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On the determination of residual stress distribution in plane
elasticity

A. BLINOWSKI

University of Warmia and Mazury in Olsziyn,

PROBLEM OF THE DISTRIBUTION of incompatibilities in elastic solid in a quasi-plane
stress state is discussed. It is assumed that the stress distribution can be measured
at the boundary of a simply connected subregion of the body. Residual stress field
must satisfy static equilibrium equations but, in general, the corresponding elastic
strain field does not satisfy strain compatibility conditions. Taking the measured val-
ues of the stress components at the boundary of the region as the external boundary
tractions and solving the corresponding boundary value problem of elasticity (includ-
ing strain compatibility conditions), one can obtain a unique stress field, which, in
general, differs from the actual one. It is reasonable to treat their difference as the
residual stress field assigned to the region under consideration. Obviously, the values
of residual stress defined in such a way (at given point of the region) depend on the
choice of the region and do not depend on the external loading of the elastic body.
Fourier series integral technique of determining such residual stress fields for simply
connected circular regions are proposed. Some quantitative integral characteristics of
residual stress fields are discussed.

1. Introduction

CONCEPTS OF THE RESIDUAL stresses of the first, second and third kind are
widely used for the description of the state of polycrystalline metals. Despite the
lack of rigorous definitions of these concepts there are no misunderstandings be-
tween the material engineering scientists owing to improper use of these notions
corresponding to three scales of research: sub-micro- scale (electron microscope),
micro-scale (optical microscope), and macro-scale (according to the newer ter-
minology — micro-, meso- and macro-scale). This subdivision corresponds to the
physical levels of the structure: defects in crystal lattice, granular structure of
the real polycrystalline metals and alloys and the whole manufactured structure.
Outside of these contexts these notions lose their meaning. Any considerations
such as: “The residual stresses of the second kind are those, which are equili-
brated within a structural element” have no meaning as long as the “structural
element” is not defined rigorously and one does not know how the term “equili-
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368 A. BLINOWSKI

brate” should be understood — any static stress field in any region fulfills the
equilibrium equations.

To describe residual stresses in any material, no matter: crystalline, amor-
phous or composite, one needs well-defined quantitative characteristics making
it possible to compare the intensities and space distribution of the residual stress
fields in any solid. In the present paper we consider the simplest case of the self-
stressed body: a two-dimensional, linearly elastic isotropic homogeneous continu-
ous medium. The author believes that such a model yields a fairly good approx-
imate description of the plane subsurface layer in an unloaded 3-dimensional
specimen. In our consideration we shall avoid the use of advanced geometric
methods of description such as non-Euclidean material connection as well as the
use of the concept of dislocation density tensor. For further considerations we
shall adopt the Cartesian tensor notation and the summation convention.

2. Basic concepts

Let us consider a plane elastic state (no matter whether plane stress or strain)
of the linearly elastic isotropic homogeneous body. In the absence of body forces
(we shall assume they vanishing in all further considerations) one can introduce
scalar parameters of incompatibility in terms of second derivatives of both elastic
strain and stress field:

(2.1) K (o) = €ijki€ikejt,

(2.2) K(o) = Gii kks

where ¢ and o denote elastic strain and stress tensor respectively, while e;;
denotes representation of the unit skew-symmetric tensor (e;; = e =0, ejp =
—e9; = 1 in Cartesian co-ordinates). In the absence of residual stress both these
quantities vanish. The conditions of vanishing of expressions (2.1) and (2.2) are
equivalent under the above assumptions. In general (e.g. for the case material
inhomogeneity), only vanishing of (2.1) ensures the local lack of residual stress.')

If all the components of the two-dimensional stress (elastic strain) field were
known exactly and were smooth enough, the appropriate area or contour inte-
grals of the quantities defined by Eq. (2.1) and/or (2.2) could be used as good
scalar measures of the residual stress associated with a chosen region. In reality,

Y This remains true also in the case of the unloaded surface of half-space (quasi-plane stress
state). Moreover, simple count of the number of known fields at the surface shows that no
other compatibility condition can be formulated in terms of these fields quantities which can
be measured at the surface i.e. without knowledge of the normal components of the gradients
of the stress components and/or strain tensors at the surface.
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ON THE DETERMINATION OF RESIDUAL STRESS ... 369

however, taking into account all the difficulties associated with the stress and/or
elastic strain measurements, one can hardly expect to obtain sets of data dense
enough to calculate reliable values of the second derivatives of the stress com-
ponents. Moreover, the history of inelastic deformations producing the fields of
residual stress is often restricted to some subdomains, thus even discontinuous
stress fields may appear.

For better comprehension of the difficulties we shall consider three elemen-
tary, textbook examples of residual stress fields defined on the circular discs of
radius 9 in plane states in the absence of body forces and boundary tractions
(c.f. [1]-[4]).

Ezample 1

Edge dislocation is introduced into the center of a circular region 0 < p < ro,
internal region 0 < p < r; is removed and disc of unstressed material is placed
instead, p denotes polar co-ordinate (Fig. 1):

Fic. 1. Geometric scheme of the plane body.

The Airy stress function is written as

(2.3)
p_1 p° 1 oird 1\ .
BT (T e R, ! . "
F(p,p) = (pnﬁ 2rf+r§+2rf+r§.0 SHp IOFNEL S P'S U,

0 for 0 < p <1y,
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370 A. BLINOWSKI

where A is an arbitrary constant (for plane strain state A = ub/[27(1 — v)],
where p is the Lamé constant, v denotes Poisson’s ratio, b is a the length of the
Burgers vector). For the stress field one obtains:

P =13) (7 =ri)
ICET)
0 for 0<p<gry,

_19F 1 9F _ Al

4 sing for r; < p <y,
Opp = ——+—5—>5 =
P pop p? Ot

P AS,O“ — (r}+13) p* —rird
(24) wa = W = p3 (Tf i T%)
0 for 0<pgm,

sing for r; < p < 1y,

(compare Fig. 2).

(=) (=~
A —
Upvf—$ (——) = P (r? +12)

cosp for r < p <y,

s \
DN
4 /]

W)
o

F1G. 2. An example of the residual stress distribution-transversal stress o, (r, p)arround
edge dislocation.

Ezample 2

Angle disclination in the outer ring 7y < p < r2 and unstressed material in
the internal disc 0 < p < 11

Airy stress function

1 o T3c? 2 p? a? 9
= A, Eiate 2 a1
2B(p 1_0211105 lnr§+1—a2 ne

(2.5) F(p,p)= for 1 < p <y,

0 for 0<p<ry,
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ON THE DETERMINATION OF RESIDUAL STRESS ... 371

where a = 7y /rp, B is an arbitrary constant (for plane stress conditions B =
%. where a denotes the opening angle of disclination, E denotes the Young
modulus).

Stress fields:

2 2 2
r o'
B = 2]:1.c)z2+ln'al—2 for m < p<ry,
Tpp = l -« 5

0 for 0<p<m,

! :! 1 2 rl _— 2y

0 for 0<p<m,

Ezample 3
Internal disc of the diameter ry 4+ §, § << (r2 — ) inserted into initially

unstrained outer ring r; < p < rp of the same material.
Airy stress function

ke (102p2 —r?ln rﬂ) for r <p< oy,
1

2r \ 2
(27)  Flowp)=4 >
Eé , 4 2
E(G —l)p for 0<p<r,

where E denotes the Young modulus. Stress fields are expressed as follows:

rEé 2 T'%
=—|a"—=] forry <psry
—J2n p

g(::r2--1) for 0<p<r

\27‘] = = Iy

{E 2

——Es- o:2+7—12) for r <p<re,
(2.8) Tpp =14 1 7

Eé , 4

— (®-1) for 0<p<gm,

\,2'.-‘"]_

Opp =0
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372 A. BLINOWSKI

All three examples specified above are by no means “exotic”, one can easily
point out real production techniques leading to such residual stress fields or their
linear combinations. It is not difficult to notice that in all three cases the incom-
patibility parameters defined by Eq. (2.1) and (2.2) vanish almost everywhere,
except for the set of null surface measure - the contour ¥ : {p = r}, where they
are not defined. It is not difficult to notice that: any simply connected subbody
2 that doesn’t intersect contour £ is not a self-stressed body in the following
sense: if one removed at the boundary OS2 all contact forces of interaction with
the remainder part of the body, then the stress field would vanish at all points of
Q.

The above examples distinctly show that it would be impractical to look
for such additive characteristics of the residual stress which can be obtained
by integration of some density functions (e.g. such as defined by Eq. (2.1) and
(2.2)) over the whole body or its part?) . In the course of further considerations
we shall look for the characteristics of residual stress fields assigned rather to
the domains of the body than to its individual points.

In accordance with the formulated above notion of the body free of residual
stress we shall specify for further consideration an operational procedure of sub-
division of the two-dimensional actual stress field o4 (x) on the simply connected
sub-domain © of the body bounded by the closed contour €2, into two parts:
residual and induced®) .

1. Choose a material region 2, measure the components of the actual stress
tensor o4 (s) at the contour 92 and find the contact forces t (s) of interaction
of the sub-body €2 with the rest of the body across 092, s denoting a parameter
defining the closed curve 99 : {x = x(s)}.

2. Solve the plane elastic boundary value problem for initially unstrained
body of the same material occupying region € and loaded with tractions t (s) at
012, obtaining the induced stress field o (x)defined on €.

3. Subtract on the region Q the field o (x) from o4 (x) obtaining the inirinsic
residual stress field og (£2,x) associated with the region Q

(2.9) or (92, x) g-gcr;, (x) —or(x), x€.
Note that:
e Value of intrinsic residual stress field at a given point x essentially depends
on the choice of the region §2.
e From the superposition principle of linear elasticity it follows immediately
that for given region , the field op (€2, x) is insensitive to the change of

2)Such an approach, if possible at all, would lead us to rather inconvenient considerations
concerning second derivatives of distributions (generalized functions).

#Such an approach would be equivalent to the commonly used definition of the residual
stress in terms of unloading, if the process of unloading were always purely elastic.
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ON THE DETERMINATION OF RESIDUAL STRESS ... 373

the external load applied to the body outside €2, even if it causes inelastic
deformations (up to the disintegration of the body), provided the material
inside () remains in elastic state.

e Taking into account that real plastic deformations usually exceed consid-
erably these which can be attained within elastic limits, one can expect
that any inelastic deformation inside 2 may drastically change its intrinsic
residual stress field.

e Residual stress field may not obey the limit state conditions, actual stress
field is the only one, which must fulfill them. If this is the case, then a path
of global elastic unloading of the body may not exist.

For practical applications it would be difficult to obtain the complete information
about the whole intrinsic residual stress field for all parts of the body within
reasonable accuracy limits. It is quite thinkable to perform measurements of the
stress or elastic strain along a chosen curve, while performing such measurements
for sufficiently dense set of internal points of two-dimensional region may turn
out to be unreasonably time and/or money consuming. Some proposals of the
choice of a limited number of parameters describing residual stress fields will be
discussed in the next sections of the present paper, the problem however remains
to be open for further investigations.

3. Circular domains

In this section we shall consider the simplest example of intrinsic residual
stress distribution — residual stress fields in plane elastic state for the circular
simply connected domains of the isotropic homogeneous material. All consider-
ations of this section will be presented in terms of polar co-ordinates {p, ¢ }.

According to the E. Goursat theorem (c.f. [1] p. 322) any biharmonic function
F (z,y) defined in a simply connected region bounded by a smooth curve can be
represented in the following form:

(3.1) F (z,y) = Re[zf (2) + g (2)]

where f(z) and g (z) are holomorphic functions of the complex variable
z =z +1y, Z = x — 1y. Making use of the uniqueness of the power expansion
of the holomorphic function and representing z™ as p" (cosng + isinng), one
can rewrite relation (10) in the following form:

(3.2) F (p, (,o) = i [(C(g)np“+2 + C(m"p“) COS N
n=0
+ (5(2)" ,On+2 + S(0), pn) sinnp.

http://rcin.org.pl



374 A. BLINOWSKI

Taking F (p, ) as the Airy stress function and using well-known relations

P pdp = pRdg?’
O*F
(3.3) To0 = Gz

__0 (1oF
70 = " \pdp)’

one obtains the following stress field:

(34) 0pp=2C(0 — i [Cmﬂ (n = 2) (n + 1),0“
n=1

+ Co)n (ﬂ - l)p"—g] COS N — i [Sf?)ﬂ (n - 2) (n + l)p"

n=1

+ S(oynn (n - 1),0"-2] sinnp,

(3.5) 0pp =2C() + i [C{'Q]“ (ﬂ + 2) (ﬂ + 1),0“

n=1

+ Cloyn (n - 1)p"+2] cos np + i [8(2)“ (n - 2) (n + l),o"

n=1

+ Sm)nn(n = 1),0“'2] sinnp,

o0
(3:6) Tp= z [Ciaynn (n+1) p" + Cioynn (n — l)p”_g] sinnyp

n=1

oo
Y [S@mn(n+1) o™ + Soyun (n — 1) p* 2] cos nep.
n=1
This stress field corresponds to the stress distribution in a circular, initially
unstressed disc 2 of radius R loaded at the boundary 9dQ : {p = R} by the
normal stress ¢, (p) and the tangent stress ¢, (), where the following relations
must be satisfied:
tn () = Tpp (R, ),
(3.7)
tr (p) = 0pp (R, ),
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ON THE DETERMINATION OF RESIDUAL STRESS ... 375

For the time being we shall assume, omitting technical details, that we are
able to measure these quantities along the arbitrarily chosen circular contour 952
inside the two-dimensional region occupied by the whole body.

Denoting:

m

1
Nen = ~/app cos ne dip,
T

-

m

1
(3.8) Ten = ;/ow cos ny dy,

-

|
Pop = ;/ T COS NP dip,

-7

m
1
Ng, = —/opp sinnpdyp,
T
=k
w
1 :
Tsp = — [ oppsinnedp,
T
-7
™
1 .
Pgp = —/ Tpp Sinnp dyp,
T

=

where o, (@), 0pp (@) and oy, (@) are the values of stress measured at the

contour, and making use of (13) and (15), one obtains: for n = 0: Ngg =
40{2)0, and
Nen = —n n = 1) C{U}n = (n + 1) (TJ. — 2) C(Z}ana
Ngp=-n(n—1) SqpR"" 2_(n+1)(n+2) SR, for n>1.

Ten =—-n {n =5 1) S(O)n ST (n + 1] S(?)ann

Ton=n(n~—1) C(O)ﬂRn 24n (ﬂ + 1) O(g)an.

Equations (3.9) can be solved with respect to Cigyn, Ci2jn, S(oyn and S(y),as

follows?) :
¢ N+ (n—2) Tis)n _ Ny +Tisyn
i (0)n 2R"2n(n—1) @ = Topn (n+1)°’
' g = Went@-ATcem  _ Nism—Tiom
(0)n 2R 2 (n— 1) 1 2(2)n 2R"(n+1)

Substituting values (3.10) into expressions (3.4), (3.5) and (3.6) we are able
to express the formulae for the induced stress field o (p, ) inside the circular
region in terms of the Fourier coefficients of the tractions applied at the bound-
ary:

Y Expressions for C(g); and S(g); are not defined by Eq. (19); it is not difficult to notice how-
ever that these quantities can be faken arbitrarily since they don’t contribute to the expressions
for stress components.
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N
(8.11) a1y = f20)0
o0 nN[C)n 3 (ﬂ - Q)T:[S)n am (N(C)n 4= T{S)n) (n — 2) -
0 Z: [ QRn-2 Ll SR" p } cos P
n=
= nN(S]ﬂ = Ade= 2)T(C)n N(S)n o1 TEC}‘-" n—2
W Z [ 21(37;-2 PR ( VL ) ( ),o"] sinnp,
n=1
N
(3.12) Grpp= f2 )0
s i ?';N(C')n = (n v 2) T(S)ﬂ e B (N(C')ﬂ -+ T‘{S}n) (n -+ 2)p"‘ A 2
2Rn—2 P R 208
n=1 |
.- i ”N(S)“ —(n _ 2) T(C)" pn.—z _ (N[S)n =+ ?ﬂ[f—'}u] (n +2) 0" siting
et 2Rr1-—2 9 n

(3.13) Grpp =

m i [ﬂN(c')n + (n — 2) Tis)n P (Noyn + T(s)n)

n .
SRn=2 5Rm pn] sinny

n=1

2N = =2)Ticm o0 (N +Ticym)
& Z 231:—2 (o = QRN

p"] COS NP.
n=1

Subtracting these values from the measured actual values of stress compo-
nents at an arbitrary internal point x of the 2 domain, one can easily obtain
the values of residual stress component og (£2,x)at this point associated with €2.
If o (2, x) vanishes at all points of Q2 (within the accuracy limits of the mea-
suring techniques) then one may consider domain  as being free from residual
stress. Obviously this remains true with respect to any subdomain ; C . On
the contrary, for a larger domain £, O © it may occur that op (2,x) does not
vanish (compare Ezxample 3). It is quite reasonable to consider the radius of such
a domain for which the first non-vanishing residual stress field appears as the
lower threshold of the range of residual stress. More detailed consideration on
the estimate of the residual stress range we shall present in the next section.
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For the time being we shall point out an interesting property of the induced
stress fields defined on circular regions. Combining Eq. (3.11) and (3.12) and
taking p = R one obtains:

o0 o0

Olpp — Olyyp :

(3.14) T e —z T\ 5yn COS NP + Z T(cyn sinnep.
n=1 n=1

Thus, taking into account that at the boundary oy, = 04y, and oy, =

0 App we conclude that the only component of residual stress non-vanishing at

the boundary can be expressed in terms of actual stress components as follows:

o0 00
(3.15) TRpp = TApp — TApp — 22 T{S]n cos ny + 22 T(C}n sin .

n=1 n=1

In the absence of residual stress, the right-hand side of Eq. (3.15) vanishes
identically (compare Eqs. (3.4) — (3.6)). It is not difficult, however, to show an
example of residual stress field non-vanishing in € for which this expression is
equal to zero at the entire boundary of 2% . Thus vanishing of the right-hand
side of Eq. (3.15) at the boundary of some domain € of radius R is the necessary
but not a sufficient condition of the absence of residual stress inside €.

Note that the value of o g, () given by (3.15) describes the transversal com-
ponent of residual stress at the circular contour of radius R only for residual
stress field associated with the circular region Q2 of the same radius
R. Taking any larger concentric region €, of radius R;> R, one can use re-
lation (3.12) and calculate o gy, (p, ) and then subtract it from o,y (p, @)
for p = R, obtaining (at the circle of radius R) the transversal component of
residual stress field associated with €2;. In general these quantities are
different® . In order to avoid possible misunderstandings, let us introduce new
symbol s (17,¢) denoting the value of residual transversal stress associ-
ated with the circular domain €2 of radius I? taken at the boundary of
the domain (determined by the right-hand side of Eq. (24) for p = R).

Let us consider a domain £y of radius Ry. Assume that & (R, ) vanishes
for every circular domain 2 of radius R < Ry, concentric with §25. We shall
prove that such stress field is entirely load-induced and doesn’t include residual
constituent in 2.

%)One may take an arbitrary self-stressed body and surround it with unstressed material,
then the right-hand side of Eq. (3.15) would identically vanish for any contour d2 surrounding
(but not touching) initial, self-stressed body, while the residual stress field associated with Q
doesn’t vanish.

51t will turn out to be clear from the foregoing considerations that they are equal if the
expression (24) vanishes for all concentric domains Q'of intermediate radii R < R’ < R,.
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Let us represent the stress function @ (p,¢) as the following Fourier series:
o0 o0
(3.16) ® (p,0) = fo(p)+ Y fu(p)cosng + > gn(p)sinne.
n=1 n=1

Calculating the stress components (using relations (3.3)) and substituting
the results into Eq. (3.15), one obtains the following relation:

d*fo(p) Ldfo(p) @fo(p) 1dfo(p)
dp*  p dp dp*  p dp

2
+Z (d fn _2n+1 dfy (p) + n+1 fn {p}) -
n=1

(3.17) w(R,p) = [

p  dp

d? 2
i Z ( np) _ 2t ldon o) , nin+ 1)gn (p)) Sm,_,w]
=1

d 2
P P P 2y

The right-hand side of Eq. (3.17) vanishes for every R < Ry if and only if

d*fo(p) 1ldfo(p) _

dp? p dp :
d2f, 2n + 1df, +1
1y Lhlo) o) e i,
dp p dp p
for all
d*gn (p) _ 2n+1dgn (p) Lot o) =0,| P=123...
dp? p  dp P .
i.e. when

fo(p) = Ag + Bop?,
(3.19) fn (p) = Anp™ + Bpp"t?,
gn( ) Cnp =+ ann+2v

where A,, B, Cn, D, are arbitrary constants. This means, however that the
stress function @ (p, ) is biharmonic in Qg (compare (3.2)). Therefore the entire
stress field in Qg is induced by the external load. QED.

The last result suggests that the intensity of s (R,¢) can serve as a conve-
nient scalar characteristics of the magnitude and range of reach of residual stress
fields.”)

} forallmn=1;2,3,...

"Let us understand here all these notions in accordance with their colloquial meaning; we
shall try to make them more precise later on.
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4. Concluding propositions

Note that applying our operational procedure of determination of residual
stress (compare Eq. (2.9)) beginning with the largest possible circle and gradually
reducing its diameter, we act as “peeling” successively the original body (possibly
“hardened” in advance to exclude inelastic behavior due to stress redistribution)
and observing the resulting changes of the stress field. If for some range of R
between R; and Ra, (R; < Rs), our “stripping” does not change essentially the
residual stress distribution, we would be inclined to claim that we do not observe
significant internal stress of the range (scale) between R; and Ry (on the level
of intuitive understanding of all terms involved). On the contrary, if acting in
such a way we change drastically the residual stress field magnitude and/or
distribution, we would rather consider the contribution of the residual stress of
such a scale to the total stress distribution as significant.

Let us try to express quantitatively these intuitive notions. To this end we
shall define an integral characteristics of the residual stress distributions associ-
ated with the sequence of concentric circular regions:

1

2 y
(4.1) 13(3)55;/0 (R e,

We shall call I) (R) the boundary intensity of residual stress. It describes the
mean value of the norm of residual stress tensor field (associated with the circular
domain of radius R) calculated at the outline of the domain (circle of radius R).

For the description of the scale of reach of a residual stress field as well
as its “coarseness” (or smoothness), not only the information on the intensity
of residual stress can be useful - we have already seen that in some special
cases the boundary residual stress intensity can vanish locally for large R while
the specimen may be highly stressed inside. Also the “rate of change” of the
boundary residual stress intensity during our imaginary process of “peeling” can
be important. Thus we introduce another function of the domain radius R:

dl (R)

(4.2) LR ==

Before proceeding further in the description of residual stress distributions in
terms of I1(R) and I3(R), we should try to examine their behavior in the case
of the examples exposed in Sec. 2.
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Ad Ezample 1
For the transversal component of residual stress in initial domain of radius

r9 one has:

3p* — (r} +13) p* —rird

A sing for 7 < p < o,
(43} TRy (,0, (p} = P3 (?% n T%)
0 for 0< p<
while
2(R?-12) .
(4.4) % (B0 = Aﬁ sing for r; < R < ry,
; 1p) = :
0 for 0 < R<ry,
thus:
V2 (R? - 13)
A= for 1 < R < ry,
(4.5) |i R (R? +1?) 1 < 7o
0 for 0 < R ry,
and
V2 (R* — 4R?r2 — 1
e i ( - .2212 ) or B S
(4.6) I, (R) = ()R
0 forO <R <1y
(compare Fig. 3.)
Ad Ezample 2
(4.7) 0pp (py0) = 0py (p;)
2N 1
28[:(0{2"‘%) na'2+111£+11'10€—|-]_:| for TISP<T2’
- P l—-a 71
U for O S P i T,
QB( 2'-'"? lnr—1+1 T e
(4.8) s(K.0) =k (R) = R?2 — f% R LS 2,
¥ for 0<R<m,

27‘2 B )
2 B _1 --1 — + 1) f S R < :
(49} Il (R) = |Kr (R}l — | | (R'Z =" T’% n R () N T9
@ fOI‘ 0 Q R < T,
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for m <R<mrs,

—4|B|r? ( 2R? N " 1)
(4.10) L(R)=( [R(R?—7?) \R?-r R
0 for 0K R<m.

:

61 i

5«

4

3‘ 7

y 4

1

0 0.2 0.4 06 0.8 1

7 i
m

Fi1G. 3. Intensity of transversal stress o), (p) = /5= [ 02, (r‘, <p) dip - dashed line,

-

intensity of boundary residual stress I;(p)-solid line, derivative of the intensity of boundary
residual stress “40R) - dotted line.

5t
4
3
A
2 E .\‘
IT
0 0.2 0.4 0.6 0.8 1

Fic. 4. Absolute value of transversal stress|o,,(p)|- dashed line, intensity of boundary
residual stress I (p) - solid line, derivative of the intensity of boundary residual stress
%‘f‘q& - dotted line.
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Ad Ezample 3

2
;E_ﬁ (a2+%) for my <p<ry
(4.11) Opp (P ) = 04y (p) = E?} P
-——(2—1) for 0<p<n
21"1
Ebé f e
(4.12) s(Re)=r(B)=C B T 1°PsR

0 for 0< p<m

E\|d| ™
(4.13) I (R)=|k(R)|=4 R?
0 for 0<p<n

for ri <p<ry

(4.14) L(R)={ ~ R®
0 for 0 < p<m

-6

FiG. 5. Transversal stress o, (p) - dashed line, intensity of boundary residual stress I;(p) -
solid line, derivative of the intensity of boundary residual stress d—":f(n& - dotted line.

Inspecting the curves describing the boundary residual stress intensity and
their “rates” as the functions of the radius R, one can hardly point out (at
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least concerning the examples under consideration) any characteristic numbers
pointing out the scale of reach of the residual stress fields. Only in Fig. 3 at R =
0.4 one can observe a maximum of the boundary residual stress intensity. Figure
4 suggests that the whole specimen is involved in generation of residual stress.
The curves in Fig. 5 indicate that the influence of the defect decreases rapidly
with the distance from central inclusion. In the last case one can arbitrarily take
some value of the stress intensity, say 10% of the maximal value, and consider the
distance at which the stress intensity becomes lower than this threshold as the
range of reach of the residual stress field caused by the inclusion. The proposed
quantitative characteristics of the internal stress scale do not pretend to be the
only possible, many other similar propositions can be discussed as well. Generally
speaking, rather the information of the whole distribution profile of the boundary
stress intensity and its gradient gives more or less complete information. Thus
we should admit that our original goal consisting in defining a single parameter
describing the reach of the residual stress has not been fully achieved. Instead
we have proposed the way of description of the two-dimensional field of residual
stress using functions of one variable obtained by the procedure based on the
measurements along the contours only. In author’s opinion the most important
result of the considerations presented above consists in drastic reduction of the
density of the measured points and the accuracy of measurements needed for
the non-destructive evaluation of residual stress fields. It was achieved due to
replacement of the differential operations by the integration along contours. It
should be mentioned again, here, that the method proposed is insensitive to
the external loading, making thus possible the interpretation of the results of
in situ strain measurements on the elements of working construction. All the
considerations assume the linearly elastic behavior of the material, the problem
of the applicability of the results to real engineering situations is out of the
scope of the present considerations and must be separately considered for each
individual case.

Generalization of the considerations to the (plane) regions of arbitrary shape
seems to be thinkable, while the other ways of generalization such as three-
dimensional approach, anisotropy, inhomogeneity etc. do not seem to be straight-
forward.

As the last point of our consideration it is worthwhile to discuss briefly some
technical details. At the present state of art of the stress measurement techniques,
determination of all necessary data in the framework of the present approach may
turn out to be unreasonably expensive and time-consuming. It is, however, the
author’s hope that the development of the automatic measurement procedures
may change this situation in the near future. The fast computation methods
based on the Fourier analysis are quite well advanced nowadays thus any think-
able amount of experimental data may be easily processed. The scarcity and low
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accuracy of the experimental data combined with the powerful data processing
capabilities may result in obtaining some “artifacts” such as (non-existing in re-
ality) short range stress fields obtained in calculations, due to the experimental
data scattering. Thus, certain precautions must be recommended, e.g. the num-
ber of the Fourier terms taken into considerations must be much less than the
number of measuring points at the circular boundary.
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