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By usING the asymptotic method combined with variational approach a new dynamic
model of elastic orthotropic plates is derived. This model accounts for rotational
inertia and takes into account second order terms U? and o® in the asymptotic
expansions of displacements and stresses. To avoid the boundary layer analysis, the
boundary conditions for U? are satisfied in a suitable averaged sense. Convergence
theorem is formulated. Influence of the second-order terms on plate response in the
static case is investigated.

1. Introduction

IN OUR RECENT PAPERS [19,20] we derived a new static model of thin, linear
elastic orthotropic plates. In essence, this model takes into account the second-
order terms U?, and o? of the asymptotic expansions of displacements and
stresses. For clamped plates the term U? does not satisfy the boundary con-
dition U? = 0 on that part of the boundary where the plate is clamped. To
overcome this inherent difficulty Destuynder investigated the boundary layer, cf.
also DAUGE and GRUAIS [4]. An alternative approach was proposed by RaouLr
[15, 16] for isotropic plates. To cope with the second-order term U? of the asymp-
totic expansion, this author appropriately defined the boundary conditions. Their
precise, average form appears in the definition of the set X of admissible displace-
ments, cf. formulae (3.2), (3.3). In this manner one avoids the study of boundary
layer. In our papers [19,20] the approach due to RAourr [16] is extended to
orthotropic plates in the static case.

The asymptotic approach to construction of models of rods, beams, plates
and shells is usunally confined to finding the zero-order terms, which correspond
to equations obtained'in a more standard manner in engineering literature, cf.
[2,5,12-20, 23]. However, even in this case no a priori assumptions, like the Kirch-
hoff — Love hypotheses, are needed. The asymptotic approach to modelling of
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structures has already a long history, cf. the comments in (2,10, 13,17,22]. The
book by LEWINSKI and TELEGA [13] summarizes the research on finding effec-
tive models of linear and nonlinear structures with microstructures. In this case
the asymptotic methods also play a crucial role.

In the present contribution the static model elaborated in [19,20] is extended
so as to include the inertia term. A new dynamic model of linear elastic or-
thotropic plates is derived. An important feature of the model is that the second-
order terms U? and o? of asymptotic expansions of displacements and stresses
are taken into account. We follow the procedure exploited in the static case
thus avoiding the analysis typical for the study of boundary layer. Anyway, our
approach is an alternative one. The formal asymptotic procedure is justified
by proving a convergence theorem. To exhibit a significant influence of second-
order terms on the plate response, the circular isotropic plate is investigated in
the static case.

2. Basic equations and scalings

Let © C R? be the mid-plane of the plate and 2¢ its thickness. Here € > 0
is treated as a small parameter. In the underformed state the plate occupies the
region B¢ = Q x [—¢,¢]. Weset: T =0Q, T§=T x[-¢,¢, TL=02x{xe}
Throughout the paper the Cartesian coordinate system is used, except Sec.8.

It is assumed that the plate is made of a linear elastic material with the den-
sity 0. In the case of orthotropy the elasticity tensor C = (Cjjk) is such that
Ciiji#0, Crii#0 for k#l; (no summation over repeated indices), the remain-
ing coefficients Cjjx; vanish. Roman indices take values in {1,2,3}. The basic
equations are given by

(2.1) U/ = 9;%; +°fi  in B*x[0,T),

(2.2) ¢0ij = Cijr Y (*U),

(2. 75(°0) = 5(8,°U; + 0 U3,

(2.4) W=0" oody x0:7],

(2.5) ‘U(x,0) = ‘U(x), °U'(x,0)=°V(x), x¢€ B,
(2.6) Sois =25 on I'f x[0,T].
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The quantities ®o;j, “U and 7;;(*U) denote the stress tensor, the displace-
ment vector and the linearized strain tensor, respectively. Obviously, these quan-
tities depend on the space coordinate x and time ¢. Here () = d(:)/0t, etc. The
initial data U, *V are prescribed. To use the method of asymptotic expansion,
[2,3,12-20], it is convenient to work with the fixed domain, say B = 2 x (-1, 1).
To this end, for € > 0 we define the mapping, cf. [3],

(27) Ff:x=(z!,2% 2%) € B— F%(x) = (¢}, 2 e2®) = x° € B-.
Let us introduce a composition (@ o F¢): B—R? defined as follows
(2.8) Vx* = F%(x), (p o F*)(x) = @(x*), where ¢:B* — R.

One can easily verify that the quantities o, U, etc., defined in B, are interre-
lated with o, €U, etc., defined in B¢, as follows:

(2.9) Us=UgoFf, Ui=€c(UsoF®), o=¢"(po F),
(2.10) o055 = “gepo F*, 053 =& ((aa 0 FF), 053 = €72 (Fo33 0 F€),

fo="feoF*, [§=c"(foF),

(2-11) 0 -1 r& I3 0 -2 (e €
9o =€ (‘gaoF°), g3=¢"("g30F).

Throughout the paper Greek indices take values in {1,2}. In the e-independent
domain B we write U®(x,t) and o®(x,t) for displacements and stresses.

3. The variational formulation of the plate dynamics

Prior to passing to the variational formulation, we introduce the spaces of
stresses and displacements, cf. [15, 16, 19, 20],

(3.1) r = L%B, E),
(3.2) X = X9 x X3,
where

1 1
X12= {V EHI(szz.[VQd."B?‘:O, /Iavaﬂadmsz[} on P},
-1

=1
(3.3)

1
X3={V3EHl{B):/{l—xg)V3dx3=0 on I'}, a=1.2
=1
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Here E? denotes the space of symmetric 3 x 3 matrices and H!(B)3 = [H!(B)}*.
For a function f(x, t) (x € B) we shall often write f(t) = {f(x, t)|x € B}
and similarly if x € €, cf. [16]. Such a notation is common in mathematical
studies of evolution problems.
Throughout the paper it is assumed that fO(x, t) = f9(z1, s, t).

Let (x,t) € B x (0,T), where B = Q x (—1,1). After rescaling (2.9) — (2.11),
problem (2.1) — (2.6) is formulated in the variational form, see [16, 20].

PROBLEM (P¢)
Find (0¢,U¢) € L*®(0,T; 2 x X), such that U’ € L*(0,T; L?*(B)*) and

(3.4) VTES, A%(0%,T)+ B(t,Us) =0,
(35) VVeX, —o(Us" V3) — o€ (US", Va) + B(0%,V) = F'(V),

(3.6) Uf(x,0) = U(x), U(x,0)=Vix), x€B.

Here (-,-) denotes the duality (D'(0,T; L?(B)), L?(B)). For the definition and
properties of functional spaces used in this paper the reader is referred to the
book by Apawms [1].

If US"(-, t) € L?(B) then

(3.7) (UE", V) = f UE" V dx.
B

The forms A® and B are defined as follows, cf. [16,19, 20],

(38) V{o, T} €T x X, Ao, 1)=A4A%0, 1) +6%4%0, 1) + £ Al(0, ),

(39) VYoeX, YVeH\BS, B(o,V)=- /mmai}- i,
B

where A = C~!. The functional F° of external forces is given by
(3.10) FYV) = —/f? Vidx — /g?w’dn
B Iy

Obviously, the initial data U* and V¢ are prescribed, and 'y = 2 x {£1}.
The bilinear form A€ is easily derived from a bilinear form defined on the B* and
using Egs. (2.9), (2.10), cf. [16, 19, 20].
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It can easily be shown that

(3.11) A%(0, ) = (Aapys O~ Tap)s A'(o, T) = (A3333 033, T33),
11

A%(0, T) = (Aap33 033, Tap) + 2(Aa3s3 935, Tsa) + (A3346 045, T33)-

Here (-, -) denotes the scalar product in L?(B).
Similarly to the static case we assume the asymptotic expansions of {o*, U*}
as follows:

(3.12) =0 + 20?2 +.. .,

(3.13) U =U" +£2U% +- ...

Performing now the asymptotic analysis, i.e. substituting (3.12) into (3.4)
and (3.5), we arrive at problem (P9), linked with {¢?, U}, and problem (P?),
linked with {o?, U?}, cf. [15, 16,19, 20].

The solution {2, U?} of problem (P?) yields the first corrector to {o®, U%}.
It is well-known that U? does not satisfy, in general, the homogeneous boundary
condition on I}, [4,16,19]. We recall that U® vanishes on I'} = I" x [—1,1].

In subsequent sections we shall examine both the problem (P°) and the prob-
lem (P?). The choice of the space X for kinematically admissible displacements
will prove to be crucial. We observe that the boundary conditions involved in
definition (3.2),(3.3) of the space X are satisfied only in an averaged sense.

REMARK 1. Let us assume that f0 € L2(0,T; L*(B)) and ¢'* € L?(0,T; L?
(T)), Us€ X, Vee L2(B)3. Then the solution {U¢, 6°} of problem (P) exists
and is unique; moreover, Us” € L?(0,T; X'), where X' denotes the dual space
of X. For the proof the reader is referred to [6].

4. Study of Problem (P9)

Identifying the terms linked with € in problem (Pf) we obtain problem
(P%), which includes a classical dynamic problem for orthotropic plates. The
plate problem reads:

Find {0°,U%} € L*®(0,T; X x X) such that U’ € L*°(0,T; L*(B)) and

(4.1) vYren, A%’ 1)+ B(t,U% =0,
(4.2) YVeX, -—-aUY, W) + B(c®,V)=F(W),
(4.3) vd0)=03%, U0 =i
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We recall that U° = (UY, UY). The in-plane displacements U2 are specified
below. To proceed further, we introduce two spaces

(4.4) Xk ={U| 7a3(U) =0, 73(U) =0},

(4.5) S={1e€X| 159'=10, T33=U}.

The existence result for problem (P?) is classical, cf. [16].

PROPOSITION 1. If FO(V) is given by (3.10) and if
f§ € H'(0,T; L*(B)), fa € L®(0,T; L*(R)), ¢f € H'(0, T;L*(T+UT-)),

then problem (PY) has a unique solution {U?, ¢°}. il

Now we consider problem (P°f), that is a particular case of (P%) where
{69 U% € L>®(0,T;S x Xk1). From Eqs. (4.1) — (4.3), proceeding similarly to
the static case, we find

U € L*(0, T; H3(Q2)), UY e L®(0, T; L*(%2)),

1
2 = o
(46) 20U3" + 3 Dagiys Oaprs Us = / f3dzs + 5" + g5~ + Bal9a" —ga7);
=1

alﬁ)'}fia = 1!21
(4.7) v =05, U§0) =V,
(4.8) U2 = ul — 23 8,U3,
where
(49) Daﬂ'}ré’ = chﬁ'rﬁ =i Ca,833 C3_3};3 033'76-
Here u® is the unique solution of the plane problem:
find u® € L*(0,T; H}()?) such that
(4.10) [Ku® v]=F%—v,0), VveL®0,T;H}R)?,
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where

(411) [Ku's V] = Q{Dﬂﬂ‘)‘& ‘Y"rﬁ(u)r ’Y&B(v)])

and [-,-] denotes the scalar product on L?(2).

We observe that in the case of transverse homogeneity, the problem (P°)
(and problem (P?) as well) splits into a plane elasticity problem and a plate
problem, similarly to the static case considered in [16,19,20].

From Eq.(4.1) we conclude that

(4.12) ol = Dagrs 1s6(U°).

Passing to the full problem (P°) we have to find the formulas for 024 and ¢%;.
To this end we use Lemma A, formulated in the Appendix. In the dynamic
problem considered, the inertia term (—oUS") is to be added to f§, the third
component of the body force vector f°. Proceeding then similarly to the static
case we finally get

l1+2 (1—-23) o
(413) 043 = —3 (1 — 23) Dagxs 925 Us + £2—3]gg+ e B
2+3 3 |
(4.14) crgs = gUG"’{— /de T3 + M/J‘a dzy
Lo =6 (e — 25" +657)
2 4

]_-.3;2 £ 1—$2 =
+ U228 g (g0t 4 0 42027 (et - ).

Formula (4.13) for the stresses 04 is formally similar to the static case; however,
now UY and 02, depend also on time. If U$" vanishes then we recover the formula
for 09; known from the static analysis, [16, 19, 20].

5. Study of Problem (P?f)

Identifying the terms of A%(o®, T) linked with €2 in (P°) we get problem
(P?) and its truncated form (P2f), cf. [15,6,19,20]. Here we limit ourselves to
the second problem.

Find (0%, U?) € L*(0,T; S x X) such that U?' € L*(0, T; L?(B)) and

(5.1) VreX,  A%0% 1)+ B(r,U%) = -4%*0%7),
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(52) VVeEXgL, —o(UF" Vi) + B¥a? V)= p(UY, Va),

(5.3) U30) =03, U3'(0) =V
We observe that for 6% € S and ¢ ¢ S we have
A%(0?, 7) = (Dapys~" 024, Tap),
A2(00| T) = (Aapss 023, Taf)

provided that T € S.

Let us pass to characterization of problem (P2?f). If the external forces
{£° g°} are sufficiently regular, see Sec.6, and if the initial conditions are of
the form

T I L
(5.4) U3 = @ + Assap Dapys [23 Yy5(u(0)) - 3 a3 Oyg 0° ] ; o = 3,
= 1
(5.5) Vi =103 + As3ap Daps [:C:s Y45(u®’(0)) — = z3 67653]|
with, see [19, 20],
~9 2 | ~0
(5.6) e H*(Q)), w= 10 Dogry Azzep Or, W on 1"X(0,.T),

1 = 8 o
(5.7) On® = 10 A3308 Dagry On 03, 0° — T Z Aaza3 Daays On 055 0°
a=1,2

onT x (0, T),
then there exists the unique solution {o?, U?} € L*®(0, T;S x X), U?' €
L>(0, T; L*(B)) of problem (P?f).

The displacement (U2, U?) is given by

1
(5.8) Ug =w?+ As3a8 Daﬁ-y&_ [3-73 'T'yd(uo} ~ 5 :::§ 616 wﬂ] s w? = u%!

: 1
(5.9) Uz =uj — 2300 w? — Aqzss (23 — 3 23) Dy Igyw w°

1 eal®
i Assec Decys 23 0a 1y6 (u°) — 3 3 Ogeys "),
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where w? € L*®(0,T; H%(2)) and w?’' € L*®(0,T; L*(R2)).

Formally, the formulas for the components of displacement vector U? are the
same as in the static case, [19,20]. Now, however,all quantities describing the
dynamic problem depend also on time.

For the membrane components of the stress tensor we have the expression,
cf. [20],

(5.10) 036 = Dapys YaB (Uz) — Aap3s Dapys o'gs-

Substituting (5.8) into (5.2) and integrating the obtained equation twice by
parts, we get the formulation of the plate bending equation in problem (P?f) in
the form

2
(511) 200" + 3 Dapys dapys w’

1
3 8 o
B _(ﬁ Dapys Aysss + 10 Z Dogyy A'r3'r3) aaﬂ[/fg +Qg+ +gg
3

y=1,2

T3

1
u, = 2
+ Oa(ga — g2 )] + Dogys Avs3s Oap / r3 dzs / fidzs + 3 00aaw®”
= 45

4 8 i
y=1,2

where the boundary and initial conditions are

1
(5.12) w? = 5 Dagap Aszap Oruw®  onT x (0, T),
1 [ 8
(513) Onw® = 75 As3apDapaudn Onut’ = 75 D Aasas Daarsdn dys 0’
a=1,2
onI' x (0, T),
(5.14) w?(0) = @2,  w?'(0) =2
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The dynamic membrane problem resulting from (P2 f) means finding
u € L®(0, T; H'(R)?)
such that

1
(5.15) Ku?=—-20u’" + 3 Aase¢ Decas 9p O vys(u’)

1
+ A?,sgg Daﬁ-ﬂg ag /023 5,;,;3 dzs,
=1

1
(516) u2 € L® (OrT; Hl(n)z): u?\x = E A33a\p DA;:“{J aﬁ 7“!6(“0)

on I" x (0,T).

6. Convergence study

The aim of this section is to prove the second-order convergence of displace-
ments and stresses. Precise meaning of such a convergence follows from Theorem
1. Primarily, however, we formulate the following result, being a slight modifica-
tion of Corollary 2 proved in Raoult [16].

PROPOSITION 2. Let
1

(6.1) = f fOdzy + g2 + g8 + B (6 — g0),
-1
12 e H3(0,T; H'()), g2t e H0,T; H(I'Y)),
g2~ e H3(0,T; H\(I')),

13 e H3(0,T; L*(B)), ¢3* € H3(0,T; LX(I')),
95~ e H3(0,T; LA(I")),

(id) U9 € HY(2) N H3(),
: 2 : .
(%U), 1/](5310) = §Dn,8,\p dﬂﬁ)\p U:? € Ha(Q)HHE(QL
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(v) VY € HY(Q) N H} (%),
2 =)
(vi) w:(z’ 0} - 3 Daprp 30:,8.\;; V30 € Hé(ﬂ),
then
U € CY(0,T; H(Q) N H3(Q)), U3" € C°0,T; H*(Q) N HE()),
(a)
U3 "€ %0, T; Hy (R2)),
(b) ul € H3(0,T; H3(Q)NH} (). 0

In the proof of convergence we shall also exploit a priori estimates.

PROPOSITION 3. Under the assumptions of Proposition 2. and if the initial
data of problems (P¢) and (P°) are such that

(6.2) |l(ots — a2s)O)l < Ce?, |l(05s — a23)(0)|| < Ce, |lo53(0)|| < C,

(6.3) U5 '(0) - w®'(0)]| < Ce?, ||US'(0) - Ug'(0)]| < C,
where || - || = || - ||z2 and C is a generic positive constant, then

(6.4) e (055 — 0%4), € (a5 — 033), 0f3 are bounded in L*®(0,T; L*(B)),
(6.5) e~2(U* —UY is bounded in L>(0,T; X),

6.6) e 2(U5'—w®'), e }US'-U2') are bounded in L*(0,T; L*(B)).
a3 &3

Proof. The proof does not differ from a similar one performed by RAOULT
[15, 16] for isotropic plates.

REMARK 2. The assumptions appearing in Proposition 3. can be formulated
exclusively in terms of the data of problems (P¢)and (P°). More precisely, by
using the constitutive equations involved in these problems and if the initial data
are such that

(6.7) 0% — U°(0) |1 < Ce?,
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(6.8)  lle™2ya3(UE) - An3a3023(w°(0))]| 2 < Ce, (no summation over a),

where
1-22 14z 1—23) o

Uga(wo) =T ( 3) DoﬁAp aﬁh.u w’ + £_2"‘§'192+ = (2—:3)93 ’
(6.9) lle~2y33(U%) — y33(w°(0)) || 12 < Ce?,
where

133(w°(0)) = — Czhs ¥ Chuusz Yuu(u’(0)),
pu=1,2

(6.10) Vs — w'(0)ll2 < Ce2, ||V — US'(0)]|2 < Ce,
then (6.4) — (6.6) are satisfied. |

After these preparations we can formulate the second-order convergence the-
orem.

THEOREM 1. Under the assumptions of Proposition 2. and if the data of
problems (P#) and (P°) are such that

(i) e~2(U - U%(0))

converges in H'(B)? to an element U? of the form

e e 1
(6.11) Ui =@ + Aszap Dapys |23 745(u’(0)) — 51'3 Bys° |,
with @? € H*(R2), and
~9 1 . rr0
0" = 75 Dapru Assap OuUs  on'T,
an = — A33aﬂ Daﬁ,\pa 6A“U3 = 0 z Aa3ad Daays On 0. 6U3
a=1,2

on I,
> Y 1
(6.12) UZ = U2 — 23 0o w* — Apass (x3 — 51‘3] Dispyn Oy w°
1 1 3,
-3 A3zzec Decyo [$§ Oa Y6 (u’) — 533 Oars wu] .
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where U, € H'(Q) is given by

~ " 1
(6.13) Ku’=-20u’" + 3 A33e¢ Decys 05 D vys (u®)

1
+ A7,§33 Dﬂg-ﬂs 33/0g3 5‘,‘3 drs in .Q,
=1

with

1
i = 8 As3ru Dajrs Oa 145(u®(0) on I,

e (053(0) — 9a3(0)) — 0 in L*(B),

053(0) — 035(0) in L*(B),

e (VE-UY(0)) — 0 in L(B),

o 2V —TV0) — 72 in L2(B),

with 5’32 of the form

(6.14) V2 =% + Assap Daps 53 115(u®'(0) — 5 53 8,78,

then we have
e~2(Uf -U% — U? in L2(0,T; X),
e WU -U%)' — 0 in L%(0,T; L%(B)),
e~2(Us - UY) — U2 in L%(0,T; L?*(B)),
e~2(0%5 —00g) — 025 in L?(0,T; L*(B)),
£~Y(o%s — 0%) —+ 0 i L2(0,T: L*(B)),
(053 — 03) — 0 in L%(0,T; L%(B)),

where ((aﬁﬂ, 0, 0), U?) is the unique solution to problem (P?*f) with the initial
data 632, 1732.
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Proof. It is divided into two major steps. First, one establishes the weak
convergence by using Proposition 3. Next the strong convergence is demonstrated
by showing the convergence of norms, i.e.,

T

g~ 9 77€!
[ [ 175 122 + -1 1
0

+ A5 dt—)/gl[ 2, + A(6%, &%) dt,

where
A(o, ©) = (A° + A% + AY)(o, 1),
T=U-U o =0-0"
¢ = (5_262:.8! 5_1633: 5%3): 6-2 = (G§ﬁ| 0‘ 0)
Otherwise the proof runs similarly to the one devised by RAouLT [16] for isotropic
plates. However, formula (148) in [16] is to be replaced by

1 1 ~
2 wg:(o) = §A3376 D’yﬁaﬁ 30,6 Ug,(o} =2 1""-’;,'3 = §A33~;6 D'ydaﬁ 6&61/30,

where U2’ (0) = 1732.

REMARK 3. Conditions (6.13 (ii)) can be formulated in terms of the data of
problems (P¢) and (P°) as follows:

e [e7%73(TU°) — 703(T%)] — 0,
where o3 = Aasas 023(UY) (no summation over a),

= ~ X ~ T3 — T ~
g2 [ Z Cuu3s Yuu(UF) + €72 Ca333 733( :f)] — - —-:’"*G“EDQMJ Oapys Us

pu=1,2
— 2
{(“’3” /fa /f§’+(l 4 3) g, g2
=1

0+ 0— 0+ 0—
oy LY z3(93" +93 )
+g0 )+ > - R 32 3 }(0).
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7. Interpretation of the asymptotic approach for the dynamic problem
Let o =¢€%p, €97 = €% gF, see [20]. According to (2.9) we write
“Us (z1,%2,€23,t) =€ Uj (21,%2,73,1).
Consequently, for sufficiently small £ we have:
=y, — 28 0,1) ~ z2 t g t) = 29 0,1)
[ ( 3 3) (IlsI'Z: ) )— 23 (3:1}32, )1 23(551,.‘.1'}2, ) 3(37115321 s b

Here Z9 is the deflection in the real plate with the thickness 2h. Such a plate is

subjected to the gravity forces with the density "g and the load "‘g;, acting on

the upper face. The mid-plane deflection is
(7.1) Pry = zg + hzzg‘ where zg = zg (z1,T2,1), z§ = z% (z1,z2,1).

The following dynamic plate equations are satisfied by "r:
2
(7.2) 2hBpMrs" 4 gh3Da5,.,,, Oupys 13 — hgh3[§ A"

4 8
+ Oap 23" (EDaﬁ'rd' Ays33 + gDaﬁw Arysrys)]
= —2h "o + "gF, in @ x (0, T).

The term in rectangular brackets is the corrector term. The boundary conditions
implied by the analysis of the second-order term {g?, U?} are:

1
(7.3) *r3 = 15 b’ DapruAssap Oruz3  onT x (0, T),

1
(7.4) 8, Prs = 10 h? A33a8 Dapay On Oru2s

8 :
T h2 Aa3a3 Dam«i dn 37523 on I' x (0! T)'
10 a=1,2

Obviously, zJ € L®(0,T; H3(£2)) is a solution to

2 .
(7.5) 2hPe2d" + = K3 Dagru Oapru 23 = —2h"o+ "gf  in 2x(0,T),

(7.6) 20)=29, 23'0)=0 in Q.
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We have additionally assumed that the initial velocity of all points of the
plate is zero, or ¢V = 0. The initial conditions for Eq.(7.2) are specified by

(7.7) hry (0) = Z9 + R%22,  Mr3’(0) =0.

The initial data Zg and 5} are determined by performing the static analysis, see
(5.6). Thus we assume that at the beginning of a dynamic process, i.e. for t =0,
we have

"A("a(0), T) + "B(, "U(0)) =0,

(7.8) hB(*a(0), V) = PF(0)(V).

Now, to find Z¢ we have to solve the problem
- 2 ’ -
(7.9) Z3 € H{(Q), 3 Dapri Oaprs 23 = —20+ 95" (0).

To get the initial quantity 2%, we have to consider the boundary-value problem

2 :
(7.10) 3 Dopys Oapys 5)32» =0 in £,
~F ]- ot
(7.11) == EDW,,AmﬁaM,zg on I

(7.12) 8,% = : OAmﬁ Doy On OruZ8

8 ~
a=1,2

In the case of isotropic plates, Eqgs.(7.2)-(7.6) reduce to those derived earlier by
RaouLT [16]

2 E .
(7.13) 2*ph"r) + i h3 A2hrg = —2hhBp
+h g5 + + hoh? f:(l—MAzg" in 2 x (0, T),
(7 14) h?":} = *'--’].2 ]_0(1+U5 AZg on [ x (0, T),
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8+ v
(7.15) A ry = —h? mau Azl  onTIx(0,T),
(7.16) hrs (0) = Z9 + 222,  hrg'(0) =0.

Here 2§ € L®(0,T; H3(£2)) is a solution to

(7.17)  2htp2d" + g : i? B A%Z) =—-2htp+ Rgd inQx (0, T),
(7.18) 2900) =29, 28'0)=0 inQ.

In this simple case of loading, the in-plane components of the displacement
in the real plate vanish. Indeed, in such a case Eq. (4.5) yields u2 = 0, and since
[K u?, v] =0, we conclude that ul =0, a=1,2

8. Illustrative example: evaluation of the influence of the first correc-
tor in the static case

In the present section we shall illustrate quantitatively the influence of the
second-order asymptotic term or the first corrector on the plate deflection. We
shall analyse only the static boundary-value problem for circular plates. Thus
all variables do not depend on time and the inertial terms are neglected. Also,
initial conditions are obviously absent.

The asymptotic theory is applied to a circular isotropic plate of thickness 2h,
of the radius R, and subjected to the uniform vertical load g3 acting on Ff. Let
r3(p) be the deflection of the plate mid-plane accounting for the corrector. In
the polar coordinates (p, €) we have

(8.1) 73(0y 3)}.520 = 73(p, 0) = r3 = w’(p, 0) + h®w?(p,0).

To find r* we have to solve the following boundary-value problem:

(5-2) Derfor o ()]} =0 wa
(8.3) T3 = —*———10(‘?% 7 (;ﬂ? + %;—p)wo on I,
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2ER®
Here E is the the Young modulus, v denotes the Poisson ratio, D = m 4
p isthe radial running coordinate in the polar coordinate system.

First, we solve the classical bending problem

(8-6) D%ddp{ di[pdp( gt )]}=93 mih,
(8.6) w? =0, t%:0 onT.

It is known that the solution of Eqgs.(8.5),(8.6) has the form [22]

g3 (R? — p*)*
64D

Taking into account (8.7) in (8.3) and (8.4) we get

(8.7) w’ =

h2v R?
-4) =) ggD pa
h2(8 + v R
(8.9) 8,;1"3:—10%1_”; . g;D on I,
& 1 d 0 93R2
swce(dpz—ir;%) = 3D ol

Finally, solving Eq.(8.2) with the boundary conditions (8.8) and (8.9), we
obtain
g3 (R? — p%)? g3 h?

(8.10) 73 =r3(p) = 1D +80D(1_y) [R%(16 + v) — 2p%(8 + v)].

For the central point of the plate, where p = 0, we get the following formulae:

g3 R* g3 h2R?*(16 + v)

81 =P ="eap * "s0DL—v)
3RA(1 — 12)

(8.12) w(0) = e - /B,

(8.13) Py TR ENGED)

160 h
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Table 1. Influence of the first corrector on deflection of clamped circular isotropic
plate, p = 0 (centre of the plate)

Y 2 vk
h/R hw";’ if v =0.3 hw‘;’ if v = 0.45
1/20 7% 6.0%
1/15 8.3% 10.6%
1/10 18.6% 23.9%

Let us present the above results in the form of Table 1. This table shows a
relative participation of the first corrector included in r3(0).

For p = R the boundary conditions for the deflections w®, and w?, are spec-
ified by

2 9332 v
= : I
e R

From Table 1 we conclude that the influence of w? may be significant, de-
pending on the Poisson ratio, the thickness and the radius of the plate.

9. Comments on related papers

Refined theories of plates can be derived either with the use of asymptotic
expansions or by assuming suitable displacements or stress hypotheses. The aim
of this section is to perform a comparison of our results with the approaches
used in the papers [7,8,9,11,21]. In our case the displacement distribution is
obtained by using asymptotics. In contrast to the approach used in [9,11,21], the
asymptotic method does not require any assumptions on the kinematics.

The papers [9,21] are devoted to dynamics of thick and moderately thick
plates, respectively. In [9] the kinematical assumptions due to Hencky are used:

(91) uc&("‘ciat) =T3 Qf)a(l‘ﬁ,t), u3($i,t~) = w(:rmt], (l’,ﬁ — ]-1 2r = 1:223)

where ¢, denotes rotation of the plate cross-sections. In the equations describing
the free vibrations plate problem appears the term: —4ph%/3(1 — v) - A Aw". It
coincides with the rotational inertia term obtained in our paper for the isotropic
case, see Eq.(7.13), provided that A = (17 — 7v)/10. We observe that in [9] four
alternate values of A are cited, for which the obtained solution was discussed.
In [21] a special form for shear stresses (not for displacements) was assumed.
Moderately thick plate on an elastic foundation yields the equation describing
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free vibrations of the plate. In this governing equation, a term similar to our
second order term(the corrector)

34 — 14v

h3A on
Ay o 2h

(9.2)

is involved. However, in [21] the numerator is equal to 34 — 12v.

In the paper [11] Jemielita’s kinematical assumptions are admitted. The dy-
namic problem for thick, isotropic plate is analysed starting from the Hamilton
variational principle. First, the energy-consistent model is derived. Then, ratio-
nal simplifications of the three functionals used yield, in the static case, Reissner
equations. In the equation of motion obtained in [11] for the averaged plate de-
flection the term (9.2) appears. However, in the model studied, also other terms
are present in this equation. Such a difference is due to the fact that in [11] the
kinematical hypothesis has been a priori assumed.

The developments of the paper [7] are based on using some averaged values in
Reissner’s sense. Finally, one derives a Karman-Reissner nonlinear anisotropic
plate model and its linear approximation. The elastic anisotropic material is
described by means of engineering coefficients, E;, v;;.

In [8] the refined 2-D dynamic equations of an isotropic thin plate are derived
from 3-D equations of elasticity with the use of asymptotic method. The small
parameter A is defined as follows: A = €'/9, ¢ = h/l, 2h — thethickness,
where [ is the characteristic plate dimension, and r = p/q, p,q— integers.
The asymptotic expansions for displacements are admitted in the form:

00 o0
(9.3) vy, =3 Z ¢ ’uf), v, =" Z Af vi’), v = tipfh, U=k
=0 =0

The formula for v, is similar to Eq.(9.3);. The coefficients vgs), ufﬁ" involve ex-

pansions:

K K+1
o =3¢k, o) =3 ko), ¢=2/m,
k=0 k=0

where K = s/q, if it is an even number, and K = (s/¢—1) in the opposite case.
For the quantities 'U'Sc), US‘) the recurrence formulas are derived in [8].

For various approximations, various dynamical models are obtained. For in-
stance, if s < 6¢ — 6p then in the dynamical equation the following term is

present:

(9.4) =0 57 2%
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where 7 = t/tg, to=1c“"1y/p/E. In this theory an important role is played by
the parameter w = 2r characterising the time-dependence of stresses. If w < 0,
the quasistatic deformation is described. The remaining two classes of this theory
are characterised by: 0 < w < 2 and w > 2. The second class contains the 3-D
dynamic deformation.

At the end of the comments given above, we want to mention that an useful
introduction to engineering approaches of formulations of refined plate models
may be offered by the monograph [14].

Comparing our results with other contributions we conclude that second
order terms (the correctors) also appear in refined engineering models. However,
these terms are not always exactly the same, though very similar. Also, in our
case the corrector has been rigorously derived and justified.

Appendix

The following lemma was formulated in [16].
LEMMA A.
Let Y be a space such that {v € H'(B) | v =0 on I} }JCYCH'(B)
and let G be a linear form on Y given by

VveY, Gw)=(@, v)— (¢a)Oaw) + / [rw(l) + sw(—l)] dz) dzs
0

with P, Ga, Oaga € L*(B) and r, s € L?(£2). Then the problem
o€ L*(B), YveY, (o,dv)=G@)

has a solution if and only if the following compatibility conditions are satisfied:

1

(Ch) /(p +0aga) dzs + T + 5=0,
-1
(Cy) YVvey, [qnnc,vdF:O.
I

The solution o is given by

T3 1

1
d.= /(—p_aﬂqﬂ) dzz + E/(p+60Qn) dzz + ‘;'(T_S)-
—1 =1
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Similarly, let Z be such that {(va) € H(B)? | vo =0o0n I§}CZCH'(B)? and let G
be a linear form on Z given by

Y (va) € Z, Gl("’»’a) = (PasVa) — (%B‘aa’”'ﬁ) -+ /[rava(l) + Sava(_l)] dzydz;
n

with  Pa, Gag, 989ap € L*(B), and 74, sq € L*(R).
Then the problem

Oa € LQ(B)| Vg € Z, (0a, O3va) = Gi(va)

has a solution if and only if the following compatibility conditions are satisfied:

1
(D) [ i i) e s i =0,
=1
(D5) Vg € 2, /qag fig Vg dI" = 0.
I3

The solution o, (@ = 1,2) is given by

T3 1

; | 1
%0 = [(~pa = 0ptas) das + 5 [(ba+ O9tug) dos + 3(ra = sa).
=1 -1
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