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THE MAIN AIM OF THIS PAPER is to determine all the unit stresses w(w - w =1)
for which the stored elastic energy ®(w) has the local extrema in some classes of
stresses. Our consideration is restricted to two classes: K;— uniaxial tensions and
then the directions for which the Young modulus assumes its extremal value are
determined, and K2 — pure shears in physical space. The problem is then reduced
to the determination of the planes of minimal and maximal shear modulus. The idea
of a generalized proper state for Hooke's tensor is introduced. It is shown that a
mathematical treatment of the considered problem comes down to the problem of
the generalized proper elastic states for the compliance tensor C. The problem has
been effectively solved for cubic symmetry.

1. Introduction

MOST MODERN MATERIALS are, or can be considered anisotropic. Composites
have these properties due to the production technology, while the natural and
biological bodies such as wood, bones, tissues, rock structures, can also be
considered anisotropic.

Designation of the optimal structure needs some clear criteria for forming
the properties of composite materials.

The aim of this paper is to provide clear criteria for controlling the properties
of composite materials by a proper choice of the stiffness and /or compliance
tensor at a given material point. The rules of this choice could be based upon
the determination of the directions for which the Young modulus assumes its
minimal and maximal values, as well as on the determination of the plane of
minimal and maximal shear modulus, the Kirchhoff modulus.

It is convenient to make use of the qualitative description of the properties
of the stiffness and the compliance tensors of anisotropic bodies developed by
J. Rychlewski [1].
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The problem considered is reduced to the problem of generalized proper elas-
tic states for the compliance tensor. For cubic isotropy, the problem can be
effectively solved. The solution obtained in the paper offers some new possibil-
ities of approaching the problem of optimal formation of the internal structure
of materials, eg. the direction of reinforcement of fibrous composites.

2. Formulation of the problem

We are discussing the classical materials, with linear elasticity, in which the
infinitesimal strain & causes the stress o according to Hooke’s law

(2.1) o=S8-g, e=C-o,

where S is the stiffness tensor and C is the compliance tensor. They are con-
nected by the relation

(2.2) S1=C, SoC=CoS=Ig,

Is-o=o0.

The anisotropic form of Hooke’s law written in indicial notation is given in
the Appendix.
For the stress tensor o € §, the quadratic form

(2.3) ®(c)=0-C-0

is the doubled work of stress o. It is also called the complementary energy
function or stored elastic energy function.

PROBLEM

We are looking for all unit stress states w € K C S (w - w = 1) for which
the stored elastic energy has a local extremum. It means that

Pw)=w-C-w = ext

for w € K.

Our considerations are restricted to the two classes of stresses: K and K.
For these classes the solution of the problem is obtained in analytical form.

a) Uniaxial tensions o in any direction n in the physical space are considered
as the subspace Ky C §

(2.4) Ki:{weS;w=n®n=c}, n-n=1.
In this case the stored elastic energy (2.3) may be rewritten as:
1 1
2.5) (W) =——=——
( @ =3 ~ E@
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and the local extremum of the Young modulus E is sought for.
b) Pure shears T in the plane n;, ns in the physical space are forming the
subspace Ko C S

V2
Ko : {WeES; w=—(n®n2+n2 ® = 1},
26) T | 5 (n®ny+n;®mn;) =7}

nl-n1=n2-n2=1, nl-ng=0.

The stored elastic energy (2.3) for pure shears has the following form:

s
AMw) — 2G(7)

(2.7) d(w) =

and the local extremum of shear modulus G is looked for.

From the definition of tensors o (2.4) and from the definition of tensor T
(2.6) it is evident that the subspaces K; and K5 constitute the orbits, the group
of rotations O in the space S

(2.8) Ki:{o€S; tra=1, tro*=1, tro®=1},

(2.9) Ky:{reS; trr=0, tre* =1, trv®=0}.

3. Generalized proper states

Mathematical treatment of the above problem is the well-known Lagrange
condition for the local extremum with constrains. The necessary extremum con-
dition defines the generalized proper states problem for the compliance tensor C.

We will call Hooke’s tensor any Euclidean tensor of the fourth order H which
realises a symmetric linear transformation of the space of symmetric second-order
tensors S into itself. The space S is six-dimensional. Tensor H has the following
internal symmetries:

(3.1) Hijxi = Hjiki = Hiiy = Hijik.

DEFINITION 1. For each Hooke’s tensor H (3.1), the second order tensor
weS (w-w=1) is called the generalized proper state of this tensor if there
exists such parameters o, B and 7y that

(3.2) H w=o(H,w)1+4(H, w)w+y(H, w)w?.
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The scalar functions «, f and 7 can be obtained from the set of the linear
equations:

1-Hw=3a+trw-F+7,
(3.3) w-H-w=trw-a+f+trw’ v,
w  H-w=a+trw® - S+trw? 1.

When a =+ =0, the classical proper state problem is obtained

(3.4) H -w = fw.

If as a tensor H the tensor C is considered, then w is a proper elastic state for
compliance tensor C and A = é is the Kelvin modulus ( see J. Rychlewski
[1]). The equation

(3.5) C-w= %w

is the necessary condition for local extremum of the stored elastic energy ( 2.3)
on unit sphere K in the stress space S. It means that

(3.6) K:{weS;, w-w=1}
and K; C KX and K7 C K.

3.1. Uniaxial tension

Mathematical treatment of the local extemum problem for (2.5) by the La-
grange multipliers method leads to the following necessary condition for o € K;
(2.8):

(3.7) C-O‘z-;-(1-0-0’—0’-C-U’)1+%(3U-C-U—1-C'U}U.
It is not difficult to notice that the above equation has the form of the Eq.(3.2)
for a generalized proper state when y = 0.

From the definition of the class K; (2.4) it follows that the direction n is a
proper vector for o

(3.8) o-n=(n®n)-n=n.
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Substituting the relation (3.8) into (3.7) after multiplying by n we obtain the
following result:

(3.9) (C-0)-n=(0-C-o)n.
It means that
(3.10) [C-(n®n)]'n=[(n®n)-C:(n®n)| n.

According to the paper by S. C. Cowin, M. M. Mehrabadi [2], condition (3.10)
is the necessary condition for the vector n to be normal to a plane of symmetry
of a material of given compliance C.

Any material which is not entirely anisotropic, like for example crystals of
triclinic system, was called by A. Blinowski and J. Rychlewski [3] a symetric
elastic material. They proved that every symmetric elastic material has at least
one plane of elastic symmetry. Hence every symmetric elastic material has at
least one direction with extremal Young modulus.

3.2. Pure shear

We now apply the Lagrange method for searching the local extremum of
stored elastic energy (2.7). The necessary condition for T €Ky (2.9) has the
following form:

(3.11) C.tr=(1-C-7)1+(r-C-1)1+2(37*-C.1-1-C-1) 7"

It is easy to see that a main direction of T is a main direction of C - T, but
not conversely. From the definition of T (2.6) we obtain that

o |
= §(ni ®n; +ny @ ng).

For the plane tensors, the general description of the material can be signifi-
cantly simplified. The same results obtained for the theory of plane elasticity are
of self-contained value, more convenient for formulation and interpretation. For
the two-dimensional case, the problem of local extrema of the stored elastic en-
ergy has been effectively solved in the paper by J. OSTROWSKA-MACIEJEWSKA,
J. RYCHLEWSKI [4]. The solution obtained was discused in terms of energy
limitations. The final solution depended strongly on the type and degree of
anisotropy.

In a general three-dimensional case, the above problems are reduced, as it
was shown, to the problem of generalized proper elastic states for the compliance
tensor C. The solution of the Eqs. (3.7) and (3.11) can be obtained only for some
classes of symmetry.
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4. Cubic isotropy

For quick orientation and to form an intuition in the presented approach,
let us examine the simplest anisotropy, that is when the material has a cubic
symmetry [7].

The spectral decomposition of compliance tensor C for cubic symmetry was
given in the paper by J. OSTROWSKA-MACIEJEWSKA and J. RYCHLEWSKI [5]
and has the form:

1 1 1 1
(4.1) C = 3—,\11@3:1+,\—2(K-—§1®1)+A—3

where A, Ay, A3 are the essentially different Kelvin moduli for the three mutually
orthogonal subspaces of the proper elastic states Py, P2 and Ps3

(4.2) S§=P1+P:+Ps.

(Izs—K),

If the directions k, 1 and m coincide with the crystal axes for cubic isotropy
( Fig. 1), the fourth-order tensor K may be represented in the form

I a

k >

Fi1g. 1. Crystal axes k, 1, m.

(4.3) K=k®k®kk+IQI®I®l +m@me®m® m.
The space P; is the one-dimensional subspace of spherical tensors:
p 00
(4.4) w~|02p 0|,
0 00
the space P, is the two-dimensional subspace of deviators of diagonal form:
TR 0
(4.5) w~| 0 v 0 .
0 0 —u—w
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and the space Pj3 is the three-dimensional subspace of deviators of extradiagonal
form:

(4.6) w ~

e s - =
D o
oo 3

in the crystal axes.
From the spectral decomposition (4.1) and the definitions of o (2.8) and T
(2.9), we obtain that

1 1 1 1 1

1
4' . — - o p— — i e W
(4.7) C-o 3(,\1 ,\2)1+)\3tr-l-()\2 f\.'s)K o
and
1 1 1
(48) Cir-= ET+(‘)\—2—E)K'T.

It is easy to see from (4.7) that if o is a proper state of K (4.3) then it is not
a proper state of C. Quite a different situation is for t (4.8): each proper state
of K is a proper state of C.

The stored elastic energy (2.5) and (2.7) for both classes of stresses K; (2.4)
and K (2.6) now may be rewritten as:

1 ] et | 1 3 1 1
4, o = —geog = o =i S A e
(4.9) (o) E(o) o:-C.o 3(/\1 /\2+)\3)+(/\2 Aa)a K- o,
1 1 1 1
41 — —— . . = — — i — . . 2
(4.10) o(T1) 5G(0) - C-7t % +(,\2 /\3)1 K-t

Let us denote by E;} = Ep = E3 = E the Young moduli for the directions
of the axes of crystal k,1 and m, by G2 = G13 = Ga3 = G the shear moduli,
and by v19 = 113 = w3 = v the Poisson coefficients for the planes connected
with the axes of the crystal; then the relation between these two sets of material
constants E, G, and Ay, A2, A3 are as follows:

E E
4.11 A= Ao = A3 =2
( ) 1 1—21/’ 2 1+U’ 3 G
or
3A1 A2 Al — A A3
4.12 PR L o SRR N s U
( ) 221 + Ao’ & 201 + A2’ < 2

The anisotropy tensor C (4.1) decomposes the space S into three mutually or-
thogonal subspaces Py, Py, P3 (4.2). Any state of stress w can be projected on

http://rcin.org.pl



508 J. OSTROWSKA-MACIEJEWSKA, J. RYCHLEWSKI

these subspaces and given as a sum of these portions. In the three-dimensional
set of orthogonal coordinates connected with the subspaces of the proper states
(4.2), the stored elastic energy (2.3) can be presented as a closed surface

2 2 2 T . 29
(4.13) H(w)=w-C-w = cos®  cos P, oo 6 sin p , sin"0
Al A2 ,\3

In order to draw this surface some material of cubic isotropy must be chosen.
For copper which is a typical material of cubic symmetry, moduli A; are given
in the paper S. Sutcliffe [6], and they are as follows:

(4.14) M =416, Ap=4T, Ng=15

The succession of eigenvalues for copper is typical of most cubic isotropy metals
with the lowest eigenvalue associated with the two-dimensional eigenspace P,
(4.5). The surface of the stored elastic energy for copper is shown in Fig. 2.

Fic. 2. Stored elastic energy in the space of proper elastic subspaces Py, P2, Ps .

According to the paper by J. RYyCHLEWSKI [1], the local extrema of the
stored elastic energy on a unit sphere (3.6) are located on the axes of coordinates.
Intersection of the surface (4.13) by the cone w = n ®n gives us the class of
stresses K; (2.4), but intersection by the plane of deviators describes the class
K2 (2.6).

The surface of the stored elastic energy for the class of stresses K; (2.8) is
described by the Eq.(2.5). Since

1 1 1

4:15) Elo)  Em®n)  E@m)’
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then this surface may be drawn in the physical space. Using the crystal axes k,
1, m, any direction n may be given as

(4.16) n =n1k+nsl+nsm

and the stress tensor o (2.4) has the form

(417 o=n®n=n’k@k+nll®l+nim® m+
+mnyk@1+1@k)+nn3(k@m+ me@k)+nnz(1®@m+ me1).
From the definition of tensor K (4.3) and the above form of o, it follows that
(4.18) 0-K-0 = (n®n)-K-(n®n) = n! +nd+n} = 1- 2(n?n3 +nin +nin?)

and the formula for the stored elastic energy (4.9) for uniaxial tension takes
the form
1 2\ 2 —
_ 2+ +2f\z A3
E(n) 3A1 A9 A2 A3
e 2A1 + Ag Az — A3
T 3\ 2A2)3

2

(4.19) (n¥n + n3n? 4+ nin?)

(cos™ @ sin’ 2 + sin? 26).

For computational purposes, the eigenvalues for copper (4.14) were used. The
surface (4.19) for copper is shown in the Fig. 3.

0.1

0.1

FiG. 3. Stored elastic energy under uniaxial tension in the physical space.

http://rcin.org.pl



510 J. OSTROWSKA-MACIEJEWSKA, J. RYCHLEWSKI

5. Local extrema of the Young modulus and the shear modulus for
cubic isotropy.

In order to find the local extrema of the stored elastic energy for two classes
of stresses K; (2.4) and K3 (2.6), we have to come back to two equations for the
generalized proper states of C (3.7) and (3.11).

For cubic isotropy, taking into account the spectral decomposition (4.1), the
Eq.(3.7) and (3.11) may be rewritten as

(5.1) K- o= %(1 —cr-K-cr)1+%(30'-K-0'—l)cr,

(5.2) K-t=(-2K-1)1+(t-K-1)t+ (67° K- 1)7°.

Please note that the obtained equations are the equations for generalised
proper states of tensor K (4.3).

5.1. Young modulus

Let us begin with the class of stresses K; (2.4) — uniaxial tension. Equation
(5.1) is the necessery condition for the local extrema of Young’s modulus. In
order to determine the solution of the Eq. (5.1) we have to note that the tensor
K - o has a diagonal form in the crystal axes

(5.3) Ko =n’k®k+nll®l4+nim® m.
Equation (5.1) may be rewritten in the form
:
2

The left-hand side of the Eq. (5.4) has a diagonal form because of (5.3). It means
that the right-hand side has to be diagonal as well. It will happen if tensor o
has the diagonal form

(5.4) K-c—%(lwa-l{-a)l: (30-K:.-o-1)o.

(5.5) o=n’k® k+n§l ® 1+n§m ®@m,
or when
(5.6) oK -og=1.

a) If Eq. (5.5) is satisfied, then from (5.3) we have

(5.7) K-o=o0, and 0-K-o=tro’ =1.
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It means that o is the proper state of K and from (4.7) it follows that

I | 1 1
= §(A_1 - A—2)1+*—’0'

(5.8) C-o
and o is a generalized proper state of C. See (3.2) with y = 0.

The stored elastic energy (4.9) may be rewritten as

1 20+ X
(0’) = 3/\]/\2 3

(5.9) ,(0) = E

The stress tensor o (4.17) will have the form (5.5) if

(5.10) nng =0, nnz3=0, ngnz=0.

It means that the direction n has to coincide with the directions of the crystal

axes
n=k oc=kok,

(5.11) n=1 o=18l,

n=m, c=m@@m.

Hence the Young modulus has the local extrema in the direction of the crystal

axes.
b) In the case when the condition ( 5.6) is satified, then

(5.12) c-K-o= %,
and from Eq. (5.4) we conclude

1 1
(5.13) 0= §1=§(R®k+l®l'+m®m).

According to (5.3), the above formula means that

(5.14) nf=n§=n§=1.

Using (5.13), Eq. (4.7) may be rewritten as follows:

10 1 1
5.15 e ey Sl
(5.15) C.-o 3(,\1 A3J1+A30-
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It is not difficult to notice that tensor o is not a proper state for C, but it is
a generalized proper state of C. Moreover, among eight possible forms, one of
them may be presented as

(5.16) o =-(k+1+m)® (k+1+m).

ol =

The direction n (4.16) is hence perpendicular to the octahedral plane.
The Young moduli have local extrema for these directions. The stored elastic
energy (4.9) in this case is as follows

1 20+ )3
E(o)  3\A3

(5.17) D, =

If A2 < A3 ( note that this situation occurs for copper (4.14)) then the following
inequality is satisfied ( Fig. 3 )
(5.18) P,(0) >Py(0).

5.2. Shear - Kirchhoff modulus

The necessary condition for the local extemum of the stored elastic energy
for the class Ky (2.6) has the form (5.2). This fomula may be rewritten as

(5.19) K- -1+2(t* K-1)1=(t-K-1)t+6(t* - K- 1)7°.

The left-hand side of the above equation has diagonal representation in the
system of crystal axes. The right-hand side will have the diagonal form if
a) tensor T has a diagonal form

T11 0 0
(5.20) T 0 T22 0
0 0 Tas

From the definition of tensor K (4.3) it follows that
(5.21) K-x=v
Tensor T € K (2.9). It means that the following conditions are satistfied:

(5.22) K- r=trt*=1, . K-t=trt =0.
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Note thatt 7 is a proper state of K (5.21) and it follows immediately from (4.8)
that it is tle proper state of C

1

(523) C.r= ,\—QT.

Comparing (5.20) with (4.5) we note that T € P,. Because T € Ky (2.9), then
the followirg equations

(5.24) dett = 7170733 =0,

(5.25) trt =711 +7120+ 733 =0,

have to be satisfied. It means that one and only one term at the diagonal must
be equal tc zero. Without any loss of generality we can assume, for instance,
that

y (2 0 0
(5.26) el 0 =1 0 .
V2o 0 o

Tensor T (5.20) will have the above representation if

(5.27) b= %(k— B o e %(k-}-l);

then from the definition of T (2.6) we have

1 1

5.28 T=—MmO&ny+n®n;)=—kek-1®1).

(5.28) \/—2-( 1 ®n2 +ny @n;) \/5( )
The stored elastic energy (4.10) in the case when T has the representation (5.20)
is the following:

(5.29) A I A

i " iy 2G(T) = Ao
Hence the shear modulus has a local extremum in the plane described by the
directions (5.27).
b) Coming back to Eq. (5.19) we see that the right-hand side of that equation

will have the diagonal form if

(5.30) K.-v=0,
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It means that tensor T has now an extradiagonal form in the system of crystal
axes

0 72 T3
(531) T ~ T12 0 T23 :
713 723 0
From (5.30) it follows that
(5.32) - K-t=0 and ©>K-1t=0.

Substituting (5.30) to (4.8) we obtain that T is a proper state of C, namely
(5.33) C-t=—7

and according to (4.10), the stored elastic energy is now as follows:

I 1

= 2G(Y) A5

(5.34) ®y(7)

Tensor T (5.31), in view of its extradiagonal form, belongs to P3 (4.6). Definition
K2 (2.6) implies that

(5.35) dett = 2712713723 = 0.

It means that at least one of the terms in the matrix representation (5.31)has to
be equal to zero. Let us assume that 753 = 0; then T has the following form:

0 712 713
(5.36) Tl 710 0 0 :
T13 0 0
or may be rewritten as
(5.37) T="132k®l4+1@k)+7m3(k®@m+ m®k).

From the definition of T (2.6) we obtain that T will have the form (5.37) for
(5.38) n, =k, and ny = vV2(ri21 + 713m).
The terms 112 and 713 are not independent. Hence T € Ky and then

(5.39) tr’ = 2(1h +75) = 1.
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In the limiting cases we have

1
113 =0, ‘r122=§ and n; =k, ny = #1,
(5.40)

Ii
T12 = 0, 'r123=§ and n; =k, ng = +m.

It means that there is the family of planes with the same value of shear modulus
(5.34).

Changing the order of the crystal axes we will obtain other planes with ex-
tremal value (5.34) of the shear modulus.

c¢) The equation (5.19) may have another solution than the one mentioned
above. Let us now assume that T has a full matrix representation in the system
of crystal axes

T 712 Ti3
(5.41) TN Ti2 T8 TS
T3 723 733

According to the definition of Ky (2.9), the following equations have to be satis-
fied:

trT =711 + 122 + 133 =0,

2 2 2
(5.42) tre? =18 + 1'222 + T3y + 275 + 21 + 274 =1,
1
gtl“l’a =detT =T11T22T33 + 2T12T13T23 — 7111'223 = 1'221'123 - 1'33T122 ='().

Tensor K - T has a diagonal form

T11 0 0
K-t~ 0 Ta2 0
0 0 T33

and from this we see at once that

tr(K-t)=(1-K:1)=trt =0

and
(5.43) T KT =10 + 1+ 1,
(5.44) (K-7) (K-7) = 7{) + 735 + 733.

Combining (5.44) with (5.42), we conclude that

(5.45) 0STh +15+7H < 1.
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Substituting (5.44) by (4.10) we can rewrite (4.10) as

1 1
(5.46) (1) = g B -—+(——/\i)(7121+7222+79?3)-
3

We may now turn to the assumption A < Az (it is valid for copper (4.14)).
In this case it is easy to see that

1 1
: — < e
(5.47) 7 ®.(T) ¥
Substituting (5.29) and (5.34) by (5.47) we obtain
(5.48) Pp(T) <Pc(T) <Py (7).

When tensor T has the form (5.41), the equations (5.42) together with (5.19)
form a set of nine equations for six components of T (5.41). It means that the
set in general has no solution. From (5.19) it is easy to conclude that

(5.49) (K1) (K-1)=(t-K- 1') +6(t* K- ‘t)
Substituting (5.43) and (5.44) by (5.49) we get
(5.50) 3(t2 - K1) = (1] + 15 + 733) (i + T3 + 733).

It means that
2. K-1t=0

if and only if T is a proper state of C. On the other hand, using the definition
72 and K -t and the property of T (5.42), we obtain

(5.51) v K -7 = 2(711 722733 — T12T13723)-
There are solutions of (5.19) for which
. K-t#0.
For instance, if we make the following assumption:
o3 = 0, T11722733 # 0

then we find from (5.19) and (5.42 that

—

9 1
y  T3g= 51 T13 = 793 = 01

Co| -

On .3 %A, o Bl
(5.52) Th =T ="T2=
T = T2, T3z = —(T11 + T22).
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Substituting (5.52) by (5.43) we get

3
(5.53) T'K‘T=7121+T222+7323=Z-
If tensor T is taken as

il
(5.54) Fewzmll 1 1
00

0
0
V8

-2
then it satisfies (5.52) and the vectors n;, ny (2.6) are as follows:

i) =%(k+l+\/§m), B = =(k+1=v2m).

B =

The stored elastic energy (4.10) in this case has the form

1 A+3)

303 () = 2G(t)  4hphs

It is easy to see that for copper
Dy(T) <Pc(T) <P0(7),

and there are no local extrema of the stored elastic energy at this T.
In this same manner we can consider the following assumption:

733 =0, 712 - T13 - Te3 # 0.

An easy computation shows that there is no solution (5.19) of the above form.

The obtained results show that for cubic isotropy, the Young modulus has
local extrema in the directions of the axes of crystal and the directions perpen-
dicular to the octahedral planes. Uniaxial tension 0 = n®n is a generalized
proper state of the compliance tensor C. There is quite a different situation for
the shear modulus. The Kirchhoff modulus has local extrema for some deviatoric
proper states of C with the constraint dett = 0.

Appendix. Notation

For readers more accustomed to the usual Cartesian index notation, we shall
add a convenient rephrasing of formulae:

0 =8¢ ¢ 0i = Sijrer, €= C: 0 emn = Crnijoij,

1
S0C=CoS = Is & SijkiCkimn = CijkiSkimn = §(t5£m5jn + 8in0jm),
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0 - C -0 © CpgrsOpqOrs, W - W wijwij,
1 & d;; (Kronecker's symbol),
n@®n < n;n;,
1-H - w & Hpprgrs,
C: (n®n) «Cijungn,
2. C - T CijitTimTmj Tl

- = 2 _ 3 _
tro=1-0 = opp, tro° = opg0Opq, tro° = 0peOrorp,

K = kkk®k+I1212121+m®@m®m ®@m,
qurs - kpqurks +£p£qtr13 +mpmqums‘
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