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Michell-like grillages and structures with locking
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THE PAPER GENERALIZES THE MICHELL theory of plane pseudo-continua to the anti-
plane problems in which the loading is perpendicular to the plane of the structure. The
starting point is the minimum compliance problem for a two-phase Kirchhoff plate.
Upon relaxation, one of the materials can be degenerated to a void (or microvoids)
and by imposing the condition of the volume being small, one arrives at the Michell-
like problem for a locking plate. The locking locus B is determined explicitly; it
tends to a square if the Poisson ratio tends to 1. In the last case the locking locus
coincides with that used in the Rozvany-Prager theory of optimal grillages. A theory
of perfectly-locking and elastic-locking plates and shells, not necessarily isotropic, is
formulated. Dual extremum and existence theorems are also given.

1. Introduction

MICHELL STRUCTURES REPRESENT solutions to the following optimum design
problem:

(P,) inif [(|a;|+|o;;])d:.c | o€ s19)
Q

Here oy, o1, 01 > o4y, are principal stresses of o and S;(f2) stands for the set

of statically admissible stresses within a bounded plane domain €. This domain
is parametrized by a Cartesian system (z1,22);z = (z1,22) € §2. The loading of
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density p=p(x) is applied on I'; C Q. Thus

51(Q) = {0 € L}(N),E) | /aaﬁumﬁdpfp-vds Vve Q)
19}

and

Vi) ={ve H'()? |v=0 on 9Q\I4}.

Ej represents the space of symmetric 2 x 2 matrices and H'(Q)? = [H'(Q)]>.
The problem (P;) can be found in RozvaNy [17, p.48] and was developed by
STRANG and KOHN [18]. The problem dual to (P;) is equivalent to the original
MICHELL setting [14].

A natural counterpart of the above plane elasticity problem for the antiplane
case, where the structure should carry a loading perpendicular to its plane, reads

(P2) inf f (IMy] + [Myl)dz | Me Sy(@Q)
9]

where S3(€2) represents a set of statically admissible moments M or
S2() = {M € L*(E) | /M“ﬁvmg dz
Q

e /(Q% = M"g—;)ds =0 Yov € V2(Q)}
r

where
dv

Va(Q) = {u € H3(Q)| v»=0, n =0 on 39\]."1}.
Here n is a unit vector outward normal to 2. The boundary loading Q°, MY is
assumed here along I'; C © and the plate is clamped on I'y = 90 \ T';.

Several exact solutions to the problem (P3) have been found by Prager, Roz-
vany and their collaborators, see ROZVANY[17].

In 1993 ALLAIRE and KOHN [1] showed that the problem (P ) can be obtained
by admitting the volume of a structure to be smaller and smaller in the minimum
compliance shape design within the linear elasticity framework. This passage to a
limit leads to the formulation (P;) free of any elastic characteristics, see Remark
28.4.2 in LEWINSKI and TELEGA [11].

The above results suggest that the problem (P2) can be achieved by imposing
the condition of the volume being small in the shape design problem for a thin
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plate. But this is not the case. The present authors proved in Sec. 26.9 of [11]
that the condition of the volume being small results in a new formulation

o wlfli

where v represents the Poisson ratio. It is seen that only for » = 1 the problem
(P3) assumes the form (P3) Note, however, that in both the formulations (P3)
and (P3) the integrand is of linear growth.

All the available analytical and numerical solutions to the problems (P;),
(P3) are based on the formulations dual to them. The formulation dual to (Py)
reads, see STRANG and KOHN [18],

trM)‘2 + (|M;| + |M”|}2] dz| M € 52(9)} )

(P7) sup{/p -vds |e(v) € B}
I

where

Bi={ecB| la|<1, len|<1)

and €(v) = (eqp(Vv)), where

1 (0vy  Ovg
() cap(V) = 3 (azﬁ i aza) ‘

Thus B; is a square in the (e7, €77)-plane. By analogy, the problem (P3)
assumes the form

<,
(P) supf [ (@v-Mg)ds | k()€ By)
with
Bo={keE| |x;|<1, |kn| <1},
and
9%
(1.2) kag(v) = _ana:rg'

The aim of the present paper is to derive the dual problem (P3). Since the
integrand in (Pj3) is of linear growth, it is clear that the dual formulation should
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be similar to (P3) but with the set B replaced with a new set B. Just this
convex set B will be explicitly constructed.

The problem (P3) constructed in this manner can be viewed as a locking
problem, see CYRAS [4], DEMENGEL AND SUQUET [7] , JEMIOLO and TELEGA
[9]. The aim of the present paper is also to exploit the locking nature of the
problem (P3) thus showing its new physical interpretation and proving its well-
posedness. This naturally leads to perfectly-locking and elastic-locking plates. We
will also propose a theory of such shells. Our considerations imply that in the
problem (P;) the quantities (¢®?) denote not the stress tensor but the stress rate
tensor, a fact usually overlooked in the relevant literature. Similarly in (P3) and
(P3) the quantity M = (M®?) is to be viewed as the rate of couple resultants.
Our first results on plates of small volume were announced in (22|, [20]. The
results formulated in these two contributions need refinements, particularly the
form of B.

2. Two-phase layout optimization of thin elastic plates

The classical layout problem for thin elastic plates consists in looking for an
in-plane optimal distribution of two isotropic materials, of prescribed volumes,
that realizes minimum of the total compliance. To be more specific, let us assume
that the a-th material is characterized by the bulk and shear moduli k,, jia, a0 =
1,2. Let the thickness of the plate A be fixed. Thus the bending stiffness tensor
of the a-th phase assumes the form

(2.1) D, = 2k 1 + 21410,
where

h3 . h3 2
(2:2) ko = ﬁkm Ha = ﬁ#a

and the tensors I, are defined by

(2.3) I;lﬁ'\# " %5035'\#, I;*ﬁ*# - %(60)«65;1 + dangPA _ gaB gy,

The compliance tensor C, = D! is represented by

1 1
(2.4) Ca(#) = 5 Ka(@)li + 5 La()1;
where
(2-5) Kﬂ = l/ka, LQ — ]./,U.{_-,.
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For simplicity, the assumption of ordering is usually assumed
(26) k2 > kll M2 > Jy,

hence the terms Dy —D); and C, — Cs are positive definite and invertible. Assume
that the a-th material covers the domain Q,, hence Q; Uy = Q,Q; N Oy = 2.
Let xa(z) = xa.(z) be the characteristic function of 4. The bending stiffness
tensor has the form

(2.7) D(.T:) = X1 (:B)Dl + Xg(.'E)DQ.
Let us impose the isoperimetric condition

(28) Ile = /xg(a:)da: =09
i1}

and || = |[©2| —c,. Assume that the plate is subjected along I'; to the transverse
boundary loading Q° (s) and the boundary moment M9 (s), (s) being the natural
parameter of I' = 5.

Let us define the linear form, being the loading functional, by

(2.9) fv) = F/ (M,? (—g%) + Q%) ds.

One can also assume that I'y = 99 and then we additionally assume that
f(v)=0 VYWeR

with
R = {v| v =0, + 1T + aTa}, Vo, @1, 2, € R.

Note that k(v) = 0 for v € R; here k(v) = (kqp(v)), see Eq.(1.2). Let us define
the bilinear form

(2.10) a(w,v) = /n“g(w}D“ﬁ)‘“[z)mn{v)d:r,
Q

with D being given by (2.7). Let w,, be a solution to the equilibrium problem

(Pys) | alwe,v) = 10) Yo e Va(@).

The minimum compliance problem reads:
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Find x2 such that

(P) f(wg,) = min{ f (wy,)| wy, solves (Py,) witllfxg(m}dx = ¢g}.
Q

It is well-known that the above problem needs a relaxation, see LIPTON [12],
TELEGA and LEWINSKI [21], LEWINSKI and TELEGA [11]. The relaxation means
replacing:

Xa by mq € L®(2;(0,1]) and D by Dy,

where Dy, represents the effective bending stiffness tensor of a composite plate in
which the area fractions of both materials are equal to m; and my , respectively.
Moreover, the isoperimetric condition (2.8) is replaced by

(2.11) [mg(:s)d:r =T

Q

The stiffness tensor D, is determined by the formula of homogenization.
Moreover, one can prove that Dy, is fully characterized by periodic composites,
see RAITUMS [15] and LEWINSKI and TELEGA [11]. This feature makes the
formula for Dy, explicit and, consequently, makes it possible to introduce the
relaxed formulation (P) of (P) in a constructive manner. Since all details of
posing the relaxed problem (P) can be found in LEWINSKI and TELEGA [11,
Secs. 26.2, 26.3] there is no need to rewrite the details. It is sufficient to recall
that in the first step we apply the Castigliano theorem and then reformulate the
problem by the translation method of GIBIANSKY and CHERKAEV, see [11].

The relaxed formulation of the minimum compliance problem for two-phase
thin plates assumes eventually the form

®) min {F(ma) + A [ maa)ds | my € L% (@5 00,1)}.
0
Here A is a multiplier associated with the isoperimetric condition (2.11) and
2.12 F =AD i (M dz.
(212) (ma) =2 min_ [ W*(M(z), ma(a))do
Q

The potential W* is defined as follows:
il
(2.13) WH (M, mg) = {
4

FF(M)H(Cy) if I(M) #0,

{L}mII*(M) if I(M)=0.
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The following notation has been introduced:

(2.14) IM) = %tr(M), 1I(M \/_[(tr — 4det M]'/?,
(2.15) {L}m = (L' + mpLy")™!
_1I(M)
(2.16) Cm = M)
or
Cig [M; — M|
M |M] + M”| )

The function H(¢) is defined as follows:

H(¢) if  ¢€0,(],
(2.17) H(¢) = { Hi(¢) if ¢ €[]
HpC) #H 26

Here
[LmAK . mK
- gy Rl S
and
(2.19) [flm =mifo+mafi, Af=|fo—fil, f€{K,L}.
Moreover,
Hp(C) =ar +crl?  Hg(C) = ar + cr(?,

sy e

(2.20) H;(¢) = Hp(¢) + AL(¢ — C2)°,

Hi(¢) = Hr(¢) + Ar(¢ — 1)%,
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where
(221) aL = <K z2m+L[21{4]-mKlK21 ap = {K}ml €L = L2| CR = {L}m)
G- miAL(Ls + [K)m)
. g [ mlm2(AL)2[K]m
" (K + [L]m)’
and

< f >m= mlfl +m2f2§ f € {K':L}

Let us note that (2.12) may be viewed as an equilibrium problem of a non-
linearly elastic plate with a smooth potential W*.

3. Shape design of a thin plate

The notion of shape design means that only one material is at our disposal
and we should arrange a given amount of this material to form the stiffest plate.

Thus it suffices to put k; = 0 and p; = 0 into the problem (P) and observe that
this substitution is admissible. Then we obtain

3P Ho(Gu) if 1(M) £0,
(3.1) W (M, my) = ¢ %,

EL2H2(M) if I(M) =0,
where

%(Kﬂ + mle) o e L’ZC2 if g = [D! 1]‘
(3.2) Ho(¢)={ P2

mo

(K2 +Ly¢%) if (>1.
Note that the conditions

(33} CM = [D: 1]1 (ﬂf 21
are equivalent to

(3.4) det M >0, det M < 0.
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The function H({) was smooth but Hy({) is not. It is continuous but has a
cusp at { = 1.
The formula (3.1) can be expressed by a concise formula

2 2 (KT (M) + Lou(M)

(3.5) W' (M, m2) = W5 (M) + ——

where W (M) given by

(3.6) W2 (M) = 41;{212(1\4) + %LgH:’{M),

represents the potential of a virgin plate and the function u(M) is defined by

{H?(M) if det (M) <0,
(3.7) w(M) =

(M) if det (M) >0,
or

(3.8) u(M) = %([Mﬂ + M)

Thus the expression(3.5) can be rearranged to the form

* * 1- Y
(39) W* (M, m2) = Wi (M) + 5 —9(M),
mo
with
1 1 .
(3.10) g(M) = ZKz(M; + Mp)? + ZL2(|M1| + | Mp))?.

Let us put (3.9) into (P) and interchange the order of minima. One finds

3.11 i Fy\(M)d

(3.11) min [ Bz

where

(3.12) F\(M) = min [2W*(M,m3) + Ama).
0<m2<1

Minimization over my can be performed analytically. Finally we arrive at

2Ag(M)]'/2 — g(M) if g(M) <\,
(3.13) F,\(M)=2w*(M)+{ Pa(M]/2 — g(M) if (M) <

A if g(M) > A
The minimization problem (3.11) with the integrand of the form (3.13) is

well-posed; its solution exists, see LEWINSKI and TELEGA [11, Sec.26.7].
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4. Shape design of thin plates of small volume

The relaxed formulation (3.11) of the shape design problem of thin plates
can serve as a starting point for finding the shape design formulation of plates
of very small volume. The compliance minimization assumes a peculiar form. In
such a case the material tries to carry the loading by very thin, continuously
distributed ribs.

4.1. Compliance minimization problem

The solutions to the problem (3.11) become exteremely interesting if the
given amount of the material is very small. In such a case the optimum plates
degenerate to grillages forming ribbed structures or fans. The condition of small
volume implies that the multiplier A is very large. Thus the region g(M) > A
will be absent and for large values of A, the main term of Fy(M) has the form

(4.1) F\(M) = 22"*[g(M)]'/2.
Since only one material is at our disposal, we shall simplify the notation by
writing ko =k, peo=pu, wmp=v, Ky=K, Ly=L.

Consequently, the problem (3.11) assumes the form

inf K(M: + Mi)2 + LM | + M) 2dz.
MeSa(2) /[ (Mp + Mpr)” + L(|M1| + M)} “dz

G(M) = [K(M; + My)* + L(IM;| + My )*]?, M€eE.
A straightforward calculation shows that
G (M) =G(M), M € E;,

where G o, denotes the so-called recession function of G' defined by, cf. LEWINSKI
and TELEGA [11], ROCKAFELLAR [16],

G(M) = lim %G(tM).

t—o0

It means that the stiffest plate of small volume exhibits perfectly-locking
behaviour. Since K/L = pu/k and v = (k — p)/(k + u) one finds: K/L =
(1 —v»)/(1 + v) and the problem (P) assumes the form (P3) mentioned in the
Introduction.
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Let us consider the level lines of the integrand of (P) in the plane (M7, My;).
Let us introduce the polar representation

(4.2) M; =171 cosd, M =rsind

into the condition

1 1/2
(4.3) [1 _i_Z(MI+M::)2+(IM1|+|MHI)2] = const.

Hence we find

(4.4) M; = M, 5050

1—-v HA?
[1 + ——(1 +sin29) + |sin219|]
14+v

sind

M = My

1—v i
[1 + ——(1 +sin29) + |sin 219|]
1+

and M, is a constant. Assume that My = 1. For v = 1 the contour (4.4) forms a

square, of the side v/2, rotated by /4, see Fig.1. For each v € [0,1] the contours

in the quarters M;M;; > 0 are straight lines parallel to the line: My + My = 1.
For v = 0 the contour (4.4), in the quarters M;M;; < 0, becomes a circle of

radius \/5/2, see Fig.1.

“M"

Fic. 1. Level lines of the integrand of problem (f“)
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4.2. Dual formulation of (P)

It is highly convenient to rearrange the problem (P) to its dual form involving
kinematic variables. Note first that P represents a locking problem in which M
is not a moment field but rather a moment rate.

Let us disclose the equilibrium equation concealed in S3(Q?) in a standard
manner:

4.5 inf [KM+M 2+ L(|My| + | Mp1))2) %} dz
(4.5) Meﬂﬁﬂ:&;) fé‘é; n{[ (M 1) (IMy| + [Mq1])*)7*}

ﬂ/M < ko) +f(v)}
1]

where M : k(v) = M®#k,5. Note that v plays simultaneously two roles: it is a
trial field of the variational equilibrium equation and the Lagrangian multiplier.
The operations inf and sup can be formally interchanged and thus we arrive at

(46) sup  {/(0) + [ Rl(v))da)
veVa(0) 2
with
(47)  R(x)= inf {[K(M;+ M)* + L(M;| + |Myf])))'? =M : k}.

MeE;

Sﬁince the integrand appearing in the problem (P) is of linﬁear growth therefore
inf P is not, in general, attained in S3(§2). The problem (P) is convex but the
functional

J(M) = / (K (M + M) + L(Mi| + M) 2de
0

is not lower semicontinuous over L?(f,E$) Consequently, minimax theorems
expounded in EKELAND and TEMAM [8] are not applicable to our case. However,
one can apply the duality theory presented in EKELAND and TEMAM (8] directly
to the problem (P) and then, after standard calculation, we get (4.6) and (4.7).
In this manner the interchange of inf and sup operations is justified. Note that

the integrand of (P) is of linear growth and the dual function R(k) must have
the following form, cf. ROCKAFELLAR [16],

0 if ke B,

(4.8) R(k) =
—o00 otherwise.
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Here B is a convex set containing k = 0 in its interior. This set, defining the
locking locus, can be explicitly constructed. The construction is the subject of
the next section.

Thus the problem (4.6) takes the form
(P") sup{f(v)|lv € Vo(R), «k(v(z)) € B forae. z€N}.
Existence theorems, for the problems P and P", will be formulated in Sec.5.

4.3. Geometry of the set B

The aim of this section is to analyze the problem (4.7) and find the explicit
form of the set B.

STeEP 1. We show first that minimum in (4.7) is attained by a matrix M
of principal directions (zM) coinciding with the principal directions (z%) of the
tensor k. We consider three coordinate systems: (zy, z3), (2§, z5), (J:‘f’f,z:%"), see
Fig. 2, where the angles a, and aps are depicted.

X2

X1

B
Lt

ka3

FiG. 2. The axes z, versus principal directions of k and M

The components of k are represented by the classical formulae

1
K11 = 5[(5.' + K1) + (K1 — K11) €08 20,

1
(4.9) Koo = i[(n; + k1) — (K1 — K11) CO8 20,
1 :
K12 = *5(?9! — Krr) sin 20,
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and the components M1, M2 M'? are represented similarly, in terms of My, My,
and apr. We assume: k7 > k17, M > Mjpr. We calculate

(4.10) M: k= Ma‘aﬁaﬁ = KM+ Kk rMpp
— sin®(an — ax)(M; — Myp) (K1 — K11).-

Thus (4.7) can be expressed as follows:

(4.11) R(x) = min { min{[K (M + My1)? + L(|M;| + |My1])?])'/2
Mp,Mpp L am

— (k1 My + K511 Myp) + sin® (e — ay)(My — M) (s — ﬂu)}}-

Minimum over a)s is attained for apy = a, since (M; — My;)(k; — &11) > 0.
Thus the principal directions of M coincide with the principal directions of k.
STEP 2. The function R(k) can be put in the form

(4.12) R(x) = min {[K(z +§) + L(|z| + [g)*)"/* — 251 — g1}
,JER

since now it is unimportant that My, M;; in (4.11) are principal values of a
certain matrix of Ej.
Let us change the variables

(4.13) Vez=z, VLj=vy, &t/VL=3, &i/VL=mny,

to obtain
(4.14) R(VLx) = mier;‘{[’r(:c + )2 + (2] + [y)?)Y? = z3s — ysers},
T,y
where
1—v
(4.15) vy=K/L, y=——, ve|01].

1+v

Let us introduce the polar representation

z=rcosd, y=rsmd, r=0,
(4.16) :
»xr =kcosp, s =ksing, k2>0.

Let R(VLx) = R(k,y),where

(4.17) R(k,p) = m)igl r{[1 + (1 + sin29) + |sin 219|]1'f2 — kcos(9 — )}

JER
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Further we introduce an auxiliary function

. [14~(1 +sin29) + |sin 29|]'/2
(4.18) h(yp) = min foos@ = )] .

Here v is treated as a parameter. We note that

N 0 if k<h(p),
(4.19) Rk, p) =
—oo otherwise.

Consequently,
0 if ||| < VI h(y)
(4.20) Rix) =
—oo otherwise,
where ||k|| = \/(k1)? + (k77)? and @=arctg(srr/k1). Thus we have
0 if xe B
(4.21) R(k) =
—o00 otherwise,

and the locking locus observed in the plane (ky, k77), denoted by B, has the form

(4.22) B={(kyimr) [ kIS T(0), @= amtg(%)}
and

(4.23) r(¢) = VLh(p), r(p) = VL + Kh(y),
with

(4.24) he) = (3 fK) " xta).

The function h(¢p) assumes the form (a detailed derivation is given in the
Appendix)

1 T s
f —<ep<—
y sin : 4_{’0“2+ﬁ'
4.25 h = .
( ) () § i 1/2 . Tl'+ﬁ< <3
1+ vsin2p gans=i =30
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where tg B=vor 8= arctgv.

Note that for § < ¢ < § + f the contour of Bis aline k;y = VL + K. For
greater @ the contour becomes a curve. For ¢ = 417 we have h = /T + v. For all
v €[0,1] the relevant locking locus has a corner at x; = k7 and is smooth for
¢ = % + B. Indeed, one can check that

R(G+87) =h(G+87) = Vies?,
(4.26) )

B (5 +8) = & (G o) =T

which confirms that stitching at ¢ = § + f is smooth. For the limit case v = 0
we have f = 0 and hence

1 17 m

. 1 Se< 2

(4.27) AOEE S g
1 if —<ep<-m
it sspsgm

For the limit case v = 1 we get
~ 1 T 3
3 —<p<L -
(4.28) h(p) = et

Those two extreme shapes of B are depicted in Fig.3, where
fa =KoL+ K)" V2, a=1,1II.

Fi1c. 3. Shapes of the locking loci B for various values of v
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The contours of Figs. 1 and 3 are reciprocal. We note that for » = 0 the arcs
of a circle transform into the same arcs. For » = 1 we note that the corners in
Fig.1 transform into the sides of the square and vice versa, a well-known result
of the duality theory. Transformation of the intermediate contours for 0 < v < 1
is more complicated, but is still found analytically.

A correct qualitative characterization of the set B has already been given in
TELEGA et al. [22]. However, the contours of B for det k < 0 were found there
incorrectly. Figure 3 constitutes a refinement of Fig. 1 in [22, 20].

4.4. Mutually dual constitutive relations

The locking locus B is bounded, convex and closed in the space of principal
strain measures Ky, K77. Similar properties characterize the locking locus B in the
space of strain measures k,g, since Ig = G*. Moreover, k = 0 lies in the interior
of B (0 € int B). The constitutive relation for the problem (f") of Sec. 4.2 can
be put in the subdifferential form

(4.29) M € dlp(x),

where I'g denotes the indicator function of the set B, see EKELAND and TEMAM
[8], ROCKAFELLAR [16],

0 if k€ B,
(4.30) Ig(k) =
00 otherwise.

The inverse constitutive relationship is given by
(4.31) K € AG(M).

In (4.29) and (4.31) 9 denotes subdifferentiation, cf.[16]. We recall that the
function G(M) is the integrand of the functional appearing in the problem (P),
cf. Sec. 4.1 Moreover, by Eq.(3.10), we write G(M) = 2,/g(M). Since X in
Eq.(4.1) is positive, therefore we may write

K € 0 F\(M) <=> K € 0G(M).
Elementary, we also have, cf [16 |,

(4.32) G(M) = sup{M : |k € B},

which links both the formulations (P) and (P)*.
Let us pass now to the basic properties of the function G. They are given by
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(i) G(0) = 0.
(ii) There exist constants C} > Cp > 0 such that

VM eE;, CoM|<G(M)<Ci(l+[M]).

(iii) G is positively homogeneous, i.e. ,

G(aM) = aG(M) if a > 0.

2
Here |[M|= Y M®AM°b
B,a=1

The proof of properties (i)-(iii) is similar to the procedure used in perfect
plasticity for the study of the dissipation density, cf. LEWINSKI and TELEGA
[11], TEMAM [23].

In the existence study which is the subject of the next section, a particular
form of locking locus is not required. General assumptions on a locking locus,
still denoted by B, are

(a) B C [E? is convex and closed.

(b) There exist 0 < r; < ro < +00 such that K(0,7) C B C K(0,72) where
K(0,7) denotes the ball with the centre at zero and with radius r.

The sets B and B derived in Sec.4.3 satisfy (a) and (b). In the general case,
the support function G of B is determined by the relation of type (4.32).

5. Existence theorems

In the case of plates with locking extremal problems cannot be formulated in
standard manner, as for elastic plates. Let us first solve the problem of existence
of transverse displacements. The primal problem is formulated as follows, cf. the
problem (15)",

(P) sup{f(w) lw € U, k(w(z)) € B a.e. z € Q}

where
U = {w e V(Q)|w = ua,, dw/dn = taz on '}

Here an, @ = 1,2, are prescribed functions of s € I'y whilst 4, possibly
depending on s, denotes the intensity of generalized boundary displacements
(w,dw/6n). One parameter problem is a specific case, where m = i € R is
simply a load parameter. In the functional f,Q° and M? are to be viewed as
fields of weight multipliers, cf. CYRAS [4].
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THEOREM 1. Under the assumptions (a) and (b), the mazimization problem
(P) possesses a solution w € U provided that

(5.1) /{Q°a1 — MP2ay)ds # 0.

It

P roof. The proof follows the approach used in Demengel and Suquet [7],
Demengel [6] for 3D problems. Therefore it suffices to sketch the proof for the
plates with locking. Applying the duality theory we prove

(52) supP = inf P*,
where

(P*) inf{/G(M) dz|M € L(Q,E}), divdivM =0 a.e. in ©;
0

Q=Q0|MH=M2 Ol’lF]},

where M,, = M*®n,n, and Q is the rate of the KIRCHHOFF shear force. To
simplify the remaining part of the proof we consider the case of one parameter
loading: w = mw® and dw/On = mw' on I';. We set, see the formula (5.9)
below,

(5.3) Ua(m) = {w € H2(Q)w=0, Ow/dn=0 on Ty;
w=muw’, Ow/dn=mw' onl},

(5.4) So(R) = {M € Z(Q,E})| divdivM = 0 a.e. in Q},

(5.5) B, = {we H*Q)| «(w(z)) € B ae. z€N}.

The locking limit analysis problems assume now the following form:

Q) sup {m|By N Uga(m) # @},
Q%) inf{ / G(M)dz|M € Sy, /.(Qwu ~ M,w!')ds = 1}.
Q 5|
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It can be shown that
sup@ = inf Q*.
Under the assumption (5.1), which now means that there exists M € Sy such
that

(5.6) [ (@ = dttyas o,
Iy

we have

(5.7) my = inf Q* = supQ < +o0.

Here my is the locking limit load. Indeed, it can be shown that if (5.6) is not
satisfied then inf Q* = sup Q = +o00. To assess the equality between sup ? and
inf Q* one can apply a penalty method, cf. DEMENGEL and SUQUET [7].To this
end we introduce the following perturbed problem:

(@) nt { —m + Ja((w), Ba) I € Row € Upa(m) |,
where

By = {e € L*(N,E?)|e(z) € Bae.x € Q}.
The dual problem means evaluating
(Qf)
sup -/G(M) ds|M € Sy, /(Qwﬂ - Mpw')ds =1, M2 0,15) < %} .
Q I

Under (5.6) we have
(1) inf Qs = sup Qf > —o0,
(ii) Q5 admits a solution,
(i)  —inf Qs converges to sup Q.

The functional

Js(m, w) = —m + %d(«(w),Bd)

is coercive on H?(Q2) N Uq(m). Consequently, there exists at least one solution
(mg,ws) to the problem (Qj). The sequence {(mgs,ws)}s>0 is bounded in R x
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H?(f2) and we can extract a subsequence {(mg,ws )}s 0 such that mg — m in
R, wy — w weakly in H?() when &' — 0. Finally

limsup(—inf Qs) = liminf(— inf Qy) = sup@ = inf Q* = m = m,.

REMARK 1. In fact, the function w solving the primal problem (P) or (Q)
belongs to a nonreflexive Banach space, cf. DEMENGEL [6],

V> () = {v € L®(Q)|kap(v) € L*(N)}.

O
Let us pass to the study of dual problem (Q*). We introduce the following
nonreflexive Banach space:

(5.8) S(Q) = {M € Z2(2,E})| divdivM € M, (Q)},

where M, (Q2) denotes the space of bounded measures on ) and, ¢f. DEMEN-
GEL 6],

(5.9) Z(Q,E}) = {M € My (2, E3)|divM € LX(©)?}.

Now the function G is a convex function of the measure, c¢f. BOUCHITTE and
VALADIER [3]. We also introduce the relaxed problem

(RQ") inf{ /G(M) dz + my| ](Q‘wo — anl] ds —1|, M € §(R),
9} I

divdivM =0 in Q}

THEOREM 2. From each minimizing sequence of (Q*) or (RQ*) one can ez-
tract a subsequence weak-* convergent in My(Q,E}) to a solution of (RQ").

To prove the last theorem it suffices to follow the approach elaborated by
DEMENGEL [6 ].

REMARK 2. Let 4 be a sufficiently smooth curve in 2, for instance divid-
ing © into subdomains Q" and Q™ such that Q = QT UQ- U~. If M € S(Q),
there exists a couple (M, &) € L*(Q, E$) x HB(R) such that, cf. DEMENGEL 6],

(i)  M=M; + (cof ¥*€)",
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(i1) the mass of M on <y takes the form [gﬁ-] t®t, and

(5.10)

P 10 _ 1o
"= 32 " Ron’ [M"]_E[an]’

o (o€ 1 9¢ 9 [ o€
ﬂfaﬁﬂ | M“’en =)
o) alp 0s (an) R 0s’ [ atg] [83 (311)] ’

Here R is the curvature radius of v and t denotes a unit tangent vector, and [q]
denotes the jump of q across . Obviously, (cof A)! is the transpose matrix of the
cofactor matrix of A, cf. DACOROGNA [5]. If v is a line interval then [M,] = 0.
Further, if R is bounded then [M,] € L!(y). Particularly, ¥ can be a part of

I'. Anyway, the moment stress rate tensor M solving problem (RQ*) exhibits
discontinuities.

6. Theory of perfectly-locking thin plates and shells

Let S C R® denote a sufficiently regular middle surface of a thin shell [2]. Its
deformation is determined by the displacement vector (u,w), where u = (u,).
By ¥ = (vag) and p = (pap) we denote the linear deformation measures. The
locking locus is now contained in the space E2 x E2, i.e. B C E2 x E2. For instance,
once the locking condition

(61} I(:BvY!p) < 01 T = (xi) € Ss 1=1,2,3,
is known, then
(6.2) B(z) = {(v,p) € B x E2| l(z,v,p) <0, z € S}.

The strains measures the for linear Koiter’s shell are given by Eqs.(6.6) below.

We observe that no assumption of isotropy is required. A specific case of B
for thin plates has been given in Sec.4.3. For homogeneous materials B does not
depend on z. General assumptions on B are specified by:

(A1) B(z) C E? x E? is convex and closed.

(A2) There exist 0 < r; < ro < 400 such that, K(0,7;) C B C K(0,73), where
K (0,7) denotes the ball with the centre at zero (in E* x E?) and with radius r.

The constitutive relationship is assumed in the subdifferential form, cf. (4.29),
(6.3) (N, M) € 0lp(z)(Y,p)-
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As we already know, for perfectly-locking shells N, M denote the rates of the
stress resultants and couple resultants, respectively.
The support function of B is now given by, cf. Eq.(4.32),

(6.4) G(z,N,M) = sup{N*ya5 + M pag|(v, p) € B(z)}.

The function G is a counterpart of the density of plastic dissipation. Now,
however, it does not describe the dissipation since the locking response is re-
versible. The constitutive relationship inverse to ( 6.3 ) is given by

(6.5) (v,p) € 9G(z,N,M), z € S.

The function G(z, .,.) has linear growth and satisfies:
(i) G(=,0,0)=0,
(i)  there exist constants C| > Cj > 0 such that

v (N, M) € E} x B, Co(IN| + [M]) < G(z,N, M) < C (1 + [N| + [M]),
(iii) G(z,.,.) is positively homogeneous
G(z,aN,aM) = aG(z,N,M) if a > 0.
Dependence of B on z € S is not arbitrary. After BOUCHITTE and VALADIER

[3] we make the following assumption, cf. also Remark 13.2.1 in LEWINSKI and
TELEGA [11],

Vo € Co(S,E2 xE?), d(z) € B(z) almost everywhere = ¢ (z) € B(zx) everywhere.

Locking limit analysis

Let the boundary 95 of the shell middle surface S consist of two disjoint
parts denoted by 0S5y and 85;. For KoITER’s shells the strain measures are,
cf.[2],

(8,0) = 5 (ttay3 + ) —
(66} Yapg\, W) = B a3 Bl af W,

Pap(0, W) = —w [lap —bg”ﬁu., — buyp — bJty)ja + Capw-

The meaning of (6.6) is standard in the linear shell theory. Now we introduce
the spaces of kinematically admissible fields and of statically admissible fields as
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follows, cf. (5.3-5.5),
Uaa(m) = { (u,w) € [H'(S)]" x HX(S) | u=mu’, w = mu,

‘;‘ln =mw! on 95, },
B = {(u,w) € [H'(9)]* x HY(S)|

[Y(u(z), w(z)), plu(e), w(z))] € B(z),ae. z € S},

So(S) = {(N,M) € L*(S,E}) x L*(S,E})|

et B
€qy = NeB I8 = 205 M Hﬁ - b:'”ﬂM"'g =0,

eqy := bagN®? + Mﬁ’fﬂ —cagM®® =0in 8,
N® = (N — b MM)ng — b3M*Pn, = 0 on 85,
T = Mina + 8/9s(M*Ptang) = 0, My = M®nang =0 on aso} .

The locking limit analysis is formulated in the form of two dual problems:

(R) sup {m|By N Uzq(m) # @}

(R*) inf{ [ G(z,N,M)dS|(N,M) € S,(S), [ (N%u?
v J

+ Tw’ — M,,w')ds = 1}.
Similarly to the previous section we get
my = inf R* =supR < +o00,

where m; denotes the locking limit load multiplier.

7. Elastic-perfectly locking thin shells

Let us introduce a model of such shells, being a counterpart of the deforma-
tional theory of plasticity. Now we have

(7.1} N=N3+NI, M=M3+M{.
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Here the subscripts e,! denote the elastic and locking parts, respectively. For
the elastic parts linear elastic behavior is assumed. The locking parts obey the
following rule, cf. (6.3),

(72) (Nh Mf) € BIB(I] (T? p)

The locking locus B(x) has the properties (A;) and (Az) specified in Sec.6.
We observe, however, that in contrast to plasticity, only some components of
(N(z),M(z)) can be constrained by B(z). The density of the strain energy
(elastic-locking potential ) is given by

" 1
(78)  3%(2,7,0) = (A" yapmau + D pagpy,) + Ipa) (¥, 0),

where (v,p) € E? x E2. Its conjugate (dual) function j(z,.,.) satisfies, cf.
LewiNskI and TELEGA [11], TEMAM [23],

(7.4) 360,61 >0, &(IN| + M| - 1) < j(z,N,M) < &(|N| + [M] + 1),

where (N, M) € Ej x Ej. The loading functional is assumed in the following
form :

(7.5) F(u,w) = /(q“ﬂa + quw)dS + / (Ngua £ 1%y — M-E'gwﬁ) ds.
S So

We are now in a position to formulate a pair of dual extremum principles
characterizing the displacements and generalized stresses in the elastic-locking
shell.

(Pl) inf{/j‘(x,y(u,w), p(u)w))ds == F(u, w)i(“! w) e uad} )

s
(P*)

sup {—/j(a:,N,M)dS B f(ﬁ“ﬂa + T — Mpi') ds|(N,M) € Sad} ;
s a5,

Here

Upa = {(u,w) € [H'(S)? x H*(S)lu =8, w=1, dw/dn=1b" on 88}

Sad = {(N,M) € L*(S,E}) x L%(S,E})|eqi +q =0, eg2+¢=0 in S;

Ne=N®, T=T° M, =M on 350}.
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Problem (P;) admits a solution provided that By NUaq # @ It means that the
loading functional F' cannot be arbitrary.

REMARK 3. The model of elastic-locking plates is a specific case of the model
proposed for shells.

8. Final remarks

We have shown that the shape optimization problem of plates of small vol-
ume leads to plates with locking. This fact has been established for isotropic
plates. Whether a similar statement holds for anisotropic plates and shells, not
necessarily isotropic, remains an open problem. Nevertheless, a general theory
of perfectly-locking and elastic-locking plates and shells has been proposed. The
elastic-locking model is a counterpart of the deformational theory of plasticity.
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Appendix

Te aim of the Appendix is to derive the formula (4.25) defining the contour
of the set B. To find h(¢y) given by (4.18) we represent it in the form

(A1) o) = [min,0)] ",
where

14+ 9(1 +sin29) + |sin 29|
(A2) f-p(ﬂ) p=r Cosg(ﬂ 5] SO)
Let us show that the lines
(A.3) Kr = K7

are symmetry axes of B. It is sufficient to show that

(A4) h(p1) = h(p2), hlps) = h(ps),

™ n m
for = E — 1, 1€ [O!ﬂ/z]) and for PL=m— ((:93“ E) y 93 € |:_2':?T:| .
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We have i
T -
h (5 = (p) - [n:gn fz _w(ﬂ)] .
Note that
_ 147(1 +5sin29') + |sin 20|
f%‘“’(ﬂ) n cos?(¥' — ) i

where 9’ = § — 9. Hence fz_,(d) = fo(¥'). Thus
mﬂin fryp(d) = lréin Faloy= rri,jn fo(9).

Therefore, h(5 — @) = h(p), which proves (A4). We conclude that in order to
find the contour of B, it is suffcient to find this contour for ¢ € [%, %w] :

We proceed further to find the contour of B for ¢ € [1—’, %‘ﬂ'] . We note that
the formula (A2) can be rearranged to the form

(A.5) fo(9) = fo(tgd),
. 14y
(A.6) Jolz) = e 9o ().
with
1 —2uz + 22 £ 2 <0
2 — )
(A7) sole) = B
(—) if £>0,
T + ctgy

The results above lead to

(A8) = Yot [

sin

1/2
min gg,(a:)]

and the variable ¥ is no longer necessary. To find min g,(z) we shall make use
z
of two elementary results:

o+1 T 3
——1| =1 if -, =,
:c+ctgtpi : 1,06[4 4ﬂ]

a min
(a) L

1-2bz+2> _ 1-b
(z—-p)2 — 1-2p+p?

if b<1, peR
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The minimum in (b) is attained at

1-—

(A.9) Ty = ﬁ:
To find mzin g(z) one should consider the case of o < 0 and

2
TP <
for b = v, p = —ctgy. Let us note that

1= (b-p)
1-2bp+p? 1-—2bp+p?

Thus the condition (A10) is satisfied provided that z¢g < 0. Let ¥ = ¢ — 7/2.
Then ctgy = —tgW.
The condition z¢ < 0 implies

(A.10)

(A11) ﬁswsg—ﬁ

where 8 = arctgr and for such ¢ the minimum in (b) is attained. Thus the final
result has the form

1 if T<e<Z+B
L S 3~ # Tigepes
1 + 2uctgyp + ctg?e 2 i

Now we use (A.8) and come back to (4.23), (4.24) to find r(¢) = VL + K h(y),
where h(yp) is given by (4.25).
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