipliers, A, and A4, requires the C! continuous
shape function contained in h
(8.22) Xp =HTA,, As =" Ay,
where A, and A4 denote vectors of the nodal degrees of freedom for the plastic
and damage multiplier field, respectively.

The discretization of the gradients of the multipliers will require the matrices

p = Vh and q = V?h so that [15]:

(8.23) Vd\, = pTdA,, Vd)g = pTdAg,

(8.24) V2d), = qTdA,, V2d\g = qTdAg.

Using Egs. (8.21) and (8.22) in Eq. (8.19), the discretized equilibrium equa-
tion can be written as follows:

(8.25) da’ / BT{EBa — ExphTA, - xphTAd}dV

v
= 5aT{/NTtJ'+1dS—/BTUjdV}.
S

v
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8.3. Discretization of the yield condition

A second set of linear system of equations may be obtained by using the yield
condition that is satisfied in a distributed sense such that

A second set of linear system of equations may be obtained by using the yield
condition that is satisfied in a distributed sense such that

(8.26) [5APF(UJ'+1: Pi+1s V2pjs1, ajr1, Viajp)dV =0.
v

One can expand the yield potential, Fj,, around [0}, p;, V2p;, aj, V3] by
using the Taylor series in the following form:

do dp aV2p

T T
af JdF 2
+ (55)3 da + (6V2(1)j dV-a.

The evolution equations for the isotropic and kinematic hardening terms and
the corresponding gradients are given here from Egs. (7.14)-(7.15) and (7.17)-
(7.18) as

T
F
(827) Fj+1 = FJ = (a—) do + 6—F dp + e dVQp
b

-( of 2 -
(8.28)  da=—d), §’;§A{-é—i + kp x}, dp = d, (1)B.
8.2 240 = —dx, DAL 4k % Vidp = d), P B
(8.29) Véda=- P (2 3_5(+p ) P = QAp (3

Alternatively, the evolution equations for the gradient terms can be obtained
directly by operating on Eqs. (8.28) with the laplacian. Thus, the evolution
equations are given as

(8.30) da = dXp 1y,
(8.31) Vida = f{V2d\, + 2Vd\, Vi + d)\ V0P,
(8.32) dp = dA\p1,
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(8.33) Vidp = 15 V2d,,
where

of
(8.34) = }f{A{ ax x}
(8.35) %=1

Using Eqs. (8.30) to (8.33), the discretized yield potential in Eq. (8.27) can
be rewritten in terms of the plastic multiplier, dA, in the following way:

2 :
OF OF aF
(8.36) Fj41= F; + (.6—0') . do +T}§{ (6_;{)) .d)\p 7t (m) 'Vzd/\p}
J " J
gE :
+ n”d,\ 570 M V2, + 2V VdA V] 2 3.
J

Equation (8.36) may be rewritten in terms of the plastic multiplier and its
gradients such that

(8.37) Fjy1=Fj +m]Ede + (n, + g + &, — m, Ex,) dX,

+ &' VdA, + (n'p + 8'p3) V2dA, — m;fxdd/\d,

where,
J
(839) Ny = Tf: (?_g‘) 3
J
‘ d
(8.40) n, =1 (%).
aF\"

(841) 8p = ('9;)3 Tﬁ:
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T /il
: oF ' oF 3
s (m) v, gpz=2(m) v,

: ar
&3 = | gvzg | -

J
J

Substituting Eqgs. (8.21) - (8.24) and (8.37) in Eq. (8.37), one can obtain the
discretized yield condition in the following form:

(843) — OAT / h{ [(n,, +8p +8p1 — m;"Exp)hT + g pop”
Vv

+ (n'p + &'3a)a” | dAy + mI EBda — m] x4h”dAyjdV = GA] / hF;dV,
which is valid provided that the nonstandard boundary conditions for plasticity
given in the following expressions [15]:

(8.44) d2p =0, or (VdAp) v, =0

are valid on the elastic-plastic boundary S,. The detailed explanation for the
nonstandard boundary conditions of plasticity is given by [2] and [15].

8.4. Discretization of the damage condition

A third set of linear system of equations may be obtained by using the dis-
cretized damage condition

(8.45) fé)\dG (éj-l-l) {72&23-_&_1’ Kj+}, V2f€j+l) ’7j+13 V27J+1)dv — 0.
¥

One can expand Eq. (8.45) around [¢j¢’2cﬁj, K, V2K, vj, V¥v;] by using the
Taylor series in the following way:

; T
oG \T aG\T oG ==
_(8.46) G_‘,l-l-l = GJ + (%) do + (B‘E’")J d(ﬁ + (ah—ﬁﬁrﬁ,)} dV qu

oG oG 2 oG oG 2
i (3n)jdn+ (EN'%)J-O!V K+ (aq)jd’y 1= (3—V27)jdv 2

!
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The evolution equations for the isotropic and kinematic damage hardening
and the corresponding gradients are derived from Eqs. (7.28) and (7.25) in the
same way as Eqgs. (8.30) to (8.33) and are given as follows:

(8.47) dy = 7 dAg,

(8.48) V2d'y = n¥V2d\g + 2VdA Vi + drg V21i,
(8.49) dk = % d\,

(8.50) V2dk = ndV? d),

where

(8.51) = ~§A{ %+ har,

(8.52) nd = —Efgég—g.

The damage tensor and the average mesoscale gradient of the damage tensor
will be used in the following form from Eqs. (7.5) and(7.7):

(8.53) dp = 1g? dry + 1§ dAa,
(8.54) V2d$ = 4 d), + 718d)a,
where
d d) = 0f dd _ _(d) 799
(8.55) % =-C5 = -9Co7
d d) = OFf - dd d) ~ 99
o a--gofh  w--doy

Using Eqgs. (8.47) to (8.50) and Egs. (8.53) to (8.54), the discretized damage
condition in Eq. (8.45) can be rewritten in terms of the damage multiplier, dAq
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in the following form:

oG
857 Gy =G+ ( a¢>) (B (de — dApx;) — dAaxa)
aG aG 7
(—) (5 oy + i dra) + ( ﬁ) (787 dx, + 74N
%/ i v/

oG oG do?2 d 2,d
-+ { (a‘) d‘xd + (6V2 ) {Thv d)\d + 2VT}2 Vd/\ti + d)\dv ﬂ2}

aG aG \T :
(00 o ()] st ).
]

Equation (8.57) may be reorganized in terms of the damage multiplier and
its gradients such that

(8.58) Gjs1 =G, +miBde + (~Em{xy + rap + £ap) dAyp
nE ("m;‘;Xd + Tgd + Cad + ng + 'n.:“ + g4+ g:ﬂ) dAg

+ (ﬂfd‘z + gfd2) Vd/\d 3 (ﬂfdg + grda) vszd,

where:
aG
(8.59) my= o
aG\T" & aeNT
T w=(3), % = (3), 1
oG o oG d
(8.61) f'dd=( A) 73°, tap = (T) 3P
av2g/ av2$/
— dG d
(8.62) nd = ( 85 )J ?}2‘
9G , 9G P
‘h (av'? )ng”g‘ ”‘”_2(%2 ) B
(8.63)
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ac\*
(8.64) g4 = (—) nt,

. 8¢ T aG \*
9 = (m) : N a2 =2 (BV%) v,

g
aa \T
9:13 = (W)J W‘lj-

(8.65)

Substituting Eqs. (8.21) - (8.24) and (8.58) in Eq. (8.45), the following expression
is obtained:

(8.66) dA4 f {~hmlEBda + h (~-Em%x, + rg, + £4,) hTdA,
v

+h (—mIXd + rggd + Tgg + ng + n:“ + gq + grdl) thAd
+ (ﬂ:ﬂ + g:m) hpTdAd + (?1’,13 + g'ﬂ) thdAd} dV =My / GjhddV,

which is valid provided that the non-standard boundary conditions for damage
given in the following expression:

(8.67) oAg =0, or (Vdrg)vg =0

are valid on the undamaged-damaged boundary Sy. For the undamaged material,
the damage multiplier is Ay = 0, so that at the boundary where damage starts
to initiate, it must be ensured that V2)\; > 0. The dependence of the damage
condition on the Laplacian of the damage internal state variables is essential for
the crack interaction in order for damage localization to occur at the macroscale.

8.5. Combined discretization equations

Combining Eqgs.(8.25), (8.43) and (8.66), one can obtain a set of algebraic
equations in terms of the variations da,dA, and dAg4

Kaa Ka)\,, Kaz\d da fe + fa
(8.68) K,\pa K'\pAp K,\p,\d dA\, | = pr
Kia B Kapy dAg fi,
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where the diagonal matrices are defined as follows:

(8.69) Koo = f BTEBJV,

v

(8.70) K,\p,\p = — / h[(np +gp + 8;1 = mg‘EXp) h'
! T + I + I T dV
+gp2p np 8p3 )4 ’
8.71) Ky, = /h{ ( —mYxq +Tag+ Faa+na+n'a + g+ g’cu)h’"
v

+ (’n"dz + g'dg)pT + (n’d3 + g'd;,)qT}dV,

and the off-diagonal matrices are given by

(8.72) Ka, = — / BTEx,h"dV, Ko, = — [ BT x,hTdV,
v 14

(8.73) Kyo=-— / hm! EBdV, Ky = / hm! x;h"dV,
v

Kaa=— / hmlEBadV,
VA

(8.74)
Ky = / h (~Em] x4 + rap + tap) h’dV.
v

The corresponding external force vector and the nodal force vector equivalent
to internal stresses is given by

(8.75) fo— /Nth+1dS, f. = -—/ BTaJ-dV,
S
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(8.76) £, = / F, hdV,
S

(8.77) £y, = f G;hdV.
8

9. Conclusion

A thermodynamically consistent multiscale gradient enhanced approach to
coupled plasticity and damage is formulated in this paper. Thermodynamically
consistent constitutive equations are derived here in order to investigate such
issues as size effect on the strength of the composite, strain and damage local-
ization effects on the macroscopic response of the composite, and statistically
inhomogeneity of the evolution related damage variables associated with the
RVE.

This approach is based on a non-local gradient-dependent theory of plastic-
ity and damage over multiple scales that incorporates mesoscale internal state
variables and their higher order gradients at both macro and mesoscales. The in-
teraction of the length scales is a paramount factor in understanding and control-
ling the material defects such as dislocation, voids, and cracks at the mesoscale
and interpret them at the macroscale. The behavior of these defects is captured
not only individually, but also the interaction between them and their ability to
create spatio-temporal patterns under different loading conditions.

The capability of the proposed model is to simulate properly size-dependent
behavior of the materials together with localization problems as was effectively
proven by DE BORST et al. [15] for the particular case of using gradients for
the accumulated plastic strain only. Consequently, the boundary value problem
of the standard continuum model will remain well-posed even in the softening
regime.

The gradient-enhanced continuum results in additional partial differential
equations that are satisfied in a weak form. Additional nodal degrees of free-
dom are introduced which leads to a modified finite element formulation. The
governed equations can be linearized consistently and solved within incremental
iterative Newton-Raphson solution procedure.

The computational issue of this theoretical formulation with proper expla-
nation of the proper boundary conditions associated with the gradients and
evaluation of the respective material parameters will be presented in a forth-
coming paper. The detailed explanation for some of the non-standard boundary
conditions of plasticity is given by DE BORST et. al [2] and [15].
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Calibration for the different material properties in the proposed approach
may be difficult, or impossible for certain cases. While the proposed framework
is generalized to that of plasticity coupled with damage, one needs more studies
to be performed in order to assess effectively the potential applications for this
framework.
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