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CONSTITUTIVE EQUATIONS, which characterize the response of a material to future
loadings, must depend on state variables that, in principle, can be measured with-
out any prior knowledge of the past history of deformation of the material. This
notion of state is consistent with that proposed by OnaT [3] and it is consistent with
GILMAN'S comment [4] on physical problems with using total strain as a state vari-
able in plasticity theory. Within the context of this notion of state, elastic strain is a
state variable, whereas the total strain and plastic strains are not state variables since
they are measured with respect to an arbitrary reference configuration. Alternative
constitutive equations which are formulated in terms of elastic deformation measures
have been discussed in the literature for finite deformations of elastically isotropic
and anisotropic elastic-plastic and elastic-viscoplastic materials. These constitutive
equations have the physical properties that they are independent of the choice of the
reference configuration, and they do not utilize any measures of total deformation or
plastic deformation. The main objectives of this paper are to discuss physical reasons
for abandoning total and plastic deformation measures in plasticity and viscoplastic-
ity theory, and to present an alternative small deformation theory which is formulated
in terms of elastic strain. Also, aspects of alternative finite deformation theories are
reviewed.

1. Introduction

THE MAIN OBJECTIVES of this paper are to discuss physical reasons for aban-
doning total and plastic deformation measures in plasticity and viscoplasticity
theory and to present an alternative small deformation theory which is formu-
lated in terms of elastic strain. This point of view is motivated by the notion that
deformation measures are, by definition, relative measures which depend explic-
itly on the choice of the reference from which they are defined. More specifically,
total strain is a measure of the deformation of the body from a fixed, but ar-
bitrary reference configuration. Consequently, the total strain measure depends
explicitly on the choice of the reference configuration and thus inherits all of the
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arbitrariness of this choice. Similarly, plastic deformation and strain measures
are also defined relative to the reference configuration so they too inherit certain
arbitrariness. Some ideas related to this perspective have been presented in [1,2].

To be more specific, it is emphasized that given a sample of material in its
present configuration, there is no set of experiments that can be used to deter-
mine completely the past history of deformation of the material or the arbitrary
choice of the reference configuration. Moreover, the physical response of a ma-
terial, which is characterized by its constitutive equation, cannot depend on the
arbitrary choice of the reference configuration. Consequently, such constitutive
equations must depend on variables which characterize the state of the material.
To avoid arbitrariness, these state variables should have the property that, in
principle, they can be measured (given enough identical samples of the material
in its present configuration) without any prior knowledge of the past history of
deformation of the material. This notion of state is consistent with that pro-
posed by ONAT (3] and it is consistent with GILMAN’S comment [4] on physical
problems using the strain as a state variable in plasticity theory:

"It seems very unfortunate to me that the theory of plasticity was
ever cast into a mold of stress-strain relations because ’strain’ in the
plastic case has no physical meaning that is related to the material of
the body in question. It is rather like trying to deduce some properties
of a liquid from the shape of the container that holds it. The plastic
behaviour of a body depends on its structure (crystalline and defect),
and on the system of stresses that is applied to it."

Further in this regard, it is noted that some quantities like position, velocity,
temperature, force and stress on the outer surface of a body are presumed to
be measurable directly. Whereas, other quantities like a hardening variable in
plasticity theory are presumed to be measurable indirectly by interpreting the
results of experimental data using a general but specific constitutive equation.
Moreover, since only constitutive equations for simple materials are considered,
it is sufficient to confine attention to the response of uniform, homogeneous
materials. Also, the complications of analyzing a sample of material which has
been subjected to inhomogeneous deformations and which can have residual
stresses, is not considered here.

An outline of this paper is as follows. Section 2 distinguishes between the
notions of material states and configurations and it describes some properties of
a thermoelastic solid. Section 3 presents a dissipation inequality for the purely
mechanical theory and Sec. 4 discusses the main ideas of this paper within the
context of the small deformation theory. Then, Sec. 5 and 6 briefly review alter-
native constitutive equations for finite deformations of elastically isotropic and
elastically anisotropic materials, respectively, and Sec. presents conclusions.
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Throughout the text, vectors and tensors are denoted by bold- faced symbols;
a - b denotes the usual dot product of two vectors a and b;A - B = tr(ABT)
denotes the dot product of two second order tensors; tr(A) denotes the trace
of A; BT denotes the transpose of B; A~! denotes the inverse of A; a®b
denotes the tensor product of a and b; and I is the unit second order tensor.
Also, the usual summation convention is implied over all repeated indices except
(e,p,m) which are used to denote elastic, plastic, and microstructural quantities,
respectively.

2. Material states, configurations and a thermoelastic solid

The notion of a material state is both mathematical and physical. From the
mathematical point of view, a material state is the collection of all variables
that are needed to predict the response of the material to future mechanical
and thermal loadings. On the other hand, from the physical point of view, these
state variables are restricted only to those variables which can be measured, in
principle, by experiments on identical samples of the material. For the present
discussion, it is convenient to introduce the notion of the Reference State.

The Reference State of a material is any state of the material when
it is stress-free and at absolute reference temperature ;.

Here, a thermoelastic solid is assumed to have a unique shape in its Reference
State. Consequently, since the stress and temperature can be measured, it is
always possible to determine this reference shape by unloading the material to
its Reference State. This also means that it is natural to introduce a measure of
elastic strain from this reference shape. Thus, the elastic strain and the absolute
temperature @ are the state variables which characterize a thermoelastic solid.
Moreover, by definition, the elastic strain vanishes whenever the material is in
its Reference State.

The notion of a configuration is a mathematical mapping of the position of all
material points onto the physical space, as well as a mapping of all of the state
variables onto an appropriately dimensioned vector space. In particular, with
reference to a fixed origin, a material point Y is mapped onto the position vector
X in the fixed reference configuration and the same material point is mapped
onto the position vector x in the present configuration at time t.

Consequently, a configuration is a mathematical representation of the physi-
cal state of the material. Moreover, since the notion of the Reference State fixes
only the values of the stress and the temperature, there are an infinite number
of configurations of a body in its Reference State. These configurations include
all superposed rigid body motions as well as a group of homogeneously deformed
configurations for elastic-plastic materials.

http://rcin.org.pl



522 M.B. RUBIN

3. Rate of material dissipation in the purely mechanical theory

To present the physical argument in its simplest terms, it is convenient to
focus attention on the purely mechanical theory for which @ equals the reference
temperature #y. More specifically, with reference to the present configuration,
it is convenient to consider a material region P with smooth closed surface JP.
Now, the rate of material dissipation D can be defined by the equation

(3.1) f’pdu:w—fc—a,
P

where a superposed dot denotes material time differentiation, W is the rate of
work due to the specific (per unit mass) external body force b and the surface
tractions t, K is the kinetic energy, and U is the internal strain energy due to
the specific strain energy function X, which are defined by

(3.2) W=[pb-vd*u+/t-vda, Kz-/-%pv-vdv, U:/pEdv.
P ap P P

In these formulas, p is the present value of the mass density, v is the absolute
velocity of a material point, dv is the present element of volume and da is the
present element of area.

Next, using the conservation of mass, the balances of linear and angular
momentum, the fact that the traction vector is related to the Cauchy stress T
and the outward unit normal vector n to dP by the formula t=Tn, and using
standard continuity assumptions, it can be shown that the local form of the
dissipation D becomes

(3.3) D=T-D-pE>0.

In this expression, D is the symmetric part of the velocity gradient L=0v/dx
and W is its skew-symmetric part, which are defined by

(3.4) L=D+W, D= %(L+LT), W= %{L—LT).

Moreover it is assumed that the rate of material dissipation D must be non-
negative for all motions.

4. Small deformation theory of elastic-viscoplastic materials

A review of the small deformation theory of plasticity and thermoplasticity
can be found in [5]. Within the context of this theory, the plastic strain €, can
be introduced through an evolution equation for its rate of the form

(4.1) ¢=D,, D,=TD, r>0, D=0,
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where D, represents the relaxation effects of plasticity on the stress. In this
equation, the symmetric second order tensor ]_)p controls the direction of plastic
strain rate and the non-negative scalar I' influences the magnitude of plastic
strain rate. Also, it is common to introduce hardening variables which control
both the isotropic hardening and directional hardening [6]. However, here, it
suffices to consider only isotropic hardening « which is determined by integrating
the evolution equation

(4.2) k =TK,

where K requires a constitutive equation. Moreover, for nonporous metals, it is
usually assumed that plastic deformation is isochoric so that D, must satisfy
the restriction

which causes ¢, to be a deviatoric tensor. Furthermore, it can be observed from
the evolution equations (4.1) and (4.2) that when I' vanishes, both the plastic
strain rate and hardening rate vanish, so the material response becomes elastic.

If both of the evolution equations (4.1) and (4.2) are homogeneous of or-
der one in time, then the constitutive equations characterize rate-insensitive
plasticity. Otherwise, the constitutive equations characterize rate-sensitive vis-
coplasticity. For plasticity theory with a yield function [5], the scalar I" in (4.1) is
determined by a consistency condition in both the stress-space and strain-space
[7] formulations. For the overstress formulation of viscoplasticity [8,9], the yield
function is retained but the consistency condition is no longer enforced. Also,
an alternative unified formulation of viscoplasticity can be proposed which does
not use either a yield function or the consistency condition [10-12].

Total strain € is a measure of the deformation of the material from a specified
fixed reference configuration. Within the context of the small deformation theory,
the total strain can be separated into a pure measure of dilatation £ and a
deviatoric tensor €, which is a pure measure of distortion, such that
€ ! )
§I+€, g=e€+L, €~IT=(.

Moreover, these quantities can be obtained by integrating equations for their
rates which can be approximated by the formulas

(4.5) e=D-I, e:n':n-%(n-m,

(4.4) €=

where D’ is the deviatoric part of D.
For an elastic material, it is common to express the stress as a unique function
of the total strain & that is insensitive to the history of loading. In contrast, the
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response of an elastic-plastic material depends on the history of loading and the
stress can have different values for the same value of total strain. One of the
reasons for introducing the plastic strain €, in plasticity theory is to account for
this history-dependence. Also, since it is usually assumed that stress depends on
elastic strain €., it is necessary to introduce an additional definition of elastic
strain as a function of total strain and plastic strain. In the small deformation
theory this definition is simply the difference between the total and plastic strains

(4.6) Ee =€ —Ep

Furthermore, using the fact that ¢, is a deviatoric tensor, it follows that the
elastic strain can be represented in the form
£
(4.7) 5= 381 +iél, =8, e.=&—8,

where €, is a measure of elastic dilatation and &, is a measure of elastic distortion.
Next, it is assumed that the stress T and the strain energy I are functions
of the elastic strains only

(4‘8) T = T(EErE;)Y E = 2(5815‘;)1
and that the constitutive equation for stress satisfies the restriction that
(4.9) T(0,0) = 0.

It then follows from (4.5) and (4.7) that the dissipation inequality (3.3) re-
duces to

0% 0% 0%

Dy 2 0.

For plasticity theory with a yield function [5,7], it can be shown by considering
elastic response or elastic unloading, that the stress must be determined by
derivatives of the strain energy function such that

98 ., 0%
de,’ T“"aeg‘

(4.11) T=-pI+T, p=—p

where p is the pressure and T’ is the deviatoric stress. Thus, the dissipation
inequality reduces to

(4.12) D=T D, >0,

This condition places a restriction on the tensor D, which ensures that plasticity
is dissipative. Next, for viscoplasticity, with or without a yield function, the
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stress is assumed to be given by the expressions (4.11) for all motions so that
the dissipation inequality again reduces to (4.12). Moreover, it is noted that
more general constitutive equations which include dependence of the energy on
the hardening variables can be considered without difficulty [13,14].

Within the context of this formulation, it is necessary to specify initial con-
ditions for the variables

(4.13) (e, €, &p, &),

in order to integrate the evolution equations (4.1), (4.2) and (4.5). The main
objective of this paper is to emphasize that total strain and plastic strain are
not state variables that can be measured in the present configuration, so that
an alternative formulation of plasticity theory is required which depends only on
measurable quantities.

To this end, it is noted that in the present loaded configuration it is possible
to measure the force acting on a surface and its surface area, so that it is possible
to measure the traction vector acting on an arbitrary surface of the body. Since
attention is confined to homogeneous deformations with homogeneous states of
stress, it follows that all components of the stress tensor T can be determined
by measuring the traction vector on three planes whose normals are linearly
independent.

Next, it is emphasized that the constitutive equation for stress (4.11) de-
pends only on the elastic strains £, and €),. Thus, assuming that this functional
form is invertible, it is possible to determine the values of (e, e;) as functions
of the stress T. Consequently, the current values(e,, €,) of elastic strain can be
determined indirectly by measuring the current value of stress T. In this re-
gard, it is important to emphasize that in contrast with the stress T, which
can be determined by direct measurements, the values (g.,€.) of elastic strain
are determined only indirectly because they depend on the specific choice of the
constitutive equations. This fundamental difference between quantities that are
determined by direct measurements and other quantities that are determined
only by indirect measurements is a consequence of the essential physical fact
that different materials respond differently to the same stress state. More specif-
ically, the elastic strains for rubber and steel are different when the two materials
are subjected to the same stress state.

The hardening variable & is another example of a quantity that depends
on specific constitutive assumptions and can only be determined by indirect
measurements. For example, in the simplest theory with a yield function based
on the von Mises stress, the value of k determines the current value of the
yield strength. Given a specific definition of yielding (either based on a specified
amount of inelastic deformation or based on a specified amount of change in
stiffness), experiments can be performed on a finite set of identical samples to

http://rcin.org.pl



526 M.B. RUBIN

determine the current value of the yield strength. For a more general theory,
the hardening variable k measures the resistance to plastic flow and usually
appears in the scalars I and K in (4.2). Again, by comparing the predictions of
a specified set of constitutive equations with experimental data (on a finite set
of identical samples), it is possible to determine the initial value of hardening
that is consistent with the proposed set of constitutive equations.

Physically, the above discussion indicates that the values of the elastic strains
€e and €, and the value of x can be measured, in principle, in the present
configuration. In particular, the initial values of these variables

(414) (581 EL: N’)!

can be measured without any prior knowledge of the past history of loading.
Thus, these quantities are state variables in the sense described in the Introduc-
tion.

In contrast, it follows from the definition (4.7)s that only the difference be-
tween the total deviatoric strain €’and the plastic stain €, can be measured.
More specifically, it is obvious that the elastic strain and the stress remain un-
affected by the transformation that subtracts an arbitrary deviatoric tensor &’
from both the total deviatoric strain €' and the plastic strain &, such that

(4.15) e =€ -&, e =¢ -7,
and the elastic strain €', associated with these transformed variables becomes

(4.16) e, =€"—¢

=g -5, =¢€..

Physically, this means that the initial values for €' and €, can never be
measured without prior knowledge of the past history of deformation since they
always include the arbitrariness of the deviatoric tensor €' . Consequently, the
initial values of these variables, which are required in the integrate the evolution
equations (4.5)s and (4.1);, cannot be determined uniquely.

In other words, only the difference between the total deviatoric strain €' and
the plastic strain €, influences the response of the material. Consequently, the
individual actual values of these quantities have no physical meaning, as was
clearly stated by GILMAN [4]. This also means that the notions of total strain
and plastic strain should be abandoned in the formulation of plasticity theories.

For the small deformation theory, it is quite easy to formulate constitutive
equations for plasticity and viscoplasticity which are free from these physical
inconsistencies. In particular, it is possible to differentiate equations (4.7)2 3 with
respect to time and to use the expressions (4.1); and (4.5) to develop evolution
equations for the elastic strains £, and €/, directly of the forms

(4.17) ée=D-1, &y=D'-D,.
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Now, since the elastic strains &, and €', are state variables, which can be
measured in the present configuration, the initial conditions which are required
to integrate these evolution equations can be determined without arbitrariness.
The resulting theory is characterized by the constitutive equations for the strain
energy (4.8)s, the stress (4.11), the rate of plastic dissipation Dy, the expression
for the hardening rate K (4.2), and the evolution equations (4.2) and (4.17). This
theory has the properties that it is independent of the choice of the reference
configuration, and it does not utilize any measures of total deformation or plastic
deformation. The influence of plastic deformation only enters the constitutive
equations through the rate of relaxation Dy, which is a function of state variables
that can be determined in the present configuration only. Also, when I' vanishes,
the plastic deformation rate vanishes and the constitutive equations characterize
the usual small deformation theory of elastic materials.

A rather standard set of constitutive equations for an elastically isotropic
material can be obtained by specifying
1
2
where the material constants k and g are the bulk modulus and the shear mod-
ulus, respectively, m is a material constant that controls the rate of hardening,
and Z; controls the saturated value of hardening. It then follows from (4.11) and
(4.1)y that

(4.18) pE = —kel + pe'e-€'e, Dp=¢€'., K=m(Z - k),

4.19 P= _-kfe’ T = 2#5’8, D, = FE’e = LTla
P 2“

which shows that the rate of relaxation D, is consistent with the classical
Prandtl-Reuss form. SWEGLE and GRADY [15,16] have developed an overstress
model for modeling viscoplasticity in shock waves which is equivalent to speci-
fying I' in the form

— K >? 3
(4.20) o il B B

K 2
where 'y is a material constant controlling the strain-rate sensitivity, g is the
annealed value of hardening, o, is the von Mises effective stress, and the McAuley
brackets are defined by

(4.21) &g S=

Alternatively, a modified version of the Bodner-Partom viscoplasticity model
without a yield function can be obtained by taking I" in the form [17]

(4.22) I = Dyexp [—%{gi}“] ;
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For large values of stress (o, >> k) or very high strain rates, the rate-
dependence of the material is controlled almost entirely by the material constant
[y. On the other hand, at lower stresses (o, < k) or lower strain rates, the rate-
dependence of the material is controlled mainly by the material constant n. Both
of the functions (4.20) and (4.22) cause the evolution equation (4.17); to be a
stiff differential equation which requires special numerical methods that have
been developed in [18-20).

5. Finite deformation of elastically isotropic elastic-viscoplastic ma-
terials

ECKART [21] seems to have been the first to develop a properly invariant
theory of elastically isotropic inelastic solids which does not depend on the
choice of the reference configuration or any measure of total or plastic defor-
mations. LEONOV [22], independently, developed the same theory for describing
the response of polymeric liquids. The main idea in this theory is to propose
an evolution equation directly for an elastic deformation tensor. Specifically, the
symmetric tensor B, is introduced as a measure of elastic deformation which is
determined by the evolution equation

(5.1) B.=LB, +B.L” -2D,, D,=TD,,

where I' and I_.?‘p have the same physical meanings as those quantities related to
(4.1),. Next, a pure measure of elastic dilation J, is defined by the formula

(5.2) Jeo = [detB,]'/?,
so that

7 1 > —1 B -1
(5.3) Je= 32 [B.-B;!| = J[D-1-TD, - B;"].

Consequently, the condition that plastic deformation rate is isochoric and
does not influence the elastic dilation, requires D, to satisfy the restriction that

(5.4) D,-B:'=0

Thus, it is possible to use the notions proposed by Flory [23] to define a
pure measure of elastic distortional deformation B’, as a unimodular symmetric
tensor

(5.5) B, = J;?B,, detB'.=1.
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Then, the evolution equations for the pure measure of elastic dilation Je and
the pure measure of elastic distortional deformation B’, can be written in the
forms

(5.6) §=JD-1, 'B.=E8.4B 1%~ %(D -I)B', — 2I'D,.

Moreover, a specific form for f)p and a numerical procedure for integrating
the evolution equation (5.6)2 can be found in [20].

Under superposed rigid body motions (SRBM) it is well known that the mass
density p in the present configuration and the kinematic quantities D and W
transform to the values p*, D*, W* in the superposed configuration such that

(5.7) pt=p, D*=QDQT, W+=QwWQ'+q,

where Q(t) is an arbitrary proper orthogonal tensor function of time only char-
acterizing the rigid rotation, and Q(t) is the skew-symmetric tensor function of
time related to Q

(5.8) QTQ =1 detQ=1, Q=0Q, 0T=-q.
Also, the stress T and the strain energy X transform by the formulas
(5.9) T+ =QTQT, Tt=1.

Next, with the help of the assumption that T, f)p and K satisfy the transfor-
mation relations

(5.10) rt=T, Bf =QD;Q", K*=K,
it follows that B,, J.,B’c and & transform under SRBM by
(5.11) B =0B.Q%, Jr=J, Bf=QBRQI E*=K

Here, and throughout the text, a superposed () is added to any variable to
denote its value in the superposed configuration.

Furthermore, the stress and the strain energy are functions of elastic defor-
mation quantities

(5-12) T= T(Jes B’e]: = E: (Jea B!eJ
where the constitutive equation for stress satisfies the restriction

(5.13) T(1,I) =0
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However, since ¥ must remain unaltered by SRBM, it can be a function of
B’, only through its two nontrivial invariants, which can be expressed in the
forms

(5.14) oy =B -1 on =B, B,
so that ¥ becomes
(5.15) X = X(Je, a1, a9).
Next, using the evolution equation (5.6), it can be shown that

(5.16) Ai =0 [B’e = %(B’,, -1)1] ‘D =2rh, I,

Go =4 [B’E = %(B'e - B'E)I] ‘D —4rD, - B,

Thus, the constitutive equations

S O
2= 1003‘}&\

A (6) ! 1 ' _62 12 . !
(5.17)  T'=2p5- [Be 3(}33-1)1] +p5 [Be—a(Be B',)I|,

can be used to reduce the dissipation inequality (3.3) to the form

o 0 =
5.18 D=2I'|p—I —B/.| - >0
(5.18) ot 2Bl D, 20,
which restricts the tensor ]-Jp. Also, in (5.17);, use has been made of the con-
servation law of of mass which relates the density p to the density pp in the

Reference State
(5.19) pde = po.

This theory for elastically isotropic elastic-viscoplastic materials is character-
ized by the constitutive equations for the strain energy (5.15), the stress (5.17),
the rate of plastic dissipation (5.1)2, the expression for the hardening rate K
(4.2), and the evolution equations (4.2) and (5.6). Assuming that the stress is
an invertible function of the elastic deformation quantities J, and B/, it follows
that

(5.20) {Je, B 5},
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are state variables since they can be measured, in principle, without any prior
knowledge of the past history of deformation of the material. In particular, the
initial values of these quantities, which are required to integrate the evolution
equations (4.2) and (5.6), can be measured without arbitrariness. Also, when I’
vanishes, the plastic deformation rate vanishes and the constitutive equations
characterize general elastically isotropic materials, with B, reducing to the left
Cauchy-Green deformation tensor B.

A simple specific set of constitutive equations can be obtained by specifying
the strain energy ¥ and the plastic deformation rate tensor Dy in the forms
(13,14]

1 : - : 3
(521)  poT = k[l = Je —In(Je)] + sp(en —3), 2Dy =Be — =T,
Bi=tg
where again the material constants k and g are the bulk modulus and the shear
modulus, respectively. It then follows from (5.17) and (5.19) that stresses become

1 1
(5.22) p=k [7 - 1] o i iyt [B’,_, - E(B'g . I}I] :
€
Also, the constitutive equation for K is given by (4.18)3, I" can be taken in the
forms (4.20) or (4.21), and the numerical methods developed in [18-20] remain
applicable to this finite deformation theory.

6. Finite deformation of elastically anisotropic elastic-viscoplastic ma-
terials

A critical review of finite deformation theories of elastically anisotropic elastic-
plastic materials has been presented by NAGHDI [24]. In order to model anisotropic
response, these theories are usually formulated in terms of deformation tensors
that are related to the reference configuration and hence are trivially invariant
under SRBM. However, as has been previously discussed, the specific choice of
the reference configuration is a part of the history of the material that can never
be determined by experiments on identical samples of the material in its present
state. Consequently, it is necessary to consider an alternative formulation that
is capable of describing the material anisotropy. One such formulation has been
motivated by the physical discussion presented by BESSELING [25] and has been
developed in terms of physically based microstructural variables [13,14].

The response of a material that is elastically anisotropic depends on the
orientation of the material relative to the loading direction. This means that
there are specific material directions which are related to the microstructure of
the material and which can be determined by experiments. Within the context
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of this alternative formulation of plasticity theory [13,14], these microstructural
directions in the present configuration are represented by a triad of linearly
independent vectors m;(: = 1,2, 3), which characterize the present state of the
material. In this theory, it is convenient to introduce the metric

(61) My = Il - My,

which measures deformation of the microstructure relative to the Reference State
of the material. Moreover, the vectors m; can be normalized so that m; become
an orthonormal set of vectors whenever the material is in its Reference State

(6.2) m;j = 0;; in the Reference State,

where d;; is the Kronecker delta symbol. However, for a general material state,
the metric m;; attains the values different from d;;.

The general theory requires evolution equations for the vectors m;. In order
to motivate the forms of these evolution equations, it is recalled that the rate
of change of a macroscopic material line element dx in the present configuration
can be expressed in the form

(6.3) d% = L dx.

An important physical characteristic of the vectors m; is that, in general,
they characterize the elastic deformation of the microstructure which is not di-
rectly connected with the deformation of macroscopic material line elements dx.
To model this physical distinction between the evolution of the microstructure
and the macroscopic total deformation rate, the evolution equations for m; are
specified by modifying (6.3), such that

(6.4) m; =L,m;, L,=L-L,

In these equations, Ly, denotes the microstructural deformation rate, and L,
is a second order tensor that characterizes the relaxation effects of plasticity. In
general, L, has a symmetric part D, and a skew-symmetric part W,

1 1
(65)  Ly=Dp+W,, Dp=3(L+ Bl W= 5(Tp = SN

and D, and W, can be expressed in the forms
(6.6) D,=TD,, W;=TW,,

where T',D, and W, require constitutive equations. In this regard it should be
mentioned that the term W, which is currently referred to as the plastic spin in
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crystal plasticity [26], is not new and was required in the constitutive equations
for elastically anisotropic material response proposed by BESSELING [25].

Since m; are normalized vectors that measure the deformation relative to the
Reference State, it is possible to introduce the dilatation J, and a pure measure
of distortional deformation m;;, both measured relative to the Reference State,
through the definitions

(6.7) Jo=m; xmg-m3>0, m'y=J " m;.
Moreover, by using (6.4), it can be shown that
(6.8) Je=Jo[D - 1-D,-1).

Consequently, the condition that plastic deformation rate is isochoric and
does not influence the elastic dilation requires D, to satisfy the condition that

(6.9) D, - I=0.

Also, it is possible to express the derivatives of J, and m';; in the forms

: . 1
(6.10) Je = J,:D o B 1’?1"5_7' =2 m',- ® m'J- = gmf,‘jl] -D - 2[1‘1’1’;‘ ® m'j] : Dp,

where the vectors m'; are defined by
(6.11) m'; = J;73m;.

Thus, it follows from (6.4) and (6.10)2 that spin tensor W, affects only the
orientation of the vectors m;, and specifically does not influence the rate of
change of the elastic distortional deformation tensor m';;.

These constitutive equations are properly invariant under SRBM provided
that the constitutive equation for L, satisfies the transformation relations

Fi T
(6.12) L7 =QL,Q".
Consequently, various other quantities transform under SRBM as follows:
(6.13) I'" =T, Dj =QD,Q", W, =QW,Q",
m:_ = an-n m,;"‘ = Qm’i)
J:' =i m;'; = mj, m';;- = m",-j.

Since J, and m';; measures of elastic deformation from the Reference State,
it follows that the stress and the strain energy are functions of the forms

(6.14) T = T(J.,,m'y,mY), T=5(J,my),
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where the constitutive equation for stress satisfies the condition
(615) T(l,é‘;‘j,m’g) =)

However, since ¥ must remain unaltered by SRBM, it can be a function of
m’; only through the metric m';; so that £ becomes

(6.16) 2 = B(Le, m')-

Thus, with the help of (6.10), it can be shown that the constitutive equations

() ox 1
(6.17) P=—Pogy T = 29@ m’; @ m'; — gm’fjl ;
and the condition(6.9) can be used to reduce the dissipation inequality (3.3) to
the form

(6.18) D=TT D, >0,

which restricts the tensor D,. Also, in (6.17); use has been made of the law of
conservation of mass (5.19).

This theory for elastically anisotropic elastic-viscoplastic materials is char-
acterized by the constitutive equations for the strain energy (6.16), the stress
(6.17), the relaxation effects of plasticity (6.5), (6.6), the definitions (6.7), the
expression for the hardening rate K (4.2), and the evolution equations (4.2) and
(6.4);. In this theory, the microstructural vectors m; are state variables since
they can be measured, in principle, without any prior knowledge of the past his-
tory of deformation of the material. When I' vanishes, the relaxation effects of
plasticity vanish and the constitutive equations characterize general elastically
anisotropic materials.

For a general anisotropic response, the initial values of m; which are required
to integrate the evolution equations (6.4);, can be measured. Moreover, m; are
directly connected to identifiable directions in the microstructure of the material.
Depending on the symmetry properties of the specific material under considera-
tion, there can be some degree of arbitrariness in the determination of the initial
values of m;. However, any such arbitrariness must be reflected in corresponding
restrictions on the symmetry of the strain energy function which cause the re-
sulting material response to be uninfluenced by this arbitrariness. For example,
if the material is elastically isotropic, then there is no physical experiment that
can distinguish between the directions m;, my and my. For this case, the strain
energy function must depend on m';; only through its two invariants, which are
related to the elastic deformation tensor B', by the equations

(619) B, =ms@ml, o =8B.:I=ms a=08, B,=mlyml;
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Due to the summation over the repeated indices in these expressions, it is
obvious that these variables cannot distinguish between the 1, 2 and 3 directions
in the material’s microstructure.

Since J, and m/;; are trivially invariant under SRBM, the strain energy func-
tion can be an arbitrary function of its arguments which satisfies restrictions
related to (6.15). Moreover, the tensors D, and W,, are properly invariant un-
der SRBM (6.13) if they are expressed in terms of components relative to m; of
the forms

(6.20) D, = D¥(m; ® m;), W, =WF(m;®my),

where DF. and Wi’; are arbitrary functions (which remain unaltered by SRBM)
of the state variables {.J,, m’;;}. Specific examples of these tensors can be devel-
oped to incorporate standard expressions used in crystal plasticity [26] without
difficulty.

7. Conclusions

The discussion in this paper emphasizes the notion that neither total strain
nor plastic strain are measurable quantities in the present configuration of an
elastic-plastic material. Consequently, total strain and plastic strain are not state
variables and therefore should be abandoned in the formulation of constitutive
equations. An alternative approach to the development of constitutive equations
for elastically isotropic response of inelastic materials [21, 22| has been reviewed
in both the small deformation and the large deformation contexts. Within the
context of this alternative approach, evolution equations are proposed directly
for elastic deformation quantities and hardening (4.14) or (5.20), instead of for
total deformation, plastic deformation and hardening (4.13). Moreover, since
Cauchy stress is measurable in the present configuration, the elastic deforma-
tions can be obtained by inverting the constitutive equations for stress (4.19) or
(5.22), so the initial conditions for the evolution equations (4.17) for (5.6) can be
determined without ambiguity. In contrast, the initial conditions for the evolu-
tions of total strain (4.5) and plastic strain (4.1) cannot be determined without
arbitrariness which has no physical relevance to the prediction of subsequent
material response.

An alternative formulation for elastically anisotropic inelastic materials has
also been discussed which introduces evolution equations (6.4) for three vectors
characterizing the absolute orientation and elastic deformation of the microstruc-
ture. Again, the initial values of these vectors are measurable so the evolution
equations can be integrated without ambiguity. Also, these vectors are used to
determine the stress by constitutive equations of the form (6.17). This alterna-
tive method should be contrasted with the more standard methods (discussed in
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[13]), such as the one used for crystal plasticity [26], which requires integration
of the evolution equations for the total deformation gradient F and the plastic
deformation tensor Fyp

(7.1) F=LF, F,=A,F,
and which includes a definition of elastic deformation F.
(7.2) E.=FF;",

where the function A, requires a constitutive equation. For elastically anisotropic
response the Cauchy stress depends on both F and F,, neither of which can be
measured without arbitrariness in the present configuration [13].

Within the context of the formulation associated with (7.1) and (7.2), it is
common to define the symmetric tensors C, and B, by

(7.3) C.=FIF,, B.=F.FI.

Then, it can be shown that these tensors are determined by the evolution
equations

(7‘43) Fe =LF, - FeAps
(7.4b) C. =2FIDF. - ATC, — C.A,,
(7.4c) B. = LB, +B.L” - F.(A, + A])F’.

In particular, notice that unless A,, is specified in a special form, these evolution
equations depend on F,, so that it is still necessary to integrate the evolution
equation (7.4a) for F, and there is no advantage of the evolution equations
(7.4b,c). As a special case, A, can be specified in the form

(7.5) A, = F;'L,F,,

to obtain the theory of BESSELING [25] for elastically anisotropic response which
focuses attention on an evolution equation for the elastic deformation

(7.6) F, = (L — Lp)F..
Also, when A, satisfies the condition

(7.7) Aot AS =2F; ' D;F;T,
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then the evolution equation (5.1) is consistent with the theories of ECKART [21]
and LeoNov [22] for elastically isotropic response.

The advantages of the alternative method are not emphasized in the small
deformation theory because the difference between the total deviatoric strain
e'and the plastic strain e, (which is deviatoric) is measurable. Consequently, the
arbitrariness of €’ and e, which influences the material response can be easily
removed. However, for large deformations, one standard approach requires the
Cauchy stress T to be a function of both F and F, in order to be properly
invariant under the superposed rigid body motions. Consequently, the arbitrari-
ness which is associated with the determination of the initial values of F and
F, cannot be removed in general and can cause an unphysical influence on the
response of elastically anisotropic inelastic materials. Additional differences be-
tween the alternative theories reviewed in this paper and the more classical
theories associated with (7.6) and (7.7) have been discussed in [13].

The alternative constitutive equations discussed here not only have the con-
ceptual advantage that the required initial conditions can be measured; they also
have a practical advantage for computations. In particular, it has been shown
|20] that the formulation of Section 5 can be implemented into standard wave
propagation codes by using the Cauchy stress T to determine the elastic defor-
mation, so that there is no need to store F and F,, as history-dependent variables.
Moreover, one standard approach for elastically anisotropic inelastic materials
requires the calculation of the two tensors F and F,. In contrast, for the al-
ternative equations of Section 6, the microstructural vectors m; (9 independent
quantities) can be stored instead of the two tensors F and F, (18 independent
quantities).

This paper has emphasized that the total strain associated with the current
state of a material cannot be measured because it is dependent on an arbitrary
choice of the reference configuration. Nevertheless, the total strain which is mea-
sured relative to a reference configuration which an experimenter specifies, is
certainly a useful parameter for monitoring the history of total deformations
of a specimen. This measured total strain is similar to time, in the sense that
both are measured relative to an arbitrary reference state, and both they cannot
appear explicitly in constitutive equations.
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