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A qualitaiive approach to Hooke’s tensors. Part 11
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A STRAIGHTFORWARD AND COMPLETE DESCRIPTION of all possible invariant linear de-
comositions of the space of Hooke's tensors has been given in Part I, [1]. In this
Part I we demonstrate various eleborations and consequences of these decomposi-
tion: This gives a qualitative decription of the anisotropy of Hooke’s tensors. In
partcular, we demonstrate examples A through G, not only important but also as-
tonishing. When reference is made to the formulae in [1], we shall add “Part I” to the
nummer. The notions and notations are the same (see Appendices 1, 2 in [1]).

1. Introdudion

THIS PART I A DIRECT CONTINUATION of [1], but it has a different character.
The purpost now is to investigate the qualitative consequences of the invariant
decompositims presented in the previous part. The main and most interesting
results are grouped in seven examples A-G, Sec. 7. We intend to demonstrate
on these exanples that materials of totally different structure can, under certain
types of acton, react quite similarly or even identically. We hope that these
examples wil contribute to a novel kind of thinking on the isotropy of properties
of condensec matter.

2. Energy ¢ecompositions of Hooke’s tensors

2.1. Let 1s decompose the quadratic form (energy, work, stress intensity
and so on)

(2.1) oH w=wp-H wp+2wp-H-wp+wp-H-wp,

where wp =lp - w, wp =lp- w.

I

Exampie 1. Let C be a compliance tensor of an elastic material, and o an
acting stress. Then (see (1.4), Part I):
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e op-C-0p =o0p-(C-0p)p is doubled work of the hydrostatic part of
stress op on the resultant deformation,

eop:-C-0p=o0p:(C-0p)p is doubled work of the hydrostatic part on
the deformation caused by the deviatoric part of stress and wvice versa,

eop-C-0p=0p-(C-0op)p is doubled work of the deviatoric part on the
resultant deformation.

Quite similarly, we can decompose energy of deformation £-S-¢. Let us note
that, for example, ep-S-ep # ap - C - op.

2.2. There is a correspondence between the used decomposition of quadratic
form (2.1) and the unique decomposition of its Hooke’s tensor

(2.2) H=H" + H?? + H?,

where

(2.3) H” =Ip oHolp,

(2.4) HPP =lpoHolp+IpoHolp,
(2.5) HP =IpoHolp.

This is an immediate result of two identities: H = [soHolgs and Is = Ip+Ip
(see (4.15), Part I).
Clearly, linear operators on the space H

(2.6) H-H%, L[=PPDD
are invariant orthogonal projectors, i.e.
R+HY)=Rs+H)", (H)*=H*, ReO.
They are mutually orthogonal, i.e.
H” HP?=HP . HP-=H? .H”P =0
and their sum is an identity operator.

We have obtained a new invariant orthogonal decomposition of the space of
Hooke’s tensors

(2.7) H=HFP+HPP+HP, 20=1+5+15
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which we will call energy decomposition. The dimensions will become evident
S00M.

2.3. It is not difficult to obtain this decomposition in an explicit form. It is

simplest to begin with non-orthogonal decomposition (see (7.15), Part I).

(2.8) H=hplp+hplp+(10w+w®1)+cx (1®0+0®1)+D.

Only the decomposition of the part

(2.9) L=cx(1@p0+0®1)

is not immediately clear. But 1-L-1 = 0 and taking Ip = Is — Ip , we have
IpeLolp = 0,

(2.10) IpoLolp+IpoLolp =IpoL+Lolp= §{1®Q+Q®1),
IpoLolp = L—§(1®g+g®1).

Finally, a complete energy decomposition of Hooke’s tensor has the following
unique explicit form:

(2.11) H=hprlp+ (109 +9®1)
+ [h-p[[p+ (c—%i) x(1®¢+¢®1)+D],

where

1 2
(212)  @=3;@w+20)=;(Ta+28), w=e=3(x-8).

This is an orthogonal decomposition. The orthogonality of the second and fourth
part follows from ((5.14), Part I). Deviators ¢, are expressed by Novozhilov’s
deviators ((7.12), Part 1) as follows:

1 2
(2.13) ® = 3k, P = 9=;(3vv—2up)-

2.4. The complete energy decomposition of the space of Hooke's tensor which
corresponds to (2.11) has the form

(2.14) H=Tp+Di+(Ip+Dn+D), 21=14+5+(1+5+9),
2
where n =¢ — §i. This decomposition is unique.
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The quadratic form (2.1) we started with takes the form
(215) w-H-w=hp|wp[’+2trw (¢ wp) + hp |wp|* + 2 (wp)?
+ wp-D-wp.
EXAMPLE 2. There is an important class of elastic anisotropic materials,

in which the deviatoric and spherical parts of stress and deformation are energy
orthogonal in the sense [2] of, i.e. such as

(2.16) Rl ey 37 =0

According to (2.11), (2.13) we have

1
(2.17) CP? = §(1®PD+MD®1)s
so up = 0. By the definition,
(2.18) C:l=cpl. , S'3I=upl , ecpip=1.

Thus, the hydrostatic stress causes a change in volume without any deviatoric
deformation, whereas deviatoric stress causes only deviatoric deformation with-
out change in volume. Such materials we called in [3, 4] volume isotropic. Their
spectral decomposition ((1.9), Part I) takes the form

(2.19) S=splp + 1181 @8 + -+ + 585 @ 8s,
where 8,---,85 are proper deviators, and 6 Kelvin moduli are the bulk modulus
s and 5 deviatoric moduli pq,---, ps.

3. On true Hooke’s tensors

3.1. A non-zero Hooke's tensor H will be called a true Hooke’s tensor when its
quadratic form is non-negative definite:

(3.1) w-H-w>0 for every w € S.

The true character of a Hooke’s tensor can be easily determined when spectral
decomposition ((1.9), Part I) is used: Kelvin moduli h; > 0,---, hg = 0 are to
be non-negative. It would be more difficult, however, to satisfy the necessary and
sufficient conditions imposed on the systems (hp,hp, a, B, D) or on equivalent
systems' (see (7.4), Part I).

'Of course, one can use the classical Sylvester criterion, when H is taken in a matrix form,
but this does not lead to easy formulation.
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3.2. The invariant parts of a true Hooke’s tensor do not have to be true Hooke’s
tensors. This is, however, the case for the most important part. For basic de-
composition

(3.2) H=H“{H*", 21=2+19

we have the following, not at all obvious, theorem.

THEOREM 1. The isotropic part H* of every true Hooke’s tensor H is a true
Hooke’s tensor. This means that for (3.1) the following inequalities are the case:

(3.3) hpE%l-H-lBO,
(3.4) Ty -é (TrH - hp) > 0,

with one of them being sharp. If the tensor H is not isotropic, i.e. H*" # 0,
then

(3.5 hp 20, hp > 0.
Proof. Iftensor H is isotropic, H®*" = 0, then
(3.6 w-H-w=hp|wp|’ + hp |wp|

and condition (3.1) means exactly (3.3) and (3.4).
Let us take a true Hooke's tensor which is not isotropic, i.e. H* # 0. For
spherical action w = wp = p1 we have

(3.7 w-H-w=hpp?>20=>hp >0.

Let us take any deviatoric action w = wp = § € D. We have

(3.8 wHw=sH-6=6HP-5=56-(hplp+K)-5 >0,
where
(3.9 K=H"? =IpoH"olp.

The operator & — K - & is a symmetric linear operator which transforms the
5-dimensional space of deviators D, with scalar product 8; -89, into itself. Thus
we lave its spectral decomposition

(3.12) K=Fk ®x +- + ksss @ 35,
where proper deviators constitute the orthonormal basis in D, 3¢ - 3 = 0;5.
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Since Ip is the unity operator on D, lp -8 = §, then every deviator is its
proper element corresponding to eigenvalue 1, so

(3.11) Ip=m @31+ -+ 35 D 5.

Operator hplp+K is non-negative definite, so all its eigenvalues are non-negative
(3.12) hp+k1 20,....,hp+ks 20.

But

(313) ki+---+ks=TrK = Kpgpg = Ip pgab Hapeq Ledpg

= HgpeigIpabea = HY" - Ip
because of Ip olp = Ip. Since the anisotropic part H*" is orthogonal to any
isotropic Hooke’s tensor, then
(3.14) ki +--+ks=0.

As tensor H is not isotropic, then K # 0, hence its smallest eigenvalue kmin
must be negative. We have therefore

COROLLARY 1. A true Hooke’s tensor without an isotropic part does not
exist. Indeed, for H = H% | one can always find such a deviator § that

§-H-5=6-K-6=knin|5° <0.

COROLLARY 2. The isotropic part of a true Hooke’s tensor is its closest true
Hooke’s tensor (in the sense of distance |A — B|). Indeed, it is an orthogonal
projection of H on H* .

REMARK. The norm of the isotropic part |H‘3| can differ substantially from
the norm of the entire Hooke's tensor

(3.16) H? = |[H*|* + =2

Similarly, the values of quadratic forms w-H*-w (e.g. energy) can substantially
differ from one another. The problem of choosing a ‘good’ isotropic approxi-
mation of Hooke’s tensor, for example choosing an isotropic elastic material to
approximate an anisotropic elastic material, is a problem per se (see e.g. [5, 6]).
Everything here depends on the purpose of the approximation.

4. Spatial symmetry and invariant decompositions

4.1. The relation between spatial symmetry of Hooke’s tensors and their spectral
decompositions was examined in detail (see [3, 7, 8] and review [4]). Here we
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shall only deal with the relation between this symmetry and the invariant linear
decompositions obtained in Part L.

THEOREM 2. A group of spatial symmetry of Hooke's tensor is the inter-
section of symmetry groups of its anisotropy deviators, e.g.

(4.1) OH)=0(x)NO(B)NO (D).

Proof. obvious (see also [9]). Clearly, the pair (@, ) can be replaced by
any other pair (&, ;) described in ((7.3), Part I).

Therefore, all the possible types of symmetry of Hooke’s tensors are types
of symmetry of triples: two second-order deviators (a,B) and a fourth-order
deviator D. An analysis of the resultant possibilities would lead us in a new way

to eight classical groups of symmetry of linear elasticity (see also [9]). We will
not do so.

IMPORTANT REMARK. In a general situation, the triple («, 8,D) loses the
common elements of symmetry very quickly. In other words, most anisotropic
materials do not have any axes or planes of elastic symmetry

4.2. We shall demonstrate how, in the language of anisotropy deviators, appear
the axes of symmetry of Hooke's tensors.

Let R (¢) be a rotation of our basic Euclidean space by the angle ¢ around

the axis directed by a unit vectork . The straight line will be called a total
symmetry axis of the tensor A when

(4.2) Ri(p)*A=A for every angle ¢,

and its n-fold symmetry azis when it is not its axis of total symmetry, but

(4.3) Ry(p)x A=A for p= %,

where n is the minimal integer > 2 of such integers for which this equation is
satisfied. As the tensor A we can here take any Euclidean tensor.

It can be demonstrated that the space of second-order deviators can be de-
composed with respect to any fixed axis into an orthogonal direct sum

o 1 2
(4.4) D =Dk + Dk + Dk, =1+4+2+2
such that any rotation Ry (¢)

o
- preserves every deviator on the straight line Dy,
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l
— rotates every deviator in plane Dy, [ = 1,2, by the angle Iy
=]
Clearly, every deviator on the straight line Dy has the form

(4.5) w=a(l-3k®k).

Similarly, an orthogonal decomposition of the space of fourth-order deviators

0 1 2 3 4
D = Dk + Dk + Dx + Dk + Dx

(4.6)
9=1+4+ 2 + 2 + 2 + 2,

takes place. In this case, every rotation Ry (¢)
0
— preserves every deviator on the straight line Dy,

— rotates every deviator in plane bk, [=1,23,4, by the angle lyp.

Therefore, higher symmetry axes (i.e. 3-fold and 4-fold) of a Hooke’s tensor
are caused only by the presence of the invariant term D in its decomposition.
Strictly speaking, the following theorem is the case.

THEOREM 3. A Hooke’s tensor H has a higher symmetry axis k only if its
anisotropy deviators have the form

(4.7) x=a(l-3k®k) , B=b(1-3k®k) , D # 0.
It has more than one higher symmetry axis only if

(4.8) a=0, p=0, D#0.

Proof Let k be a higher symmetry axis of H. Rotations around k by
the angles 27/3 or 27 /4 preserve second-order deviator w only if k is its total

symmetry axis, so if w El?}k. If D =0 then k would be a total symmetry axis
of H, which we dismissed. Let k,1 be two different higher symmetry axes of H.
Then the formulae (4.7) would have to be the case both for k and for 1, which
is only possible when a = b = 0.

Let us examine only one, but important example.

ExaMPLE 3. Elasticity tensor S of a cubic erystal. The symmetry group
O (S) is a symmetry group of a cube. We have here three 4-fold axes and four 3-
fold axes. This is more than needed, according to the theorem and decomposition

1 3
2All the elements Dy, Dy are pure shears (see [8]).

http://rcin.org.pl



A QUALITATIVE APPROACH TO HOOKE'S TENSORS. PART II 53

(7.3), Part I, for tensor S to belong to the following important class of Hooke’s
tensors

(4.9) S=S*+D, a=g=0.

The deviator D is easy to be explicitly define. By denoting by k,1,m the
directions of the edges of the cube, we see that tensor

(4.10) D - 3l; — 5K = 3ilp + 2[5 — 5K,
where
(4.11) K=k@k®kek+1Q1QI1]1 +m@m@m®m,

is a deviator with the required symmetry of a cube.
A complete invariant decomposition of elasticity tensor of the cubic crystal

has, therefore, the form
(4.12) S = Aplp + Aplp + 6D.

The relation with the given spectral decomposition (1.10), Part I, is obvious

lp =Py, Ap=hy,
(4.13) Ip = Py + P3s, Ap = %(2.’12 + 3h3) ,

D = -8P3+23Ps, &=={hi—hs).

cii— 9

The projectors onto proper subspaces defined by (1.12), Part I, are therefore
(4.14) Pi=Ip, Pa=K-Ip, Pg=Is-K

which can be demonstrated by direct projecting: w - P;-w, ¢=1,23.

5. Invariant decompositions of plane Hooke’s tensors (see also [10])

5.1. Plane tensors of any orderq are generated by the Euclidean plane
£, dm®"E =29 Siill

(5.1) S =symERE, H =symSQS,
but now the situation is far simpler since
(5.2) dimS =3, dimH =6.
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5.2. The counterpart of decompositions ((4.12), (4.13), Part I), is

vmervon (10)=(5 2)+(2 %)

The plane deviator wp is always, in the sense of mechanics, a pure shear T in
plane &, (see any textbook of solid mechanics or [8]). We have

(5.4) wp =T, T=t(m®n+n®m), t2§%'r"r

where mutually orthogonal unit vectors (m,n)are the shear directiins.

(5.3)

5.3. The nonlinear invariant spectral decompositions of the plane Hoske's tensor
have the form

(5.5) H=hw; @w; + howo @ wy + haws ® w3y

where wy - w; = 0. These decompositions are presented simply and in enough
detail in [4].

5.4. The action of permutation operators remains exactly the same as that de-
scribed in Part I, but its results are far simpler. The first basic deconposition of
the space H, with respect to internal symmetry has the form

(5.6) H="=Hs+He, 6=5+1.
The dimension of Hg follows from the fact that the conditicn of total
symmetry s x H = H imposes on the six free components Hqyy, Hagos,

Hy199, Hi212, Hi112, Ha212, only one constraint Hyjoo = Hjgpo.

5.5. The second basic decomposition of H, according to the symmetrywith respect
to the group of rotations and mirror reflections in plane £, has the form

(5.7) H=H"+H", 6=2+4.

The description of the plane H* of plane isotropic Hooke's tensors differs from
the former one only by the change of coefficient 3~ into 2~! in formulae (4.10),
(4.11), Part I

Is=c¢x(1@1), I[s-Is=dim S =3,

(5.8) Ip = (C—%i) x(1®1), Ip-Ip =dim D = 2,
i |

]I'p=§(l®l), Ip-Ip =dim P =1.
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Here and henceforth, the symbol 1 denotes now the plane unit 1 «~ ( [1] (1] ) ]

5.6. Let us consider the counterparts of two anisotropic parts of the canonical
decomposition (6.4), Part I. There are two simple albeit not self-evident facts.

LEMMA 1. Every plane tensor of the form
(5.9) 1®@T+T®1,

where T is any plane deviator (so any pure shear), is totally symmetric with
respect to permutations.

Proof. Taking proper directions of r,a = (m +n) /v2 ,b = (n — m) /2,
we have

(5.10) T=a[a®a—b®b)~t(é _01)
At the same time, of course,
(5.11) 1=a®a+b®b~(é (1’)
Hence
(8.12) 1t+T®1=t(a®a®a®a—-be®b®b®b)

and the right-hand side does not react to permutations.

5.7. Therefore, the plane counterpart of the 10-dimensional invariant space © will
be the plane © consisting of all plane tensors of the form (5.9). As dim#, = 5,
then the plane counterpart of q-dimensional complement D will be the plane of
fourth-order plane deviators D.

COROLLARY. The anisotropic part H*" of plane Hooke’s tensor is totally
symmetric

(513) H, = hL; +-H*", H, = hd;.

LEMMA 2. For every non-zero plane fourth-order deviator D, there exists a
pure shear y such that

(5.14) D=y®y-v'®vy-=2vy®v-v’lp

where the complementary pure shear y* is defined by y through formulae Yy =
0, [v*| =1lvl-
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P r oo f. Let us apply a spectral decomposition (5.5)
(5.15) D=d w ®w; +dows ® wy + dyws ® wj.
From conditions of orthogonality to H* we have 1-D = 0, TrD = 0 wtich gives
(5.16) ditrw, = dytrwy = dytrws =0, dy +dy+ds=0.
The only non-zero solution D ordered in such a manner that d; < dy < d3, is
(5.17) dy = —d, dy =0, trw, = trwy =0
which gives the first formula (5.14). The second formula follows from the equation
(5.18) Ip=T11®11 +T2 @719
valid for every orthonormal basis in D,7; - Tx = 0 -
5.8. Summing up: The canonical decomposition of the space of plane Hooke’s
tensors has the form
(5.19) H=H"+D+D, 6=2+42+2,
while every complete invariant decomposition has the form
(5.20) H= (T +Tny) +D+D, 6=(1+1)+2+2.
In other words, every plane Hooke’s tensor has the form
(5.21) H=hl, +h0,+(1®Tt+7®1)+D.

Pure shear v and fourth-order deviator D (5.14) are uniquely defined, whereas
invariants hy,h, depend on the choice of permutation operators np,ny.
Explicit formulae for (hy, h,,T,D) are easy to obtain.

5.9. Energy decomposition of plane Hooke’s tensor

(5.22) H=H” +H”? + H?
is unique,
(5.23) H=hplp+(1®Tt+7®1)+ (hplp + D),

and the quadratic form corresponding to H can be written in the form

(5.24) w-H-w=hp|wp|* +2trw (- wp)?
+ (ho - ¥?) lwol® + 2 (v wp)”.
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5.10. The rotation R of plane £ by the angle @ rotates the 3-dimensional space &
around the axis P by the angle 2¢ as it immediately follows from formula (5.4).
Thus the orthogonal basis of pure shears (y,yl) rotates in the usnal manner

(5.25) R xy = cos 2@y + sin2@y* , R * vyt = —sin2¢y + cos 2py*;
hence, by taking D =y®y — y- ® y- we obtain
(5.26) (R*D)-D = |D|? cos 4e.

So, every fourth-order deviator D rotates, as it should, by the angle 4¢. There-
fore the plane Hooke's tensor H can have three well-known kinds of symmetry:
1. Symmetry of circle (isotropy), if t=0, D=0,
2. Symmetry of square (tetragonal), if t=0, D #0,
3. Symmetry of rectangle (ortothropy), if *#0, D #0,
(see also [10] where it was also pointed out that the plane elastic continuum
without any symmetry has orientation ‘left’ or ‘right’).

5.11. To every 3-dimensional Hooke’s tensor we can assign an infinite number of
plane Hooke’s tensors that correspond to it.

Let us take, in 3-dimensional space £, a plane K defined by its unit normal
vector k. The orthogonal projection of the vectors x € £ onto the plane K is an
operation defined by projector P (k) ,

(5.27) Pk)=1-k®k, x-Px=x-(kx)k.

To this corresponds the linear operation of orthogonal projecting of 3-dimensional
tensors onto the plane @€ 3 A = P* A € @K, defined for simple tensors by
the formula

(5.28) Px(a;®---®a;) =Pa;®---®@Pay.

The orthogonal plane projection of the 3-dimensional tensor of g-order
(5.29) A=A; n® - @nj

onto the plane will therefore be the plane tensor of g-order

(5.30) Pk)*A=A;.;P(k)n;® - ®P(k)n;.

The relations between the tensor A and its plane projections P(k) x A are in
mary situations quite essential.

EXAMPLE 4. Let us take an elastic sample with the compliance tensor C.
Let us cut out from this sample a thin plate with the normal vector k. The plane
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part of the plate’s deformation under the plane state of stress is defined by the

plane compliance tensor of the plate, being nothing else but a plane projection
P (k) = C.

6. On description, qualification and design of elastic materials

6.1. Let us begin with remarks on the qualitative description and qualification of
elastic materials.

The issue of symmetry is purposefully left out. It is so extensively discussed
that one gets a false impression that the main differences in the behavior of elas-
tic materials consist in the differences in their symmetry. This is not so. The
fascination with the symmetry of physical properties is quite well justified in the
physics of crystals, and also due to the simple and economical production tech-
nologies of composites, imposing the symmetry of their structure, e.g. ortothropy.
Yet the contemporary technologies offer more and more sophisticated opportu-
nities for shaping of the materials with pre-selected properties. But complicated
structure leads to a prompt loss of symmetry. It suffices, for instance, to put into
a composite three different kinds of fibres, mutually non-orthogonal, and there is
no trace of symmetry. More importantly, materials of totally different symmetry
can, in certain conditions, behave similarly or even identically.

It is therefore necessary to find manners of description, not connected with
symmetry (ortothropy, etc.), and as a consequence, designing of the properties of
materials, which would be deeper and more universal than those now used. One
can remain particulalrly hopeful about the inveriant descriptions: non-linear of
type ((1.9), Part I) and linear of type ((7.3), Part I). As decision variables of
designing of the properties of a material at the point under cosideration can serve
here, in particular, spectral variables (hy,..., hg; w1, ..., wg) or the invariant parts
of tensors like (hp, hp, &, B, D). This, however, calls for a deeper insight into the
sense of these quantities.

6.2. Even at the stage of formulation of invariant decompositions, we gave intro-
ductory examples, pointing out their qualitative sense and possible applications.
While illustrating the first basic decomposition (2.12), Part I, we made reference
in Example 1 to the classical discussion on the number of parts of an elasticity
tensor. While recalling the second basic decomposition (3.1), Part I, we demon-
strated, in Theorem 1, the sense of the isotropic part of the elasticity tensor as an
independent elasticity tensor. In Theorem 3 we showed the independent meaning
of the deviatoric part D of Hooke’s tensor as a true source of the presence of the
axis of elastic symmetry of the third or/and fourth order. By introducing the
energy decomposition (1.7) we made an immediate reference, in Example 2, to
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an important class of elastic materials, in which hydrostatic pressure and stress
deviator are separated in terms of energy.

7. Some sirprising applications: astonishing elastic materials

7.1. Let us now quote quite different examples. By using the technique of in-
variant lirear decompositions, we shall point out some novel types of elastic
anisotropy The very fact of their existence was, at least for me, quite surprising.
I shall therefore use a manner of presentation slightly different from the standards
of applied mathematics. 1 shall posit a series of questions, deliberately provoca-
tive. Yet each will have an unambiguous answer, proven in the papers quoted
below. We shall limit our presentation to examples of linear elastic materials.

7.2. ExAMPLE A. Let us begin with acoustics. The great practical and theo-
retical role of longitudinal elastic waves is widely known (see, e.g. [6, 11]). An
isotropic elastic material is capable of conducting a longitudinal wave in each
direction and with the same speed. Many courses of the theory of elasticity and
acoustics consider this property to be almost synonymous with elastic isotropy.
Moreover, proving this is recommended as its experimental verification. The
following question should be inportant:

Are there any anisotropic materials with the stiffness tensor S =
S 4+ 84 §an £ () |, capable of conducting a longitudinal acoustic
stgnal in each direction?

The answer is not less surprising than the question: YES, there are. In paper
[12] T proved that these were the materials with the stiffness

(7.1) S=S"+tx(1®B+p®1)

and only these. The proof follows from the invariant decomposition (7.4), Part
I. Let us note that the anisotropy of these materials is completely undetectable
(so to speak, invisible) in experiments with longitudinal waves.

7.3. ExAmrLE B. Let us realize, in an elastic body with compliance C, a stress
state of pure shear 0 = v =t (m @ n + n ® m). This is one of the favorite ways of
loading a sample (often realized on thin metal plates or twisted pipes). The size of
the change of the originally right angle between shear directions (m,n), mn = 0,
is decided by the parameter

(7.2) G(mn)=[4(m®n)-C-(m®@n)]™
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usually called shear modulus for directions (m,n) (see, e.g. 13]). As an
isotropic material does not have any pre-distinguished direction, the shear modu-
lus G (m, n) will be identical for each pair (m,n), so it will be an invariant of the
stiffness tensor C, called the Kirchhoff modulus. Our next off-beat problem is:

Are there any anisotropic elastic materials, for which G (m,n)
does not depend on the shear directions ?

In [14] we showed that there was an infinite number of such materials and
that they were defined by the formula

(7.3) C=C*+(1w+we®l)

(cf. the invariant decomposition (7.15), Part I, in which we need to take p = 0,
D =0).

7.4. ExAMPLE C. In Example 4 we have demonstrated that the plane part of
deformation of a thin plate, cut out from a material with compliance C and
under plane load o, is defined by plane Hooke’s tensor, being an orthogonal
projection of the tensor C onto the plane of this plate. We formulate another
off-beat qualitative question:

Is there any such anisotropic material C = C* + C%, C*™ #£0,
that each thin plate cut out from it will be isotropic, i.e.

(7.4) P (k) *C € H* (k) for each direction k ?

Here H™ (k) is a set of plane isotropic Hooke’s tensors.
The answer is surprising, again: YES. In [15] I have demonstrated that all
such materials are defined by the formula

(7.5) C=C¥+tx(1QB+p®1)

(see the invariant decomposition (7.4), Part I, where « = 0, D = 0).

7.5. ExAMPLE D. In an isotropic material the Hooke’s stress tensor o and the
corresponding tensor of small deformations ¢ are coaxial, i.e. they take the
diagonal form in a common basis, or they are commutative oe = eo. Is this
property equivalent to isotropy? Or, in other words:

Are there any linear elastic anisotropic materials which preserve
the coaziality of stress and deformation?
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I was r:lizved to establish that the answer is NO, at least when there is lack
of internal st-esses. The proof is given in [16].

7.6. EXAML: E. In a similar manner I have proved that only isotropic materials
have an inrasiant elasticity constant v called Poisson’s ratio, [16]. Both proofs
follow from the invariant decompositions of Hooke's tensors presented in Part I.

7.7. EXAM?IE F. Let us take an example that looks a bit more sophisticated.
Let us intiocuce the main tensor of the theory of elastic waves — Christoffel’s
tensor A (a)

(7.6) pA (n) = nSn, pAij = Spijghpng .

It defines th: triple of plane elastic waves that can propagate in the direction
n, n-n =1 The displacement vectors accompanying these waves are mutu-
ally orthogoial, while the phase velocities are v,vq,v3. It is not difficult to
demonstraie that

(7.7) tr A (n) = v} + 2 + 2.

Neighbours [L7] have demonstrated a long time ago that in cubic crystals, as in
an isotropiz yody, the sum of squares of phase velocities does not depend on the
direction of yropagation n (this directly follows, after all, from the formulae in
Examples 3) Question:

Is thisproperty the case for other materials?

YES. Byusing the invariant decomposition (7.3), Part I, one can demonstrate
that v? + v+ v? = const for all materials with the stiffness

(7.8) S=8"4+mx(1@y+y®1)+D,

where m =5 — 4c .
7.8. EXAMPIE G. Let us finish with a neat example. As regards the first and
simplest projerty of a solid body, taught at secondary schools (at least in Europe,

as to my kmwledge), is the elasticity modulus. At the more advanced stages of
education ths is called the Young modulus in direction n defined by the formula

(7.9) E(m)=[n®n)-C-(n®n)]"".

It determine the stiffness of a thin fibre (thin bar), cut out from an elastic body,
with complince C, in direction n, under tension ¢ = sn @ n.
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For an isotropic body F (n) is independent of the direction n, hence E is
an invariant — a true elasticity constant, called simply the Young modulus of the
isotropic material in question. For an anisotropic body one should rather not
expect that such a constant exists. More interesting becomes our next off-beat
question:

Are there any anisotropic bodies, C%" # 0, having yet the invariant
Young modulus, i.e. the bodies with fibres of equal stiffness,

(7.10) E (n) = E = const for all n?

A closer look at the invariant decomposition (7.4), Part I, and formula (7.9)
demonstrarte that the answer is YES! Indeed, the tensor n®n®n®n is orthogonal
to the part t x (1® B + B ® 1) of the tensor C. Thus, for F (n) = const it is
sufficient that

(7.11) C=C"+tx(1@B+B®1).

A proof of the necessity of this form and a detailed description of this type of
anisotropy can be found in [15].

7.9. By using the technique of invariant decompositions of Hooke’s tensors we have
demonstrated that there are broad classes of anisotropic materials of any marked
anisotropy, which, in certain conditions, behave just as if they were isotropic
ones.

This was a deliberate intellectual provocation. Were these thoughts to be
elaborated on, a different broader problem could be formulated. This would be
the issue of distinguishability and indistinguishability of the classes of anisotropy
in fized classes of actions. This immediately leads to another problem of the
choice of anisotropy type adapted to the prevailing mode of the predicted work of
the material being designed. Another group of problems follows from the choice
of strategy of experimental identification of a Hooke's tensor when there is no
preliminary, given a priori, information, e.g. information on the structure of the
material in question. Finally, as a matter of course, there come several natural
ideas of transposing the ideas developed herein onto non-linear elasticity and
non-elasticity. Each of these subjects calls for a separate study.
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