Arch. Mech., 53, 4-5, pp. 385-420, Warszawa 2001

Transport phenomena in saturated porous media undergoing

liquid-solid phase change

C. GEINDREAU and J.-L. AURIAULT

Laboratoire "Sols, Solides, Structures"” (35)

UJF, INPG, UMR CNRS 5521,
BP 53X 38041 Grenoble Cedex 09, France.

THE MACROSCOPIC MODELLING of transport phenomena occurring during the solid-
ification process in porous media is revisited in this paper. The particular case of
binary phase change in metallic alloys is considered. Continuum models for momen-
tum, mass, heat and species transport in metallic saturated porous media undergoing
liquid-solid phase change are derived from the description at the pore scale by using
an upscaling technique. We use the method of multiple scale expansions which gives
rigorously the macroscopic behaviour. Different macroscopic descriptions are derived
in function of the orders of magnitude of dimensionless numbers that characterize
the dominating phenomena and the physical properties of the constituents at the mi-
croscopic scale. Among the distinct homogenizable situations, the three richest cases
are presented in this paper. The domains of validity of the micro-macrosegregation
models, i.e lever-rule type models and Scheil type models, are shown by means of the
order of magnitude of dimensionless numbers. The continuous passage between the
different models is investigated.

Key words: porous media; heat transfer; mass transport; species transport; phase
change; metallic materials, solidification, homogenisation.
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b pore vector field

Cy, C;: solid and fluid thermal capacities [J/(kg.K)]
D¢, D/ solid and fluid diffusion coefficients [m?/s|
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dimensionless numbers

effective diffusion tensors [m?/s]

effective dispersion tensors [m?/s|

solid and fluid volume fractions [dimensionless|

solid and fluid thermal Fourier numbers [dimensionless|
solid and fluid solutal Fourier numbers [dimensionless|

equilibrium partition ratio |dimensionless|

microscopic and macroscopic permeability tensors [m?|
characteristic microscopic length [m|

latent heat of fusion [J/kg|
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L characteristic macroscopic length [m]|

Le*, Le’ solid and fluid Lewis numbers [dimensionless|

N unit outward vector of I’

' fluid pressure [Pa

PT/ thermal Péclet number of the fluid phase [dimensionless|
ps/ solutal Péclet number of the fluid phase [dimensionless]
Re Reynolds number [dimensionless|

REV Representative Elementary Volume

t time [s]

i iof solid and liquid temperatures [K]|

v il solid and fluid velocities [m/s]

w liquid-solid interface velocity |m/s|

X physical space variable [m)]

5 3 macroscopic (or slow) space variable [dimensionless]

v microscopic (or fast) space variable [dimensionless]
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Subscripts

€ H =~ n

Superscripts

pore vector fields

boundary between 2* and Qf

unit tensor

effective thermal conductivity tensor [J/(m.K.s)]
parameter of scale separation [dimensionless|
solid and fluid thermal conductivity [J/(m.K.s)]
solid and fluid viscosity [Pa.s|
solid and fluid densities [kg/m
complex functions

fluid and solid mass fractions [dimensionless|
total volume of the periodic cell [m]

solid and fluid volumes of the periodic cell [m?]
gradient operator

divergence operator

]

characteristic quantities related to the physical phenomenon
dimensionless number using | as reference length
macroscopic variable in use for derivation

microscopic variable in use for derivation

interfacial value (T')
value defined in Q°
value defined in @/
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1. Introduction

THE STUDY OF SOLID-LIQUID phase change in fluid-saturated porous media
that involve coupled mass transport, heat transfer, fluid flow and species trans-
port processes, spans a range of scientific and engineering domains, including
metallurgy, material sciences and earth sciences. For example, such research is
necessary to predict the formation of defects in mechanical components due to
micro- or macrosegregation occurring during casting processes [9,26,25,15,20],
or to describe the formation of the various igneous rocks in geological systems
[14,7,13]. In nuclear engineering, it is also fundamental to describe correctly the
solidification of a molten pool, namely the corium, that can be found in a nuclear
vessel during a hypothetical accident [32].

The solidification of melts of many types of materials, as metals and igneous
rocks, leads to the formation of a mushy zone [9] which separates the fully so-
lidified and melted regions during solidification. The mushy zone is composed
of solid dendrites and interdendritic liquid. In most solidification models, the
mushy zone is viewed as a saturated porous medium undergoing liquid-solid
phase change [20]. In order to simulate solidification processes, two different ap-
proaches have been adopted in the past: the multi-domain approach and the
single-domain approach. In the multi-domain approach, the conservation equa-
tions for the solid phase and the fluid phase are solved separately with appro-
priate boundary conditions over the moving solid-liquid interface [28,29,23,31].
Due to the complex interfacial geometry that characterizes the solidification of
multi-component systems, it is usually difficult to solve the problem without
any questionable hypothesis. For these reasons, the single-domain approach is
usually preferred. In this approach, the multi-component system is viewed as a
continuum material described by a single set of conservation equations for the
whole domain comprising the solid, the mush and the fluid domains. In the last
two decades, several continuum transport models have been developed using the
mixture theory [14,5,12,30,21] and the volume average method [4,10,22,19]. Most
of them concern the binary phase change such as in metallic alloys and have been
applied to simulate solidification processes such as casting or welding. It is well
known that macroscopic description of the solidification process strongly depends
on the physical properties of each phase and on the physical processes at the mi-
croscopic scale [20]. Hence, the macroscopic description can take different forms
according to the intensity of the phenomena occurring at the microscopic scale.
Although the mixture theory and the volume average approach allow to capture
some microscopic information at the macroscopic scale, macroscopic prerequi-
sites are sometimes required for deriving the different macroscopic description.
Moreover, the domain of validity of the derived macroscopic models and homoge-
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nisability conditions, i.e conditions under which an equivalent macroscopic de-
scription exists, are not expressly stated.

The macroscopic modelling of transport phenomena occurring during the
solidification process in porous media is revisited in this paper by using the
homogenisation method of multiple scale expansions [6,24,1|. The particular case
of binary phase change in metallic alloys is considered. The upscaling technique
we are using allows to derive the macroscopic behaviour from the description
of the physical mechanisms at the microscopic scale without any prerequisite
of the form of the macroscopic equations. The basic assumption of the method
is the existence of a Representative Elementary Volume (REV) of the medium,
which is large enough to be a representative of the heterogeneity scale and small
in comparison with the macroscopic volume. We also assume the medium to be
periodic. In a periodic medium, the periodic cell represents the REV. Let | be
the characteristic length of the REV and L be the characteristic macroscopic
dimension. The key parameter of the upscaling method is the small parameter

14 = K1

( . ) E= E .

€ is the parameter of scale separation. The separation of scales must also be
verified regarding the phenomenon. Under these conditions, the corresponding
macroscopic descriptions are intrinsic to the geometry of the medium and the
phenomenon. They are also independent of the macroscopic boundary conditions.
In this study, we follow the approach suggested in [1].It enables to obtain the
macroscopic laws, their domain of validity and also the effective parameters.
Homogenisability conditions are also expressly stated. The methodology is based
on the definition and estimation of dimensionless numbers that characterize the
dominating phenomena and the physical properties of the constituents at the
microscopic scale. The domain of validity of the derived macroscopic description
is given by means of orders of magnitude of the local dimensionless numbers.

The existence of a REV plus a scale separation are the necessary conditions
for the existence of an equivalent macroscopic description. Although the dendritic
skeleton is nonuniform and anisotropic in the the mushy zone [20], we will admit
these two conditions to be fulfilled. If they are not verified, there-is no possible
equivalent macroscopic description.

The physics at the microscopic scale of a binary-alloy solidification system is
presented in Sec. 2. Section 3 is devoted to the estimations of the dimensionless
numbers arising from the description at the microscopic scale with respect to
the scale ratio £. The homogenisation technique of multiple scale expansions for
periodic structures is then applied in Sec. 4 to derive the macroscopic coupled
equations of momentum, mass, heat and species transports. Among the different
homogenisable situations, the three most fruitful cases are presented. The con-
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tinuous passage between the different macroscopic models is investigated in the
conclusion.

2. Description at the microscopic scale

The homogenisation method for periodic structures is applied to the solidifi-
cation of a binary alloy A-B. Although the dendritic skeleton is nonuniform and
anisotropic [20], the mushy zone (Fig. 1) is considered to be a periodic porous
medium with a space period (2.

temperature

|

. > Towt
o "

Fic. 1. (a) Macroscopic mushy zone with a large number of Representative Elementary
Volumes or periodic cell. (b) Representative Elementary Volume or periodic cell . (c)
Schematic representation of the different boundary conditions on I'. (d) Equilibrium phase
diagram of a binary system.
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This assumption is actually not a restriction [1,16]. The characteristic length
of the period [ is of about the same order of magnitude as the dimension of
the pores or dendritic particles, while the scale L reveals the dimension of the
mushy zone. Under typical solidification conditions in a metallic alloy system,
a characteristic value of [ is | &~ 10~*m while L &~ 10~'m, therefore ¢ ~ 1073,
In the analysis to follow, this value for the separation of scales is adopted. Q°
and Q/ are the domains occupied by the solid phase (*) and the fluid phase (),
respectively. Each phase is assumed to be connected. The common boundary
between solid and fluid is denoted I'. At the microscopic scale, i.e at the REV
scale, the mediumn is assumed to be composed of a fluid and of a rigid solid with
phase change through which heat and species are diffused and are convected.
The physical phenomena are governed by the following equations.

Momentum balance: At the microscopic scale, the solid skeleton is incom-
pressible and usually follows a non-linear viscous law such as the Odqvist law.
It has been shown that the motion of the solid network can play a key role in
the fluid segregation, depending on the contrast of the mechanical properties of
the solid and the fluid phases [11]. For the sake of simplicity, we assume in this
study that the solid network is rigid (v® = 0). The fluid is considered to be an
incompressible Newtonian fluid of viscosity w/. In the pores, the steady state
fluid flow is governed by the usual Stokes equation,

(2.1) plov! —vpl —p/ (v v)vl = 0.

v/ is the fluid velocity, p/ is the fluid pressure and p/ is the density of the fluid.
In practice, uf and pf depend on the temperature and the mass fraction of the
different species (A-B). In this study, they are assumed to be constant.

Mass balance: The density of the solid phase, p* (p* > pf), is also supposed
to be constant. The incompressibility of the fluid is given by
(2.2) v-v/ =0

Energy balance: The heat transfer is governed by conduction in the solid phase
whereas it is governed by conduction and convection in the fluid phase,

ars
L el s : g 5 =
(2.3) PG = V- (WVI*) =0,
/
(2.4) pfcg'% +plcldl . vr! —v. (Wvrf)=o.

T% and T/ are the temperature of the solid phase and the fluid phase, respec-
tively. Cf and A are the thermal capacity and the thermal conductivity of the
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phase a (a = s, f). In the following, C3 and A* are supposed to be independent
of the temperature and of the mass fractions of the different species (A-B).

Species balance: Species transport is governed by diffusion in the solid phase
and by diffusion and convection in the fluid phase,

(2.5) 0* a(;: —V - (p*D*Vw®) =0,
S
(2.6) pf‘% +pfvl -V =V (o DIVL)) =0.

w® and D® are the mass fraction and the diffusion coefficient of a given species
(A or B) in the phase a (a = s, f).

Conditions on the solid-liquid interface I': The following interfacial condi-
tions are illustrated in Fig. 1.
e Continuity of tangential velocities:

(2.7) vli.t=0,

t is the unit tangential vector of I'.
e Continuity of mass fluzes:

(2.8) ol (vl —w) N=—p'w: N,

where N is a unit outward vector of I' and w is the velocity of the interface.
e Continuity of temperatures:

(2.9) T =T/ =T

A state of thermodynamic equilibrium is assumed. T* is the equilibrium tem-
perature on the interface.
e Continuity of heat fluzes:

(2.10) (,\SVTS = AfVTf) N =L"*w-N,

L' is the latent heat of fusion.
e Continuily of species fluzes:

(2.11) (psDSVu}s = prwaf) ‘N = (pfw!* - p*w*)w - N.

Under the assumption of thermodynamic equilibrium, the fluid mass fraction
w/* and the solid mass fraction w®* on the interface I' are related through the
equilibrium phase diagram,

(2.12) W™ =R(T*)w’*,
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where k(7T) is the equilibrium partition ratio. In this study, a linearised phase
diagram is supposed, thus k(7™) = k.

At the microscopic scale, the coupling between mass, heat and species trans-
ports is ensured by equations (2.8), (2.10)-(2.11) and the equilibrium phase di-
agram (2.12).

3. Homogenisation process
3.1. Normalisation

An important step of the homogenisation process is the normalisation of all
equations. The above microscopic description (2.1)-(2.12) introduces fourteen
dimensionless numbers that will measure the relative influence of the phenomena
under consideration. From Eq. (2.1), we can define the Reynolds number Re and
the dimensionless number @/,

o e ] f_ V|
AN A |pf AT

Egs. (2.3)-(2.4) introduce two thermal Fourier numbers FT* and FT/, and the
thermal Péclet number of the fluid phase PT/,

e T o INCOINENL s oG VT

~C e

’ &l T ISR
e

Similarly, Eqs.(2.5)-(2.6) introduce two solutal Fourier numbers F'S® and
FS', and the solutal Péclet number of the fluid phase PS/,

_ IV (p#D*Vw)]
dw®
Jt

_ V(DI o lplvE -]
dwf ’ |V - (p! DIVW!)|
e

FS* , FS/

.03
Now, from the continuity equation of mass fluxes (2.8) we obtain

I ka1 _7
W N’ o

From the continuity equation of heat fluxes (2.10), we get the following two
dimensionless numbers

A’ |L3p*w - N|
. H= "
A IMVT! - N|
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Finally, from the continuity equation of species fluxes (2.11), we have

St _ (p!w!” — p*w)w - N|
i o’ DIVWI - N|

D

Note that Re, Q/, FT*, FT/, PT!, FS*, FS/, PS/ are defined in the bulk
of each phase whereas M, R, K, H, D and W are defined on the solid-liquid
interface T'.

3.2. Estimation of the dimensionless numbers

According the methodology presented in [1], the next important step of the
homogenisation process consists in estimating these different dimensionless num-
bers arising from the description at the microscopic scale with respect to the key
parameter € of the process. In practice, € is varying in time and in space be-
cause the mushy zone is expanding during the processes which changes | and
L. Therefore estimation of dimensionless numbers may vary in time and space.
Although we may consider several values of €, we assume for simplicity in this
study that € ~ 107, which corresponds to the situation of the greatest inter-
est. Remark that macroscopic models already proposed are actually based on
this typical value [20]. Let us consider [ as the reference characteristic length.
Thus, the microscopic point of view is adopted and the dimensionless numbers
will be denoted by the subscript I. Notice that this choice does not affect the
final result. Dimensionless numbers R;, K;, D; can easily be estimated from the
physical properties of the constituents. For example, from the material proper-
ties of a Pb-Sn alloy (Table 1), we have: Ry = O(1), K; = O(1) and D; = O(g).
In the particular case of a Fe-C alloy (Table 1), Ry, K; and D; are O(1). For
the other dimensionless numbers, several orders of magnitude leading to several
homogenisable situations may be considered. These numbers are expressed by
means of characteristics quantities (denoted by the subscript ¢) that are related
to the physical phenomenon (pressure drop, fluid velocity, solidification time . ..).

The fluid flow and the mass balance depends on three dimensionless numbers,

fivl o), fof
Re — M‘r?__v_flu :} Rel = O P( T}Ci 3
|P‘ Av I He

f J;
of = 2l Q"=O(pfir)’

5 |UIA"I|- eV
i /
et MR i ) . )
|w - NI We r
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Table 1. Physical properties of metallic alloys

Physical properties | Pb-Sn [15] | Fe-C [18]
p* [kg/m? 10800 7300
p! |kg/m?) 10000 7300
u! [Pa.s 10-9 10-3
cl [3/(kg.K)| 177 800
Cs [J/(kg.K)] 154 800
D* [m? /s 210722 10-10
D/ [m?/s] 16-2 1079
M [J/(m.Ks)) 22.9 30
A8 [J/(m.K.s)] 39.7 30
s 3 /kg 30162 270000

Usually, the range of the fluid velocity in the mushy zone that is encountered
in castings is between 10~7 m/s and 10~* m/s. This corresponds to a variation
of the Reynolds number from 0.001 to 1: O(e) < Re; < O(1). For sufficiently low
Reynolds numbers, Re; = O(e), the steady state flow of an incompressible fluid
through porous media is described by Darcy’s law: the fluid velocity is linearly
related to the gradient of the fluid pressure. As the Reynolds number increases,
non-linearities appear and the drag law becomes nonlinear at the macroscopic
scale [17, 27|. In this study, we will simply assume that Reynolds number is very
small Re; = O(e). On the other hand, it can be shown by a simple physical
reasoning [1] that the problem is homogenisable if Q{ = O(e7!') and if the
interfacial velocity is small or very small compared to the fluid velocity [3], i.e
M; > 0(e™1).

Concerning the thermal problem, the microscopic description introduces four
dimensionless numbers which can be estimated as follows

BT = L?%’{N =5 FW:O(%)‘
IpsC; :oc pe
Fszm Fﬂfzo(_iéi_),
‘pfcg£f| ol Cf 12
ot
ref vl vt/ Lclvll
pr/ = % f_ofPtGerll
). o T o ’
|ILfSp*w - N L p2 w, 5»{-
Fal =B 0 B e Wia gl e e TR ]
INVTT N : Xt )
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t. is the characteristic solidification time, 5:1':. is the fluid thermal diffusion layer
thickness and 07/ = |T/ — T*| stands for the temperature increment in the
boundary layer. Assuming that during castings, the range of the characteristic
solidification time is typically between 10% s and 10° s, we have: O(e™?) < FT} ~
F'l‘]‘r < O(e73). The range of the fluid velocity implies that the thermal Péclet
number of the fluid phase is small: O(e) > PT{’- > O(e?). Consider now Hj. It
has been shown [3] that the interface velocity must be small compared to the
fluid velocity: w, < O(e v.{). The fluid thermal-diffusion length 7 is, in general,
a complicated function of the microstructure, the solid volume fraction, interface
velocities and curvatures, the time, melt flow conditions ... If we consider that
67, <107 m < I and 0T/ ~ 10 K, we get: O(*) < H; < O(e).

The microscopic dimensionless description of the species transport introduces
four dimensionless numbers:

s A TS § $
Fsszlv (pDvw)l —i, FSI:‘;:()( ct(.’)'

sé‘w“ 12
P ot
o IV - (o/ DI Vw!)| o AR DIl t,
fﬁwf ! [2 g
P 5 |
fvl .l f
£ e v V| e vz
S mbma). - T\
_lfwl —putiw NI (el = ptwd) 8 we
|p/ DIVw! - N| pl DI 6wl r

5{) is the fluid-species diffusion length and Swl = |lw! — w!*| stands for the fluid
mass fraction increment in the boundary layer. Solutal dimensionless numbers
can be related to thermal dimensionless numbers by introducing the fluid and
the solid Lewis numbers defined as the ratio of the thermal diffusivity to the
solutal diffusivity,

!
Lef =0 (%) e
Pr Cpc D;

§
Lef=0( ar

oL Cs, Dz) = Ol B).

Taking into account these results, we obtain: O(e7!) < FS{ ~ Le{"1 FT{" <
O(e2), FS; ~ Dy FS/ and O(1) > PS/ ~ Lel PT/ > O(e). 1t has been
shown [2] that the problem is not homogenisable, i.e. an equivalent macroscopic
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description does not exist, if P.S'l,Jr > O(e™'). On the interface I, the fluid and
solid mass fractions are related to the temperature through the equilibrium phase
diagram. Thus, we get: O(e?) < W) ~ Le{ Hiy<(Df1).

The above analysis shows that the dimensionless numbers arising from the
description at the microscopic scale can take different orders of magnitude ac-
cording to the physical properties of the constituents and to the characteristic
quantities that are related to the physical phenomenon at the microscopic scale.
Therefore, when applying the homogenisation process to the local description,
it turns out that several macroscopic descriptions can be derived from the mi-
croscopic description according to the order of magnitude of these dimensionless
numbers. Among the different homogenisable situations in which P.‘S'l."r < O(e™Y),
F.S'lJr > O(e™!) and M; > O(e~}), only the three most fruitful cases (cases A,
B and C) are presented in this paper. These three cases of interest (Fig. 2)
correspond to different orders of dimensionless numbers, which are summarized
in Table 2. Practical situations in which PS;’f >0(c1), JF'SIJr < O(e™!) and
M, < O(e™!) can occur. However, in these cases an equivalent macroscopic de-
scription does not exist [1].

FS' & [O non-homogenizable situations |
oy " ]
S S ol 2l _O_
\\?\\ “.\‘é’\\ lj ‘\\“ T
. S M
C?, v O/ 2 |
\/ : 4 [

i
#

o | ™

. “ | it

&, O Model A ( }—

e
€ N M Y
- 9 B 6_’

(4 s

Fy
-

Fi1G. 2. Homogenizable and non-homogenizable situations with respect to the orders of
magnitude of the three dimensionless numbers: M, F.S'f- and PS{.
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We are now able to write Eqs. (2.1)-(2.12) in the dimensionless form. For
the sake of simplicity, we keep the same notations, but all quantities are now
dimensionless quantities:

3.1) p/Aav! —(QF) vp! = (Re) p/ (v - V)v/ =0 in /),
32) V-v/ =0 in Qf,
(3.3) (FT°)~! p-*c;% — W+ (ANT*) =0 in Q°,

I
(3.4) (FTH)™! pfcgaa—"';ﬂprf) plcivl . vT! - v - (MVT)=0 in 0/,

(3.5) (FS*)~! p® a;; -V (p’D*Vuw®) =0 in Q°,
f

(3.6) (FS/)™! pfai +(PST) pfv! -Vl -V - (! DIVWI) =0 in 7,

(3.7) v/ -t=0 on I,

(3.8) pf(M) v/ —w)-N=—(R) p°w-N onT,

(39) T*=T/=T"* on T,

(3.10) ((K) AVT* — ,\fVTf) ‘N = (H) L''p°w - N on T,

(3.11) ((D)(R) p*D'Vw* — prwaf) ‘N = (W)(pw’* - p’w*)w-N on T

(3.12) w** =k w'* onTl

3.3. Homogenisation method of double scale expansions

The condition of separation of scales (1.1) enables us to use the homogeni-
sation method of double scale expansions for periodic structures [6, 24, 1]. Both
characteristic lengths L and ! introduce two dimensionless space variables,

X X
= — X = —
¥ 7 T
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Table 2. Orders of magnitude of the dimensionless numbers corresponding to
the three cases of interest: model A, B and C

Model A Model B Model C
R o(1) 0(1) 0(1)
K, 0(1) 0(1) 0(1)
Dy O(1) or O(g) O(1) or O(g) O(1) or O(e)
Re, O(e) O(e) Ole)
Qf O™ O™ O(™)
M, O(e™1) O(s~1) O(e72)
FT# ~ FT/ O(e72) O(e73) O(e~3)
Pt/ O(e) O(e?) O(e)
H, O(&?) 0(c%) 0(e3)
Fs! O™ O(e~2) O(e72)
FS; ~DiFS] | O(e™") or O(1) | O(¢72) or O(e™") | O(e™2) or O(¢™?)
ps/ 0(1) O(e) 0(1)
Wi O(e) O(e?) O(e?)

where X is the physical space variable. The variable x is the macroscopic (or
slow) space variable and y is the microscopic (or fast) space variable. The un-
known fields at the microscopic scale of a given boundary value problem appear
as functions of these two dimensionless space variables and are looked for in the
following forms,

(3.13) p(x,y,t = ¢V (x,y,t) + oV (x,y,t) + 2@ (x,y,t) +-- -,

where ¢(x,y,t) = p/, v/, w, T/, 7%, w/,w* and the $(*) are periodic functions or
vectors of period £ with respect to space variable y. Since [ is the reference char-
acteristic length, the corresponding dimensionless space variable is y and x = ey.
Thus, the gradient operator V is now written (V,+£V,) where subscripts z and
y denote the variable for the derivative. The methodology of the homogenisation
consists in introducing the asymptotic expansions (3.13) in the dimensionless lo-
cal description (3.1)-(3.12). Solving the boundary-value problems arising at the
successive orders of ¢ leads to the macroscopic description.

4. Description at the macroscopic scale

4.1. Model A

We consider here the orders of magnitude of dimensionless numbers given in
Table 2 for model A. The first order macroscopic description derived from the
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microscopic equations is presented below. The detailed calculus is itemized in
Appendix A.

Fluid flow and mass balance: At the first order of approximation, the fluid
pressure (A.14) is constant over the periodic cell and the macroscopic fluid pres-
sure gradient V,p/?) is acting as a driving force for the local flow (A.19):

p/® = p/O(x, 1), vI® = —k(y, 1) vap/O.

k(y,t) is the microscopic permeability tensor solution of the boundary value
problem (A.21)-(A.23). The macroscopic fluid velocity which is obtained by vol-
ume averaging follows the Darcy’s law,

(41) (V/O) = -KV.pO, Ky =5 [ kyot) do,
0f

where K is the macroscopic permeability tensor of the porous medium. The first
order macroscopic volume balance takes the classical form (A.30),

(4.2) Ve (v/O) 4 (5 = 1) di: =0,

where f* is the solid volume fraction. The first term and the second term of this
equation are equal to the fluid flux and the shrinkage due to the solidification
process, respectively (open system). Let us remark that the shrinkage due to
the solidification process appears at the macroscopic scale although the metallic
fluid is incompressible at the microscopic scale (2.2).

Heat transfer: At the first order of approximation, we have only one temper-
ature field which is constant over the periodic cell: 750 = 7/(0) = 7+(0) —
T()(x,t). The macroscopic heat transfer is governed by Eq.(A.48),

(0) dfs
(4.3) (pCp)°t % +plcivl.v, 70 — v, . (AQHVmT{‘”) & Lfspé‘% = 0.

(,oC},)efr and A°T are the effective thermal capacity and the effective thermal
conductivity tensor of the mixture, respectively. V& is an effective fluid velocity
which is different from the Darcy velocity (4.2) and which accounts for heat
effects. Such velocity was already introduced in previous works [8]. These effective
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parameters characterize the average properties of the medium at the macroscopic
scale. They are defined as follows:

(4.4) (pCp)*T = f°0°C3 + F1 ! G,

(4.5) A = é],\f (Vyx + 8)dQ + é/,\ (Vyx + 6)d9,
of Qs

(4.6) Vel = %/vf(") (Vyx + 8) dS.
af

where x(y,t) is the solution to the boundary value problem (A.41)-(A.43). The
macroscopic heat transfer is governed by conduction and convection incorpo-
rating a heat flux due the solidification process over the solid-liquid interface.
The above macroscopic description corresponds to the most general regime and
reveals a coupling between heat and mass transfer. The structure of the macro-
scopic model is similar to the structure of the macroscopic heat transfer model
already derived by N1 and BECKERMANN [19] using the volume average method.

Species transport:

CASE. Dy = O(1) and FS; = O(e™'): In this case (Fe-C alloy), the solute
is completely mixed in the fluid and the solid phases, i.e. we recover a lever-rule
type model. The macroscopic species transport (A.63) is governed by convection
and also contains a species flux due to the solidification process over the solid-
liquid interface,

Sk, f(0) _ r8y,,f(0)
(4.7) P3%+pf gL (’;t)“ )+pf(vf(0)).vxwf{0):0’

w9 and w/® which are completely mixed in the fluid and the solid phases
respectively, are related to the temperature 7(°) through the equilibrium phase
diagram and satisfy w*(%)(x, t) = k w/(%)(x, t). Thus the system (4.1), (4.2), (4.3)
and (4.7) is closed.

CASE. D = O(e) and FS} = O(1): In this case (Sn-Pb alloy), the solute is
completely mixed in the fluid phase only, i.e. we recover a Scheil-type behaviour:
w0 = w0 (x,t) and w*® = w*(O)(x,y,t). The macroscopic species transport
is now given by equation (A.73),

Iy5(0) 5 _ g1, 1(0)
(4.8) p° (<§w >+df ws*{ﬂ)) tpt a1 = F)wi™)

ot dit dt

+p (W O) . 7,0 =,

http://rcin.org.pl



TRANSPORT PHENOMENA IN SATURATED POROUS MEDIA ... 401

where
s(0) s(0)
(4.9) <3“’ > /6“’ ,¥:1) 49 = %/vy ; (stywsf")) Q.
Qs

w**(®) and w/(®) are also related to the temperature T'®) through the equilibrium
phase diagram and satisfy w**(®(x,t) = k w/(9(x,t). Thus the system (4.1),
(4.2), (4.3) and (4.8) is closed. The macroscopic species transport is governed
by convection and solute “back diffusion” within the solid phase (4.9) which,
in contrast with what is usually assumed, is not negligible. The macroscopic
description also contains a species flux due to the solidification process over the
solid-liquid interface. The solute “back diffusion” within the solid phase (4.9),
i.e. the memory effects, can be expressed as follows

(4.10) <8“s(°)> = F(B()) + O

at

where F~!(®(w)) in the inverse Fourier transform of ®(w) and * is the convolu-
tion product. ®(w) is a complex effective coefficient given by Eq.(A.74),

(4.11) P(w) = —s%fz w P(w,y) dS2

where ¢(w,y) is the y-periodic solution of the boundary value problem (A.69)-
(A.70)

The above analysis shows that the macroscopic species transport equation
takes two different forms according to the order of magnitude of the solutal
Fourier number of the solid phase F'S}’. This solutal Fourier number is estimated
with respect to the parameter of scale separation, €. The macroscopic description
is given by a Scheil type model (4.8) and by a lever-rule type model (4.7) for
small and large solutal Fourier number of the solid phase, respectively. In contrast
with the macroscopic descriptions already proposed [9,5,22,19], the derived first
order macroscopic models (4.7) and (4.8) do not contain the term p/w/(OV, .
(v/©®), although the shrinkage due to the solidification process appears at the
macroscopic scale (4.2). This term characterizes the second order effects (O(£?))
in Eqs.(4.7) and (4.8). This result is due to the homogenisability condition:
M, > O(e™!). Practical situations in which M; < O(e~") can occur. However, in
these cases an equivalent macroscopic description does not exist [3].

4.2, Model B

We now assume that the fluid velocity and the solidification process are
very slow. Under such conditions, the three dimensionless numbers, Re, Q{
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and M; are unchanged. Fourier numbers (FT}, FT{', FS}, FS{) are increased
by an order of magnitude whereas Péclet numbers (PTII, P.S’j'f) and interfacial
dimensionless numbers (H;, W) are decreased by an order of magnitude (see
Table 2 and Fig. 2). The derived macroscopic description is presented below.

Fluid flow and mass balance: The problem concerning the fluid flow and
the mass balance is the same as in Model A. Once again, the fluid flow follows
Darcy's law (4.1) and the macroscopic volume balance is given by Eq. (4.2).

Heat transfer: By following the same route as in Appendix A, it can be shown
that the first-order macroscopic heat transfer is now governed by conduction
only,

(4.12) Vi (Ae“v,,'rf")) =0,

where AT is the effective thermal conductivity tensor of the mixture already
defined by Eq.(4.5)

Species transport:

Case. D; = O(1) and FS} = O(e?) (Fe-C alloy): Under such conditions,
the first order macroscopic description (Appendix B) is given by a lever-type
model. The macroscopic species transport is now governed by diffusion and con-
vection incorporating a species flux due to the solidification process over the
solid-liquid interface,

fk @) e (1 — fo)wt)

fvelt . v/
ot ot B b

413) p 2

-V ((pD*}V::WHO]) =0,

w/(® and w3 are related to the temperature T(%) through the equilibrium phase
diagram and satisfy w®®(x,t) = k w/(9)(x,t). Thus the system (4.1), (4.2),
(4.12) and (4.13) is closed. V%ﬂ is an effective fluid velocity which is different
from the Darcy velocity (4.1) and which accounts for solutal effects. The effective
fluid velocity Vgﬁ and the effective diffusion tensor (pD*) of the mixture are
defined as follows:

veff — é/vﬂﬂl (vyB7 +8) an,
nf
k 1 ‘f f f 1 .} § §
(pD*) = 5 [ PD (VB! +8) ds [ p*Dk (V,B° +5)df2.
s

af

http://rcin.org.pl



TRANSPORT PHENOMENA IN SATURATED POROUS MEDIA ... 403

B*(y,t) and Bf(y,t) are the solutions to the boundary-value problem (B.16 -
B.19). Once again, the homogenisability condition, M; > O(e™!), implies that
the term p/w/(O v, . V‘egﬂ- does not appear in the first order derived macroscopic
description (4.13).

CASE. D; = O(e) and FS} = O(e~') (Sn-Pb alloy): It can be shown that
macroscopic species transport is also given by Eq. (4.13). But now, the effective
diffusion tensor is written,

1
(pD*) = ﬁfprf (vyﬁf + 5) Q.
Qf

4.3. Model C

In this last case, the solidification process is assumed to be very slow whereas
the fluid velocity is increased by an order of magnitude. Consequently, the inter-
facial dimensionless number M; and Péclet numbers (PT,f ; PS{ ) are increased by
one order of magnitude whereas other dimensionless numbers remain unchanged
(see Table 2 and Fig. 2 : model C). Under such conditions, the first-order macro-
scopic description is written as follows.

Fluid flow and mass balance: At the macroscopic scale, the fluid flow is
always described by the Darcy law (4.1). The interface velocity is now very
small compared to the fluid velocity (M; = O(¢~2)). Therefore, the macroscopic
volume balance takes the form

(4.14) V- (v/(O) = 0.
The shrinkage due the solidification process does not appear at the macro-

scopic scale at the first order of approximation (closed system).

Heat transfer: By following the same route as in Appendix A, we obtain the
first-order macroscopic description. The macroscopic heat transfer is governed
by both conduction and convection,

(4.15) P oivst v, 10 _v,. (AE” VIT(G)) =0,

AT and Vijff are the effective conductivity tensor of the mixture (4.5) and the
effective fluid velocity (4.6), respectively.
Species transport:

Case. Dy = O(1) and FS§ = O(e?) (Fe-C alloy): The solidification process
is very slow. Thus, at the first order of approximation, the solute is completely
mixed in the fluid and in the solid phase, i.e. we obtain a lever-type behaviour
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(see Appendix C). The macroscopic species transport is governed by convection
only,

(4.16) p.f(vf(ﬂ)) Vwl/® =0,

with w*©(x,t) = k w/(©(x,t). In contrast with models A and B, the evolution
of the solid volume fraction during the solidification process can not be deduced
from the above macroscopic description at the first order of approximation. The
evolution of the solid fraction may be derived from the second order macroscopic
equation (C.26) governing the average fluid mass fraction (w/) which is given by

@1r) e PSR | A= UGN oyt . v, )

—e Vs (()D"™)Val!)) =0.

(w*) and (wf) are related to the macroscopic temperature T(®) through the
equilibrium phase diagram and satisfy (w*) = k (w/). Thus the system (4.2),
(4.15), (4.16) and (4.18) is closed. (pD**) is the effective dispersion tensor of the
mixture,

1 1
(pD™) = ﬁfprf (Vytpf + 5) 2+ o fpfkvzpf(o) @l d0
af af

+ %/pstk (V,0* +5)d9,
nn

where @/ (y, Vop/(), 1) and @*(y, Vzp/(?), 1) are the solutions to the bounda- ry-
value problem (C.17)-(C.20). The dispersive character of (pD**) appears through
its dependence on the macroscopic gradient of fluid pressure prf(ﬂ), i.e. the fluid
velocity. (pD**) is, in general, positive definite but it is nonsymmetric [2].

CASE. Dy = O(e) and FS§ = O(¢~') (Sn-Pb alloy): The macroscopic species
transport is also given by equation (4.17). But now, the effective dispersion tensor
is written in the form:

1 1
(pD*) = = f o' D! (V0! +5)do+ o f PRV - of dQ.
Qf Qf

5. Conclusion

Continuum models for momentum, mass, heat and species transport in metal-
lic saturated porous media undergoing liquid-solid phase change have been rig-
orously derived from the description at the pore scale by using an upscaling
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technique, namely the method of multiple scale expansions. Among the several
homogenisable situations, the three most fruitful cases are presented. Their do-
main of validity is given by means of orders of magnitude of the dimensionless
numbers characterizing the dominating phenomena and the physical proper-
ties of the constituents at the microscopic scale (Fig.2). In practical situations,
knowledge of the order of magnitude of these dimensionless numbers will clearly
indicate which model should be chosen for describing the physical processes.

In model A, fluid flow obeys Darcy’s law and shrinkage effects due to the so-
lidification process appear at the macroscopic scale (open system). Heat transfer
is governed by conduction and convection incorporating a heat flux due to the
liquid-solid phase change. We have shown that the species transport equation
may take two different forms with respect to the orders of magnitude of the ratio
of the solid diffusivity to the fluid diffusivity (D), i.e the solutal Fourier number
of the solid phase (F'S?). For small solutal Fourier number of the solid phase, the
macroscopic description is given by a Scheil type model: the species transport
is governed by convection and solute “back diffusion” within the solid phase. It
also contains a species flux due to the solidification process over the solid-liquid
interface. For large solutal Fourier number of the solid phase, the macroscopic
species transport follows a lever-rule type model.

In contrast with model A, we assume in model B that the solidification pro-
cess and the fluid velocity are very slow. Under such conditions, the fluid flow
follows Darcy’s law and shrinkage effects due to the solidification process are still
present at the macroscopic scale. The macroscopic heat transfer is governed by
conduction only. For small and large solutal Fourier number of the solid phase,
the macroscopic species transport follows a lever-rule type model and is governed
by convection and diffusion.

In model C, the solidification process is considered to be very slow whereas
the fluid velocity is increased by one order of magnitude. At the first order of
approximation, the fluid flow obeys Darcy’s law whereas shrinkage effects due the
solidification process do not appear at the macroscopic scale (closed system). The
macroscopic heat transfer is governed by conduction and convection. For small
and large solutal Fourier number of the solid phase, the first order macroscopic
species transport is governed by convection only. The evolution of the solid mass
fraction can be deduced from the macroscopic description at the second order
of approximation. In this case, the macro-segregation equation that governs the
average fluid mass fraction contains both convection and dispersion terms.

There is a possible continuous passage from the mass transport models A
and B to model C by increasing M; (Fig. 2). Similarly, it can be shown that
there exist continuous passages from heat transfer model A to models C and B.
Model A corresponds to the most general regime. Concerning species transport,
the only possible continuous passage is from model B to model C by increasing
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the solutal Péclet number of the fluid phase PS/ and the dimensionless number
M, simultaneously (Fig. 2).

It should be mentioned that it is relatively straightforward to extend the
models proposed in this paper to other solid-liquid systems (igneous rocks) and
to more than two phases. For example, it would be very interesting to take into
account the presence of a gas phase to describe correctly the formation of hot
tears.

Appendix A. Model A

Taking into account the order of magnitude of the dimensionless numbers
(see Table 2), the dimensionless description at the microscopic scale given by
Egs.(3.7)-(3.18), takes the form:

(A1) piavi —e ' vpl —epf (v V)V =0 in Q/,
(A2) V-v/i=0 in 7,
(A.3) “c;a; =V : (A°VT% =0 . in Q°,
T/ ‘
(A4) €*plc]— o +eplcivi - v/ —-v.MvT) =0 in ©/,
(A5) (FS$)~! p° a; *D'Vw') =0 in 0°,
!
(A.6) Epfdw —-V-(p!DIVu) =0 in Q7
(A7) vi-t=0 on T,
(A8) et v/ —w) . N=-p’w-N onT,
(A. T =T/ =1" on I,
(A. 10) (ASVTS . ,\fVTf) ‘N=¢ LIs*w N onT,

(A.11) ([D;) psD’sz-prwaf) ‘N = ¢(p/w/* = p’w*)w-N onT,
ol w'=kw on [,
(A.12) w™ =k w'* I}

Fluid flow and mass balance: Introducing the asymptotic expansions (3.13)
in Egs. (A.1)-(A.2) and (A.7)-(A.8), the first order problem to be solved is given

by
(A.13) v,/ ® =0 in O/,

where the unknown p/(®) is y-periodic. Thus, from Eq. (A.13) we get
(A.14) pf O =plO(x, ).
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Taking into account this result, the second order problem is given by

(A.15) p! DI —,pf M — 7,9/ = ¢ in Q/,
(A.16) v, -v/@ =0 in 9/,
(A.17) vi0 .t =0 on T,
(A.18) viO.N=0 on I

This is a boundary-value problem for the y-periodic unknowns p/(*) and v/(0).
From Eq. (A.15)-(A.18), it has been shown [1] that the fluid velocity v/(?) and
the pressure p/(!) can be put in the form

(A.19) v/ = _k(y,t)V,p,
(A.20) p’® = b(y,t) - Vop!© + p/V(x,1),

where k(y,t) is the microscopic permeability tensor. The fluid pressure p/(!)
is a linear function of the macroscopic gradient V;p/(®), modulo an arbitrary
function /(1) (x, ¢). The vector b(y, t) is y-periodic and average to zero, (b) = 0.
The latter condition ensures the uniqueness of b. The microscopic permeability
tensor k and the pore vector field b are the solutions of the following boundary
value problem,

(A.21) WA k—Vyb—6=0 in Q7
(A.22) V, k=0 in Q/,
(A.23) k=0 on I,

where 6 is the unit tensor.The macroscopic fluid velocity (v/(9) follows Darcy’s
law,

(A.24) (vIOy = _Kv /O, K= é—/kﬁ(y,t) ds2,

where K is the macroscopic permeability tensor. We consider now equations,

(A.25) Vy v 4+ v, .v/O =0 in 97,
(A.26) v .t =0 on T,
(A.27) pl (v —wl®). N = —p*wl® . N on T,

where the unknown v/(1) is y-periodic. Integrating equation (A.25) over @/ and
then using the divergence theorem, boundary condition (A.27) and the period-
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icity on 992 N 99/, we obtain

(A.28) p/V. - (v/(O) -é f p/ v/ Ndr

ru(annan/)
=—(pf - pS)é [ w® . N,

with

of dff dfs

f* and f/ are the solid volume fraction and the fluid volume fraction, respec-
tively. Therefore, the macroscopic volume balance takes the form

P’ dfs
(A.30) vz-<vfl°))+(f? ) = =0.

Heat transfer: Introducing the asymptotic expansions (3. 13) in Eq. (A.3)-(A4)
and (A.9)-(A.10), the lower order problem to be solved is given by

(A31) V- (M9,70) =0 in Q°,
(A.32) v, (M vyTﬂ“)) =0 in
(A.33) T750) = 7f0) = 7*(0) on T,
(A.34) (X9, 1@ — X v, T/®) .N =0 onT,

where the unknowns 7% and T/ are y-periodic. It can be shown that the
obvious solution of the above boundary value problem (A.31)-(A.34) is given by

(A.35) 750 = /(0 = 7*(0) = 7(0)(x, ).

It means that the first order solution is independent of the microscopic variable y
and that we have only one temperature field at the first order of approximation.
Taking into account the preceding results, we get the following second-order
problem:

(A36) V- [3 (V70 +v,70)] =0 in 0°,
(A37) V- [,\f (vny (1) 4 VxT(U))} —0 in @,
(A.38) T = /(1) = *(1) onT,

(A.39) [,\s (vyT*“) 4 VrT{U)) Y (vny“J + v,,T(“))] .N=0 onT,
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where the unknowns 75" and T/(!) are y-periodic. The solution of the set of
equations (A.36)-(A.39) appears as a linear function of the macroscopic thermal

gradient of T(®), modulo an arbitrary function T“}(x,t) :

(A.40) TO = x(y,t) - V.7 + TV (x, 1).

TM) stands for T*(V) in Q* and 770 in Q. The vector x(y,t) is y-periodic,
average to zero, and it is a solution of the following boundary-value problem:

(A.41) Vy [N (Vyx +68)] =0 in Q°,
(A.42) v, [,\f (VyX + 6)] =0 in 7,
(A.43) A (Vyx+8) - N=M(V,x+86)-N on T,

The third order problem is given by

o)
ot

(A44) pC3 = [A“ (vyT-‘;@) + VIT‘(”)]

-V [¥ (V70 + v, 7®)] =0 in g,

57(0)
(Ad5) plCt dﬁ—t +p/ VIO (0,70 + 9,70) - v, - [V (v,7/®

+V3_.Tf(l))] -V - [,\f (vyTﬂl) +V$T(°)” =g it 9.
{3\46) T's{2) = Tf(Q) = Tt{?) i

(A.47) [)ﬁ (vyTS(” - va*’(”) Y (Vny @ 4 v, 1! “l)] ‘N
=L3%*w® .N on T,

where the y-periodic unknowns are T%(2) and T/, The fluid velocity v/(%)
follows the law (A.19). Integrating (A.44) over Q° and (A.45) over 9/ and then
using the divergence theorem, the condition of periodicity on 92 N 9/ and
o0 N I and the boundary condition (A.47) leads to first order macroscopic
description:

a’T(Dj : 5
(A48) ()" I 4 IOV 0,10 -, (W9, 70) Ll P g,
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(pCp)° and AT are the effective thermal capacity and the effective conductivity
tensor of the mixture respectively, and V!}ff is the effective fluid velocity. These
different effective parameters are defined as follows

(A.49) (pCp)* = f4p°Cy + 1/ C,
(A50)  AT=o / M (Vyx+8)d2+ / X (Vyx + 5) d2,
of s
(A51) Vel — %/ VIO (V,x + 6) €.
af

Species transport:

CASE. D; = O(1) and FS; = O(e™!') (Fe-C alloy): Introducing the asymp-
totic expansions (3.13) in Egs. (A.5)-(A.6) and (A.11)-(A.12), the first order
problem to be solved takes the forms

(A.52) Vi (ps D"‘Vyw“(ﬂ)) =0 in Q7
(A53) p/ v Vywﬂﬂ) -V (pf vawatﬂ)) =0 in Q/,
(A.54) (p"'DsVywS(O) — o/ DIV ! f")) N=0 onT,
(A.55) w**(0) = kg /*(O) on T,

where the unknowns w*® and w/(®) are y-periodic. The fluid v/(®) velocity
follows the law (A.19). From Egs. (A.52)-(A.55), we get

Wl = uf*O) = LI O)(x t),

(5-50) w*® = ) = ¥ O)(x ¢) = kw/(©),

At the first order of approximation, the fluid and the solid mass fraction are
independent of the microscopic variable 7, i.e. they are constant over the cell.
We consider now the following equations that are obtained at a higher order:
0
33w“( )

(i P —vy‘[ps D’ (Vyws(l)+vzw3w))] =0 in O

/()

(A58) pf =+ pIV O (V! 1) 4 7,0/)

= Vy- [of D (V! + V,0/@)] =0 in @,
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(4.59) [p*D* (V'™ + Vo' @) — p/ DI (V! V) + 7,0/ @] - N
= (PO — 3 OO N on T,

where the unknowns w/(") and w*() are y-periodic. Integrating (A.57) over Q°
and (A.58) over 2/ and then using the divergence theorem, the condition of
periodicity on QN 9N/ and Q2 N IN? leads to

Hws(0)
ot

(A.60) Q%|* S ] p* D (vywsf” 4 v,_,ws(f'}) .NdT' = 0,

r

8! (©
(A61) |9/|p = +pffvf“” (V! V) + 7,0/ a0
af
- /,of D! (vywﬂ” - V;w”m) - NdI' = 0.
I

By considering the fluid incompressibility (A.16) and the boundary condition
(A.18), and by using the divergence theorem and the periodicity on 9 N 9/,
we get

(A.62) / v/ . g,/ Mdq = 0.
Qf

Therefore, from Eqs. (A.60)-(A.61) and the boundary condition (A.59), we ob-
tain the following first order macroscopic description

a(fk w/© a((1 - f*)w/0
S WIO) | a(- )

ot ot

where (v/(9) = —K V,p/© and w*(O(x,t) = k w/O)(x,1).

CASE. D; = O(e) and FS} = O(1) (Sn-Pb alloy): The first order problem
to be solved takes now the forms:

(A.63) + ol (WO . 7,0 =,

5(0)
(A.64) o a“;t SN (ps stywsfﬂ)) =9 in Q°,
(A.65) POV, — v, . (pf DIVW!®) =0 in
(A.66) p DIV, . N=0 onT,
(A.67) w0 = g ,f*©) on T,
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where the unknowns w*® and w/(®) are y-periodic. The fluid v/(©) velocity
follows the law (A.19). Once again, from Eqs. (A.65)-(A.66), we get: w/(0) =
wf*(0) = /() (x,t). At the first order of approximation, the fluid mass fraction is
independent of the microscopic variable y. In contrast with w/(®) | the solid mass
fraction is y-dependent. Consider a solid mass fraction in the form w*©) (x,y,t) =
@*(x,y) e and the Fourier transform of Eqgs. (A.64) and (A.67). The Fourier

transform @*(®) of w*(®) appears as a linear function of the fluid mass fraction,

(A.68) @O = p(w,y) w/O(x,¢).

The complex function ¢(w, y) is the y-periodic solution of the following boundary
value problem:

(A.69) —p'iw ¢ —Vy-(p° D’Vye¢) =0 in:?,
(A.70) b=k on I'.

We consider now the following equations that are obtained at a higher order:

0
% { ()] (vwa“) & vzwf(ﬂ))

-y [of D! (VW + V,0/@)] =0 in @,

(A72) [p* D'V ® - pf D (VW) + ¥,/ ] . N
— pfw‘r*(o) = psws“(o))w(o) -N on F‘

where the unknown w/() is y-periodic. The relation (A.62) remains valid. There-
fore, integrating (A.64) over Q° and (A.71) over Q/ and then using the diver-
gence theorem, the condition of periodicity on 92N a2/ and on 99 N Q¢ and
the boundary condition (A.72) leads to the following first order macroscopic
description:

9w0) df®
5 L ,5%(0)
(A.73) p (< 5 >+ e

2 (1~ 1))
ot
where (v/(9)) = —K V,p/© and w**()(x,t) = k w/(®(x,t). We have

5(0)
(A.74) F (<%—>) = %f i wh(w,y) dQ .w!© = &(w).w/©
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where F' ((B“‘é;:(}])) is the Fourier transform of <8“";:m>. ®(w) is a complex

effective coefficient. From Eq. (A.74), it follows

o, ,8(0)
(A.75) <‘)"‘ét >=F-1(cb(w))mf<°1

where F~1(®(w)) in the inverse Fourier transform of ®(w) and * is the convolu-
tion product.

Appendix B. Model B

Species transport: We now consider the order of magnitude of dimensionless
numbers given in Table 2 for model B. The dimensionless description concerning
the species transport takes the forms

b &
s 0w

(B.1) (FS))'p g V- (p°D°Vw®) =0 in °,
9!
(B.2) €2 pf d(,‘;‘; +eplt! -Vl -V - (pf DIVW!) =0 in 0/,

(B.3) ((Dg),osDSVw“’ = prfvwf) ‘N =2(pfwf* - p")w-N onT,
(B4) w* =kw' on T

Consider the case D; = O(1) and F'S} = O(e™?) (Fe-C alloy). Introduction of
the asymptotic expansions (3.13) in Eqgs. (B.1)-(B.4), yields at the lower order
problem:

B35) V- (0D @) =0 in Q°,
(B6)  Vy- (p/DIVw®) =0 in 0/,
(B.7) (pSstywﬂ(‘” — /D! vwafﬂ)) ‘N=0 onT,
(B.8) w** (0 = g /) onT.

where the unknowns w*(® and w/(®) are y-periodic. From Egs. (B.5)-(B.8), we

get
WO = (O = ) O) (. p),
L w0 = **O = 5O (x 1) = k W/ O(x,1).

At the first order, the solid and the fluid mass fraction are constant over the
periodic cell (lever-rule type model). The second order problem to be solved
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takes the form:

(B.10) V- [p* D* (V' + V7,0 @)| =0 in 0
(B.11) V,- [pf D! (vwaf” " v,,wf(‘”)] =0 in 9,

(B.12) [pst (vyws“) + vstw))

-/ D! (vywﬂ” % waf{o))] .N=0 onTl,

(B.13) w*M) =k w*M) on T,
where the unknowns w®!) and w/(!) are y-periodic. The solutions of the set of

Egs. (B.10)-(B.13) appear as a linear function of the macroscopic solutal gradient
of w/(®) modulo an arbitrary function,

(B.14) w/® =gl (y, 1) - Vol O 4+ &/ D (x, 1),

(B.15) w'® =k B%(y,t) - Vow! O + 5 (x, t).

B"(y, t) and B°(y,t) are y-periodic, average to zero, and are solutions of the
following boundary-value problem:

(B.16) V, - [0°D°k (V,B° +8)] =0 in 0°,
B.17) 9, [o!D! (V8! +8)] =0 in 0/,
(B.18) p*D°k (V,B°+8)-N=p/D/ (vyﬁf i 5) ‘N onT.
(B.19) RS =g/ on T,

The third order order problem to be solved is given by

A w0
ot

(B.20) p s [pst (Vywstzj + was(l})]
~ Ve [p°D* (V' + V' ®)] =0 in 02,
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0
9w/ + ol VIO (vywﬁ” s vzwf(ﬂ))

(B.21) pf

= [pf D! (Vwa&) 2 v:wf(i))]

V- [0 (T + 7.0)| =0 n

(B.22) [psos (vywsm + Vow'®) - p/ DI (vwam + Vaw! (”)] ‘N

= (PO - pu*)w® . N onT.

Integrating (B.20) over Qf and (B.21) over O/, using the divergence theorem, the
condition of periodicity on 92NN and 9NN AN?, and then taking into account
the boundary condition (B.22), leads to the following first order macroscopic
description

9(f*k W) ;o((- )

8§
(24 g at P 1

. ({pD*)V,;w‘r(m) = 0.

with w*(®(x,t) = k w/(9)(x,t). The effective diffusion tensor (pD*) of the mix-

ture and the effective fluid velocity Vgﬁ are defined as follows:

(B.24) Vel — l/ 10 (v,p/ +8) as,
Q
0f
(B.25) (pD*) = é./ I pf (vyﬂf + 5) dQ + é]p"D" (VyB* +k &) dS.
af s

Appendix C. Model C

Species transport: We now consider the order of magnitude of dimensionless
numbers given in Table 2, model C. The set of dimensionless equations takes the
form:

(C.1) (F.S'f)"p’a; — V. (" D*Vw?) = 0 in Q°,
2 g0 oo £ ft e
(C.2) Ep—at—-%pv-\?w -V - (pD!'Vu!)=0 in Q/,

(C.3) ((D{) p’D*Vw® — pr-rVw-’r) N =e2(pfw* — p*w*™)w-N onT,
(C4) w* =kw'™ on .
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Consider the case D; = O(1) and FS; = O(e~?) (Fe-C alloy). Introducing the
asymptotic expansions (3.13) in Egs. (C.1)-(C.4), the first order problem to be
solved takes the form

C.5) Vy: (p°D*V,w*®) =0 in Q°,
v y

(C.6) PO . v, _y,. (pf vawam)) —0 in 0,

(C.7) (pSstyw"(”) —p/DIVw®) . N=0 on T,

(C.8) W@ = g f*0) on I,

where the unknowns w*® and w/(®) are y-periodic. The fluid v/(% velocity is
given by Eq. (A.19). From Eqgs. (C.5)-(C.8), we get

(C.9) Wil ) =, 1*0) — ;/(0) (x, ), WO — ,5%(0) — ws(ﬂ)(x, t).

At the lower order, the fluid and the solid mass fractions are constant over the
cell. We consider now the next order,

(C.10) o [pSD-‘ (vyws(” +V,;ws(0))] =0 in®°

(C.11) p/v/©@. (vwa“) P waf(ﬂ))

~ Yy [/ DF (Ty! ) + vzmﬂﬂl)] =0 in®,

(€.12) [pst (Vyws(l) + vst(g))

—p/Df (Vwam + Vzwf(n))] *N=0 onT,

(C.13) WM =g M onT,

where the unknowns w/(") and w*(!) are y-periodic. Integrating (C.10) over Q°
and (C.11) over ©/, the condition of periodicity, the boundary condition (C.12)
and the fluid incompressibility (A.16) we obtain the following first order macro-
scopic description,

(C.14) pf(vf(”)}  Vow!© = .
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From Egs.(C.10)-(C.11), we get
(C.15) WM = ! (y, V,p! @, 1) - V0! + 3/ 0 (x, 1),
(C.16) W' =k @y, Vap! @, 1) - Vo0 O + 20 (x, 1).

@/ and @* depend on the macroscopic pressure gradient V,p/(%). They are y-
periodic, average zero and are solutions of the following boundary-value problem:

(C1T)  V,-[p*D%k (V,0°+8)] =0 in 0°,
(C18) VO (V,0 +8) -V, [/ D (V07 +6)] =0 i@/,
(C.19) [pstk (V,0° +8) — p! D (Vycpf 8 5)] ‘N=0 onT,
(C.20) o =@/ on I
The next problem to be solved takes the form

, 0w

(C.21) p ot

= A [pSD’ (V4@ + v,u‘“’)]

Vs [p*D* (V' + Vo' ®@)] =0 im0,

(C.22) pf d“ét + pIvIO) . (vywm) + waf(l)) + pf v

: (vywﬁ” " vzwﬂm) =R {pf D! (vywnz) & vzwf“))]

o [prf (vywﬂ“ +V1uf(0})] =0 in®/,

(C.23) [ps D* (Vywsm 5 vstm)) — /D! (vywﬁ?) + waffl))] o

= (PO - p*u*O)w(® . N onT.

Integrating (C.21) over * and (C.22) over ©/, then using the divergence
theorem, the condition of periodicity and then taking into account the bound-
ary condition (C.23), we obtain the first order correction to the macroscopic
description (C.14),

O IO) | 0((1 - fulO)

(G2 P ot it ot

+ (VW) 7,07 @ — 9, - ((4D™)V,/ @) = 0.
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(pD*) is the effective dispersion tensor of the mixture,

R
(C.25) (pD*) = ﬁf (/D! (9,9 +8) + o kV.p/ @ - o) d0
of

o %/psD’k (V,@° + 8) dS.
ns

By adding, member to member, Eqgs. (C.14) and (C.24) multiplied by £, we get
the second order macroscopic equation governing the average fluid mass fraction
(w!) = (W O) + g(w/M),

O (f°k () s pfa((l — %))

Sivly. S
= S () - V)

(C.26) ep

—€ Va- ((pD™)Va(w)) =0
with (w®) = k (w/).
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