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Nonstationary two-phase flow through elastic porous medium
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THE AIM OF THIS CONTRIBUTION is to derive macroscopic equations governing the
dynamic flow of two immiscible viscous fluids through an elastic microperiodic porous
medium. To this end homogenization methods were employed. The procedure used
can be justified by the method of two-scale convergence. Passage to the stationary
case and illustrative example were also provided.

1. Introduction

IN THE PAPERS [14,15] we studied one-phase nonstationary flow of incom-
pressible viscous Stokes fluid through a linear elastic microporous medium. The
present paper is aimed at examining a similar problem in the case of two different
immiscible Stokesian fluids. The new phenomenon which has to be taken into
account is the surface tension on interfaces between the two fluids. The model
of surface tension we use is the one proposed by LEvVICH and KRryLov [61],
cf. also [41,58]. The fluids are described by the Stokes equations with different
viscosities. The solid phase is made of a linear anisotropic elastic material.

The macroscopic equations and Darcy’s law, the last being nonlocal in time
(see also [3]), are obtained by using the homogenization methods. Similar prob-
lem was studied by Auriault et al. [6] in the case of harmonic unsaturated flow
and different from our scaling on interfaces between the fluids.

In our case, the passage to the stationary two-phase flow through a porous
medium yields the equations similar to those previously derived by SAINT JEAN
PAULIN and TAous [74] provided that the skeleton is rigid, see also [8].

The time-dependent permeabilities involve an implicit dependence on the
matrix structure, saturation, interfacial tension and fluid densities. This depen-
dence is inherently present in the local problems which allow to determine the
formula for the extended Darcy law. Consequently, at the expense of simplifica-
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tions it seems possible to recover the approach exploiting the notion of relative
permeabilities, cf. [20,41, 58]. We observe that if we can predict the permeabil-
ity for single-phase flow through a porous material from digitized information
obtained from cross-sections of the rocks, then we may also be able to obtain
estimates of traditional relative permeability as well when two fluids phases are
present, cf. BLAIR and BERRYMAN [17].

We observe that problems of fluid transport through porous media, including
multi-phase flows are important in many branches of chemical technology, biome-
chanics and geological research. For instance, soft tissues are porous materials,
cf. [57].

The plan of the paper is as follows. In Sec. 2 a rather intensive, though not
exhaustive, overview of previous results on two-phase flows through porous media
is compiled. Formulation of the flow problem to be studied is given in Secs. 3
and 4. Homogenization is performed in Sec. 5. Among the results obtained in the
present paper the most important are the macroscopic equations of Biot-type
involving the nonlocal in time extended Darcy’s law. The formal homogenization
procedure is justified in Sec. 6 by the method of two-scale convergence. Passage
to the stationary case is performed in Sec. 7. An illustrative example of stationary
flow through bundles of tubes is performed in Sec. 8. In Appendix A main points
of the asymptotic analysis are derived.

2. Overview of previous results on two-phase flow through porous
media

In essence, there are four approaches to modelling the behaviour of porous
media filled with fluids. The first approach is in fact macroscopic from the very
beginning, though microscopic information is somewhat hidden, see Coussy
[35].

The second approach is typical for mixture theories, see DE BOER [18], Ku-
BIK et al. [60], SIMON [77] and the references therein. It seems that MORLAND
[68] was the first who used the volume fraction concept in connection with the
mixture theory. According to ZIENKIEWICZ et al. [85], the mixture theory intro-
duces some arbitrariness in the selection of various parameters. GANESAN and
BRENNER [47] critically reviewed the convential mixture theory, and other the-
ories where spatial averaging is used. According to these authors, we cite ([47],
p.736): “Our identification of appropriate macrofields is based upon their rigor-
ous physical, scale-invariant definitions rather than upon simple ad hoc volume
averaging of the corresponding microfields”. Consequently the paper contains
quite a lot of definitions. The generalized Darcy’s law has the form similar to
the one given on p. 419 of [58] and is a particular case of the law rigorously
derived by SAINT-JEAN PAULIN and TAOUS [74], cf. also Sec. 5 of our paper.
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The third approach, often used in the mechanics of porous media, relies
on volume and surface averaging, see BEAR and BACHMAT [10], BRENNER and
EDWARDS (28|, FrAS and BENET [46], GRAY and HASSANIZADEH [49, 50, 51, 52]
pu PLESSIS [72], WHITAKER [81]. Similarly to micromechanics, one introduces
the concept of representative elementary volume (REV). With every microscopic
field (z, ), a macroscopic field defined at every point z of a domain  C R® by
the average of @ in the translation V of REV is centered at x € Q. For a density
o, the macroscopic field is defined by

1
(2.1) () t) = [ et tdyta).
Vv
For a quantity s on a surface S, the average is written as follows:
: ]
(2.2) (ps)(z,t) = Gl ws(y,t) dS(z).
vns

Such averaging is used to derive macroscopic balance equations. The system of
balance equations requires a sufficient number of equations such that all un-
knowns can be determined. It is accomplished by providing equations of state
and constitutive relations [66, 81]. It is worth noticing that in a comprehen-
sive paper by MILLER et al. [66], the following topics related to multiphase flow
and transport modelling were discussed: balance equations, constitutive relation-
ships for both pressure-saturation-conductivity and interphase mass transfer, and
stochastic and computional issues. Experimental observations were also reported.
As an evolving approach, a Lattice Boltzmann (LB) method to simulate multi-
phase flow at the pore scale was discussed, see also ADLER and THOVERT [2],
KRAFCZYK et al. [59] and the references therein. We observe that Lattice Gas
(LG) and LB models were originally developed for single-phase flows. One major
interest of these techniques is their potential ability to cope with interfaces [2].

For more information on multi-phase, and particularly two-phase flows, where
various physical approaches were used, the reader is referred to the books by
CusHMAN [37], DuLLIEN [41], KAVIANY [58] and SAHIMI [76], and the pa-
pers by ALLAIRE and KokH [5], DARTLEY and RuTH [40], BENNETHUM and
GI10RGI [11], BLAIR and BERRYMAN [17], CHAVENT et al. [30], CONSTANTINIDES
and PAYATAKES [32,33,34] CHRISTAKOS et al. [31], DALE [38,39], EKRANN
and DALE [42], EKRANN et al. [43], GRAY and HASSANIZADEH [49,50], HAs-
SANIZADEH and GRAY [54], HARTER and YEH [53], MONTEMAGNO and GRAY
[67], RunDMAN [73], THIGPEN and BERRYMAN , TZIMAS et al. [79], VALAVANIDES
et al. [80], YARIN and HESTRONI [82], ZANOTTI and CARBONELL [83], ZHANG
and PROSPETT! [84]. The approach used by CusHMAN [37] to modelling flow
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and swelling in hierarchical porous media is extremely complicated, similar in
spirit of the modelling used by GRAY [48|, GRAY and HASSANIZADEH [49], HAs-
SANIZADEH and GRAY [54].

The books by LEwis and SCHREFLER [62] and ZIENKIEWICZ et al. [85]
present the basis of modern computational approaches to various practical prob-
lems of geomechanics. In each of these books an important role is attributed to
the derivation of macroscopic equations by using averaging techniques.

Less familiar in the mechanics of porous media seems to be the ganglion
dynamics, cf. [32,33, 34, 80|. Experimental observations of steady-state flow of
water and oil through planar and nonplanar chamber-and-throat pore networks
etched in glass have shown that over broad ranges of values of the main dimen-
sionless parameters (capillary number, viscosity ratio, water saturation) the oil
is disconnected in the form of ganglia. In [32, 33, 34, 80| a new approach for the
study of two-phase flow processes in porous media on mesoscopic scale, when
ganglion dynamics is the main flow regime, has been developed.

We observe that in the study of flows through porous media, mainly the
transport problems are investigated. The solid component is then obviously un-
deformable.

We proceed to the fourth important approach used in modelling flows through
porous media, both deformable and undeformable, cf. BIELSKI and TELEGA [13],
the books by BOURGEAT et al. [19], CROLLET and EL HATRI [36], HORNUNG
[56], ENE and POLISEVSKI [44], PANFILOV [71], SANCHEZ-PALENCIA [75]. For
instance, it is now clear that Darcy’s law and its extensions can be derived by us-
ing homogenization methods, see also Sec.5 of the present paper. A characteristic
feature of various homogenization approaches is that a small parameter € > 0
is introduced. The homogenization procedure consists in a formal (the method
of multiple scales) or rigorous passage with £ to zero (G- and H-convergence,
I-convergence, two-scale convergence), see the Appendix A by ALLAIRE to the
book [56].

Surprisingly, the author of a comprehensive paper [18] who pursued the de-
velopments of the porous media theory from the middle of the 18th century
until 1996, mentioned no contribution to this theory by rapidly developing field
of homogenization.

From the physical viewpoint one can distinguish two classes of homogeniza-
tion problem related to two-phase flows, similarly to one-phase flows.

The first class comprises problems where micro-macro approach is used. Then
one arrives at Darcy’s law and its generalizations, cf. AURIAULT - SANCHEZ-
PALENCIA [7,8], BERNABE [12], ENE and POLISEVSKI [44], FIRDAOUSS et al.
[45], HORNUNG [56], MARUSIC - PALOKA [63] and MIKELIC [64]. In the case
of elastic porous media one additionally obtains Biot-type equations, cf. AURI-
AULT et al. [6], BIELSK! et al. [14,15,16], BURRIDGE and KELLER [29], and the
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references therein. The second class comprises a meso-macro approach, where
the quantities like porosity, permeability and dispersion are assumed to be mi-
croperiodic, cf. BOURGEAT [20,21], BOURGEAT and Hipami 23], BOURGEAT
and MIKELIC [27], BOURGEAT and PANFILOV [22], BOURGEAT et al. [25, 26,
MIKELIC [64]. MIKELIC and PAOLI [65] derived the Buckley-Leverett system for
a two-phase immiscible incompressible flow through a thin slab, starting from
the incompressible Navier-Stokes system governing a flow of two fluids separated
by a free boundary and disregarding surface tension.

In what concerns homogenization of two-phase flow through randomly het-
erogeneous media, only two papers are known to us [9,25], cf. also [24,31]. In
these papers the authors considered incompressible two-phase flow in hetero-
geneous reservoirs with randomly distributed inhomogeneities, that is in media
with permeability and porosity being stationary random fields.

3. Notations and basic relations

We assume that the porous skeleton reveals a micro-periodic structure. The
basic cell Y has a form of a cube and consists of three parts (three disjoint open
sets): Ys,Y4 and Yp, where the subscript S denotes the solid part, and A
and B stand for the fluid parts. We also set Y, =Y 4UYpUT 45, where I'4p
stands for the interface between Y4 and Yp.

The interface between the sets Yz and Yg is denoted by I'. We observe that the
surface of liquid-liquid contact T'4p, is in general unknown, and 'ag = I'ag(t).

The porous medium is identified with a bounded set @ C R3, where Q is
a sufficiently regular domain. The domain  is assumed to possess an €Y -
periodic structure N =Q5007 where Qf denotes the part occupied by the
liquid, and Q5 = Q\Q7. We have Q=0U0,u05.

A small pﬂ.ld.l‘nctel € (0 < € < 1) characterizes the microstructure of the
porous medium considered. Namely € = [/L, and [, L are typical length scales
associated with the dimension of micropores and with length of waves contribut-
ing to the considered transient phenomenon. To obtain the macroscopic relation-
ships (homogenization) we pass with € to zero.

The subsets 25, Q% and Qf correspond to the p(uts of  occ up:ed by the solid
and two 1mn11sc1ble ﬂmds We have 0 = Q5U, UG, “p = 005 N0NG.
We set

(B1) ()= ﬁf(-)dy, = ﬁf{-)dy, o =5 5, 4;B.
b ') Ya

Note that the surfaces of the solid phase and the A-liquid and B-liquid phases
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are given by
¥ =TUREs, ¥x=TUT 1pUPy, d¥p=TULlspl0Ps and Y =TUPF;.

Here Pg, P4, Pp and P;, denote the cross-sections of the Yg,Y4,Yg and Y
with the faces of the basic cell Y. Obviously we have =T, 4UTg.

The porosity f is defined as the volume fraction of the liquid in the considered
solid-liquid medinum. We have

|Yal 1Yl
[ 4
We note that f4 and fg depend on time. By n® we denote the exterior unit
normal to €},. The summation convention is used, unless otherwise stated.

(3.2) fa= f=fa+fB= l=fs+ fa+f=fs+f.

4. Basic equations for the motion of porous medium with biphasic
fluid
Let u = u(x,t) denote the displacement field in the solid, v” vA
and v® = VB(X t) denote the velocity in the liquids A and B, p*
and pP = pB(x, f) bmng the IC‘SpBLthO pressures in both fluid pha.se‘i
Further, let p®, p* and p? denote the densities of phases S, A and B. We
assume that these quantities do not exhibit the microstructure. The viscosities
of both fluids A and B are denoted by 73{},,‘3 and ng-”m, respectively.
For a fixed € > 0 all the relevant quantities that exhihit the mi(‘rostl ucture
are denoted with the superscript e. The fields u®, vA¢, vB¢ pA¢ and pP* satisfy
the following equations:

¥ S .
poif = O, (afjmn(?rnufn) + I in Qg,

x,t)
r

(
p*(x,1)

profe =8, (—pA€5sj + 62??{;,57“16%9,’:‘5) +FA  in Qy,
(4.1) 9: v =0 in 4,
pPoe = Oz ('pBE‘sﬁ + 52ﬂgfmf>‘x,. 'Urﬁs) + FP in Qp,

&hvPf=0 in Qp.

On the known solid-liquid interface I'* and on the unknown liquid-liquid inter-
face I'yp the jump conditions are
[s J]] nj =0 v{|a = 4fls v2¢|p =1uf|ls on I,

(4.2) :
[(= 7% + e*ntjmndenvi) | | ms=eoHgn;  [0f1=0 on Tip,
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where
E ¢ £ - €
45 jmn Oz, Um in Q%,
& o A 2k i
(43) S:’j = N =P Eﬁij' il Ezni}f:mal‘nvﬁf 1n in'f
B 2.Be Be : 3
—P Eéij +e nijmnaa"-'n U m QB'

Here, o denotes the coefficient of surface tension and H; is the curvature

tensor of the surface I'y5. In Eqgs. (4.1)24 and (4.2)4 the following rescaling is
introduced, cf. Appendix B,

€ 2 &
Mijmn ™ € Mhjmn and o~ €0

The following interpretation can be ascribed to the quantity H = (H;;). We
perform the decomposition in normal and tangential parts as follows:

ocHn = cH,n + oH,,

where

H, = Hijnin; = H,

and
H, = Hn — Hyn.

We assume that
1 do do

O’HT =0’;‘§;T= a"f.

According to the method of two-scale asymptotic expansions, we assume the
following expansions for the scalar field p® and vector field u®, cf. [56,57],

p® = O (x,y,t) +ep*M(x,y,t) + e2p*P (x,y,t) + ...
(4.4) y =x/e, (e = A, B)

(0 1) (2)
uf = u; ](x,y, t) + sui (x,y,1) + Ezuz- (x,y,t) + ... y = x/e,

as well as similar expansions for vA® and vBe.
The initial conditions are specified by

(4.5) v*(z,0)=0 in 02, a=A4,8; v(z0 =0, a%(z0) =0 n Q.
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5. Results of homogenization

More detailed analysis related to the homogenization procedure is performed
in Appendix A. In the present section we are going to present the final results.

The analysis of terms of the order 2 carried out in Appendix A yields, cf.
(A.16),
(5.1) ul? = w9 (x,1),

and from (A.19) we get

(5.2) pA0) = pBO) = (0 — HO)(x 1) for x € Q.
Consequently, we obtain, cf.(A.9),

(5.3) [uijf,m (Bx,, ufg) + 8y, ug))]n}s = —pl@ ¥ on: =Py Uls.
The set of equations (A.17) is satisfied provided that

(54) ull(x,y,t) = AR (x,y,t) 05, ul® (x,t) + Pu(x, (y,£) p¥ (x,t) in Ys

and the functions AS&”’ and P, are Y-periodic solutions to the following local
equations on Yg:

ByJ. [ai-qu + GijmnOy, Agﬂ] =0,
(5.5)
Oy, (Gijnmay,. Pn + 51'5.') =,

By using the expression (5.4) and Eqs.(A.9) we get

(ﬂiqu + aij‘mnayn AL}:Q]) ﬂf =0 on I
(5.6)
(aijn’-“ayﬂ Pm el 5!]) nf = U on | B

5.1. Macroscopic constitutive relations
Applying asymptotic expansions to constitutive relation (4.3), comparing the
terms linked with £° and exploiting (5.2) we get
0 1 :
0 _ Aijmn (az.,“:(rn} G 63;“151(71)) in Ys,

(5.7) ) —
o —pm)é,-j in: ¥Yr. =¥, UYg.
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We observe that according to the definitions of averages (3.1) we have

= (59) = (595 + (SO} + (59 5,
or
o (SF) = (S5)s + (S

Using Eqgs.(5.4) and (5.7) we get

(510) (S(UJ> = ﬂ'i}pqal‘q '“-,g ((aijmnayn Pm)S = f‘sij)?’m)s
where
(5.11) i;pq (G:Jpq + @ijmn0y, Amq))s

The functions A,[ﬂ‘” and P,, have to be determined from the local equations

(5.5) and (5.6).

5.2. Mechanics of porous medium with biphasic liquid
From Eqs. (A.1) and (A.2), by comparing the terms linked with £°, we get
2. (D ¥
+ 9y, [a,-j,m, (8% uﬁ) + Oy, ug))] in Ys,

(5.12)
P Ay A(O) FtA (6x,P[D) G 83;pr(1)) + ayj (??iﬂjmnayuu U::z 0)) in Ya,

. B(0 '
,UBU' © = 'F;EB a0 (a:cip(m + ByipB“)) + 3&"3‘ (ngmnayn”riw)) in Yp.

On the other hand, the terms linked with €' in the interface condition (A.4)
lead to the relations

[a,Jmn (81“‘!).‘. )+By“u(2 )] | ( "(”6 %mnay A(O])

[aijmn (61,1“9;) *+ "'93»&-"“"{2 )] | (P UJU ﬂgmuayu”g(o))“j|ﬁ-

(5.13) A
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Integration of Eq. (5.12); over Y, and (5.12)2 and (5.12)3 over Y4 and Yp
yields

(b= f}PsﬁED) = 6:\:,- (@ijmn (a:rn u$2) + Oy, “511:)))5

/ [a”mn I,.“m B ay“ u?(n))]nj dS in Q,
aYs
Fap? 0N 4 = FaFP — 40,0

(5.14
: e / [—p"mﬁj +nljfﬂndyn (0)}?1_', dS inf,

aYa
. B(0
18020 ")p = fpFP - fp0rp®
/ [—pBU dij + n,JmRBy“vﬁ(O)]nJ— dS inQ.
aYp
Adding Eqs.(5.14), using the interface relations (5.13) and taking into account
Egs. (5.7) and (5.8) we obtain
.. (0 - A0 . B(0
(5.15) (1= 1)p%i” + pA(5 ) 4 + pP (575
0
= 05, (SS) + (1 — f)FS + faF{ + f5FP.
This is the macroscopic equation of motion for the porous medium filled with
the biphasic fluid.
5.3. Flow of biphasic fluid in porous medium

Equation (5.12) yield the following subsystem of equations posed in 2 x Y7,
describing the behaviour of the liquid part of the system:

LA
P30 = B = 0.0 = 0,p"0 + 0y, (i),
(5.16)
pB,&f(O) > 'F;ZB 3 8Iip(0) a pB(l) + ay; (nijmnayn”Bm))

which can be rewritten as

. A0 i)
o P ©) — pA _ A il ) 8,09 — 8,0V + 8, (%may" u,Bw))

Y B 0 - (0
pB ©) FB B 5 ) = 3;‘1’3(0} T ay,-PB(l) + ayj (nijmnaynw‘g{ﬂ))
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or
. A(0 A0 . : 4
pA w; © = q)s' O _ ayip'l[l) + dy;‘ (ﬂfjnma?havr:;(o)):

. B(0 B(0 :
pBw' ( } = QI { J = dyan“) + ayj (n‘gﬂlﬂaﬂuua(ﬂ})

1

(5.18)

Here the relative velocities are defined by

(0)

(5.19) wi @ =0 _ g 20 = o2 4O,

and w; = v;
moreover,

‘I’a{“o} - @;‘{u)(x,t) =FA_ Bx,p(o) pAu[ J‘

@iB“” =070 (x,t) = FE - 8, - pBum)

(5.20)

(0)

Since u;’ = u(o)( ,t), therefore, cf. Eq. (5.1),

Oy w4(0) = Oy, Uy !(U)

and similarly for w,ﬂm) and vmm) Note that in virtue of (A.10), we may write
ﬂgﬂl| = U:‘(U) % onI'y and -&.Eu}| = U;B(OJ| on I'g.

Hence

(5.21) wi0 = and wB® =0 onT.

To satisfy Eqs.(5.18) we set
(5.22) P = 7Oy 24 (y, 1) + 2ROy P (y, 1) + o (v, 1),
5.

pPO) = GAONEA(y, ) + DEOAEB(y, ) + aP(y,1).

The local functions y22(y,t), a®(y,t) etc. are to be found. Here and further
on, no sumination over the capital indices.
Then Eqgs.(5.18), posed in 2 x Y7, , take the form

. A
PO = A0 (5, — 9, 4A4) — §BO)g, 4AB
dy.ef + 9y, (’73' mn Oy wé(o)) :
. B
Bwi ©0) _ (I,B 0 (8im — y.“fm By — @é(ﬂ)ayi73A - ayi“iB

+ay; (ntjmnayan(UJ)

(5.23)
P
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A(0)

These equations are satisfied provided that w and w8 are given by the

following time convolutions:

t

» i

wAl® = A0(x,y,t) = EK./ 1O (x,7) xfa (¥, 2 — )
0

+270x,7) Xna (v, = 7) | dr + B (3, 1),
(5.24)

1

t
B(0 A BA
()—' QB/(IJHO))(T Xms(yat_T)
0

w3® = B0 (x y,1) =

+0PO (x,7) X2 (y,t = 7)|dr + BR(y. 1)
e SO0 _ 0B ) af _ _aff ) ;
The functions yn° = Yo' (¥,t) and xms = xms(¥,t), a,8 € {A,B} are Y-

periodic solutions to the following local problems, cf. the last subsection of Ap-
pendix A,

, d
p dt X:s (yx f'} S ( is — dy. A(ya ) = dy; (numnavn X!?z‘:) =0
y € Ya x(0,7),
A i AB{ t o) AB t) ) A ) AB =0
P din's Y, ) g iTs (Ys - Y nijmn yn Xons | =

y€ Ya x (OsT)»

(5.25) ,
@
0% ZXEA,0) + 8P 1) — By, (WBmndhnxia ) =0
y € Yp x (0,T),
; d . :
pH axfiﬁ(y,“ = (553 o ay:'YsBB(th)) o dy; (ngmnd.‘,-‘nz ms) =0
Y€ Yp
axe?
(5.26) -ﬂ =1 where a,8 = A, B.
Ay

The interface conditions completing Eqs. (5.25), (5.26) are given by formulae
(A.23) and (A.27). After averaging of (5.24) we get
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6 (), + (u0),

1

PA
0

1]
tI)" (%, T) X5 (v, t )+@f(xaT)X£B(y*t"T)]dT>A
t
+ (iBf [@f(xa gt — 1)+ 85 (70 (it )] dT>B
0

p
¢ t
& (0]6;“(3;,t)fit>A i (0/513(?"’”dt>5

The functions B* are solutions to Eqs. (A.24)-(A.27). In more elaborate models
of two-phase flows comprising surface tension on the interface fluid-solid the last
two integral vanish. After appropriate substitutions we have finally

t
(528) ( {0 L_u / X334(ys — g Uw) d:l:;p(u})(xat_:r]
0
AB B _ _B:(0)\ _ (0) =
+x42(y,7) (FP - pPu) - 8,9 ) (x,t = 7)] dr)
+</ [XBA, ) (P - p*il) - 0,0 (x,t — 7)

+xB8(y,r) (FE - PBﬁ(sU)) n Bmapw))("’ T T)] dT)s

//31 Uyt dt /ﬁB (y,t dt>

This is the Darcy equation describing the flow of biphasic liquid in a porous
deformable body.

5.4. Consolidation equation

At €@ Eq. (A.3) yields for the Y, part of the elementary cube

(5.29) 8:, 070 (x,y,1) + 8,0V (x,y,1) = 0,
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and similarly for the Yp part. Hence, after averaging,

Ou (0 Pha = (@ Ma and 8074 = —(8,07 M)
or
A0 1 Al
8::;‘(”:‘{ )(x,y,t))A = —m / v, ( }(x y,t) AdS,
Yy
(5.30) '
9z, B{D)(x y,t)) —""}7[ vf(”(x Y,t) nPds
oY
Hence

(5.31) 8, [( 2Oy, 1) + 070 (x, yJ))J

:ﬁ[ /v"“) Alx,y, t)dS +/ B nB(x,y, )dS‘]u

81",1 3}’5
In virtue of (A.10) and (A.11) we have also
A0 B(0 I g
00, [( Vv, ta + (03,0 | = [ 6y, nias.
aYs
Since, from the definition of averages (3.1)
Oy, ) + (07O, y, )8 = 0 (x5, D),
therefore by (5.4) we have
(5.32) Oy ( (U)> d d A(I’Q)( t) o (0)(x ¢
. g\ L= i‘ﬂ Pl ke X, Y,t) Oz, Up (x,1)
aYs
+Pi(x, 1) pO (x, z)] nSdA.

As result, after use of the divergence theorem, we obtain

(5.33) O, (V)

d

= (0 ABP (7, 1)) 02, ul® 1) + (8 Pm(x,8)) PO, )]

where <U§0}>L is given by the Darcy law (5. 28). This is the result of Biot's type
for nonstationary processes of seepage of incompressible biphasic liquid, identical
with those for monophasic flow, cf. [14].
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6. Justification of the asymptotic analysis by the two-scale conver-
gence

The aim of this section is to rigorously justify the results obtained by the
formal method of two-scale asymptotic expansions. To this end, we exploit the
notion of the two-scale convergence, cf. [4, 69, 70]. Consider the following system
of equations:

psi(z,t) = div (a®e(u®(z,t))) + F(z,t)  in Q% x (0,7),
pave(z,t) = pae’Avy(z,t) — Vp5i(z,t) + FA(z,t) in Q4 x (0,7T),
BV (z,t) = ppe’Aviy(z,t) — Vpi(z,t) + FB(z,t) in Qp x (0,T),
divvy =0 in Q5 x (0,T),
(6.1) divvg =0 in Q% x(0,7),
a‘e(u’)n = (—pj1 +e’e(vh))n on I'§p x (0,7),
[-p°1 + e’pe(ve))apn = cHn onI'%p x (0,T),
u®(z,t) = vi(z,t) onT%g x (0,7),

val(z,t) = vi(z,t) onTjp x(0,T),

and the initial conditions

(6.2) u®(z,0) = ug(z) inQg,
(6.3) u®(z,0) = ui(z) in NE,
(6.4) vi{z,0) = w5z} inG% a=4,B.

We assume here that the function H*(z) = H(%) is an eY-periodic function
defined on the surface I'} 5. We can then formulate the following theorem.

THEOREM. The sequence {u®,v%, vy, 0%, pile>0 of solutions of the system
(6.1)-( 6.12) s two-scale convergent to the solution

Oz, 1), v (2,9, 8), v (z,4,1), 0D (2, ), PP (2, 1))
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of the two-scale homogenized problem
(63) (1=Dp%i +p vy, + 07 (5 )y,

=divz/[ a(V, u()+V u(” dy /VypA (z,y,t)dy

Fg

Ys
- [ Vyp (2,9, t) dy — faVapl) (2,t), — f5Vaply (, 1)
+ (1 = f)FS(z,t) + faFA(z,t) + fpFZ(z,t) in Qx (0,T),
(6.6) divy[a(V,ul® + V,u) =0 in Q x Y5 x (0,T),

(6.7) p*Vi(2.,t) = pad v (z,y,1)

— Vo' (z,t) — Vyps) (2, y,t) + FA(z,t) in Q@ x Y4 x (0,T),

(6.8) psvg)(r, y,t) = uBAVEr?) (z,y,t) — Vzp(;?}(r, t)

I,,;DB)(M.'-: y,t) + FB(z,t) in Q x Yg x (0,T),

(6.9) divyvl? =0 in Q x Y, x (0,7),

(6.10) divyv® =0 in @ x Yz x (0,T),

(6.11) divz/vf}(z,r,t)m = /divyv(l)zl(x,'t,t),
Ya Ya

(6.12) divr/ v }(z y, t)dy = /dwva (z,9.t),
Yg

(6.13) [PP]1=0 on Tupx(0,T),

(6.14) [[p(l)l + Q,ue[v(o})]]n =ocHMn on Dap x (0, T
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Sketch of the proof. By astandard procedure we show that there exists
a constant ¢ > 0 independent of € such that

|[UE||H1(Q)3 < e, [[v¥llL2p < ¢ ]| VVE “L'—’{Q,JEN) <e¢

where EV stands for the space of N x N matrices. For the definitions and prop-
erties of the Lebesgue and Sobolev spaces the reader is referred to Apams [1].
The two-scale limits of these sequences satisty the following properties, cf. [4],

divyv@4(z,9,t) =0 in  QxYgx(0,T),

divev (@, y,t) + divy vy (2, y,t) = 0 in Q x Y4 x (0,7),
Vyuw){;n,z SE =i or ul® = u(“](:::, t), t€ (0,T), z €.

Similar equation is satisfied by the velocity vg in (0,T) x Q x Yg. The next
conclusion, deduced from the two-scaled convergence, is that

Vil (@) =0, or pY = (z,1) (2,8) € 2 % (0, 7).

Similarly, for the pressure p(fg) we write

Vyp(g}(x, ¥4 =0, or p(g) = ;.')E.?)[;c,t) (z,2) eQx (0, T).

Let X%, X%, X be the characteristic functions and let ¢ = ¢(t) € C*°(0,T) be
such that ¢(0) = ¢(T") = 0. We also take a test function ®°(z) such that

$°(z) = () +sa(z,§)'

where 1 € D(R2)? and 9(z,y) € D[ Cper(Y)]?. Now the proof, rather lengthy, is
an extension of the proof derived in [14] for a one-phase flow. However, difficulties
which arise are due to the fact that interface I' 5 depends on time. We hope to
present a detailed proof elsewhere.

7. Passage to the stationary case

To perform this passage we shall first reformulate the local problems and
Darcy’s law. To this end we set: x®? = 1i)a’6, a, B € {A, B}, cf. [14],

ProBLEM P,

Find the functions x*? and y4#®)such that

o x4 B) (y, 1) = A Ay x4 8 (y, 1) — VA4 E) (y, t) + e, in Y x (0,T),
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o %P ¥ (y, £) = nA A, xAB¥) (y, t) — VAABR)(y,2), in Ya x (0,T),
oBxBE®) (y,) = nB AL xBE®) (y,t) — VyPE® (y,t) + e, in Y5 x (0,T),

oBxBAR) (g, 8) = nB AL xBA®) (y,t) — V4BA®) (g, 1), in Yp x (0,T),

divipA4®) = divpABK) = 0, in Y, x (0,7);

divipPB*) = divpBA*k) =0, in Y x (0,7);
nAeyNJAA{k))n = ,YAA{k]n = nBey(wﬂA{k])n . TBA(I:)“‘ on LAz,
T}Aey(wAB(k))n - ,}_AB{k]n - nBey(u)BB(k))n ,TBB(!:) on Tag,

PAAK) _ ll,BA(k} =0, pABK) _ Q,BBU‘} =0 on I'ag.

Moreover, homogeneous initial conditions and no-slip condition on the fluid-
solid interface are assumed. Let us pass to the formulation of the second local
problem.

LocAL PROBLEM Ps
Find functions B¢ and 7 such that

"B = N%AyyB* — V%, inY, x(0,7),
div,f* =0 in ¥, x (0,7),
BA—BB =0 on Tyus,

(nAey(BA) = wAI)n = (T;Bey(BB} = -.rrBI]n +oHn, on I'4p,

This system is completed by the homogeneous initial conditions. Then Darcy’s
law takes the form, cf. (5.27), where instead of x we write . This law can be
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written as follows:

t
- AA(k " Ap™0)
(1.1) 7% = l/(w By 2 - 48 - F—)(o,t - 5)ds
0

B(0)

t
1 : AB(k J
4o [ (6" P w9) (B8 - P8 - T —)(at - o) ds
0 >

8zk

t
1 - BB(k) B B.0 020
+ 5 [ (97 P w9 (B - i - Lot - 5)ds
0

L
1 . BA(k) L ,1..(0;_(');;"‘(”) :
+ o5 [ (B (B - o - )@t - 5)ds
0

t

/<B (y,t —s) d3+/ y,t-—.5> ds.

0 0

It may be rewritten as follows:

- [{[3o ),
0

BAK),, A0 ot
+g ( }) ] 9 Wz, t—s) p ds

t
1 4B(k)
_A ’3}>A
0

1 /. BBk ; B(0)
+:Q_B<1]JB ( {y’5)>3] (FkB - Qﬁuiﬂ) . 8§zk )(z,t—s)}ds

t

t
+[ y,t+3 ds+[ y,t—s}
0

0

The passage to the stationary case is enforced by assuming that the forcing terms
FA — o410 — vpA© and FB — pBa) — vpBO) gre time-independent. Next we

http://rcin.org.pl



352 W. BieLskl, J. J. TELEGA and R. WoJINAR

have to pass with time to infinity, cf. (BIELSKI and TELEGA [13]), HEYWOOD
[55]. Consequently, since i(?) = 0 we get

i
(7.3) (¥0), = {/ [.‘_)i,,‘(li)"“m](y,8)>_‘l
0
. QLB<¢BAU€) (y‘s)>BJ ds} (FLA i 3,’;:10)) (.'1:)

t
f[ P00y + B[< BB(k}{y‘S)>B] as)
0
t

t
(FkB - 6;;:10)) (3:) + / <WA(y,t - s))A ds + / <WB(y,t - s))B ds.
0 0

Consider the first integral in the r.h.s of the last relation. We have

t T
A (¢ — 5, y)
A — — L - ]
/AU t s ds 9,1|Y|/ / s ds) e;dy
0 0

t .
1 MBAC (¢ — 5 4)
ds ) - e;dy.
+931Y|/(/ s 5) i
Ys 0

Here AA is a part of the permeability tensor that corresponds to the forcing term
V 220, ie,

t
(vala = [ Ay(t = 5)(F4 = VO as.
0

Performing the integration by parts in Eq. (7.4) we get

t
; 4 |
(7.5) /A-f‘.:—s ds = / AAG) (¢ y) - e;d

it :
98|Y| /; l]JBA(t)(t: y)- e dy.
B
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Letting t to tend to infinity we find

f—00

i
(7.6) lim/A{}(t—s)ds
0

AA 1} S B/i{f. A
gAlYl/lb (y) -ejdy + |Y|ftp ) -ejdy = K.

Similarly, the second integral on the r.h.s. of Eq. (7.3) yields

t
lim /A;-’}(t —s)ds
t—o0
0

The third integral on the r.h.s. of Eq. (7.3) gives

t
[l . Amf / =)y

= i [ 0) + BA(y,)] dy

By the initial condition we write B(y,0) = 0. Moreover, lim;_, WA(y, t) exists.
We denote it by B2 (y), i.e.,.

Jim B4 (y, 1) = B, (y).

Finally, Darcy’s law for the stationary two-phase flow assumes the following form

apB(O)
B(pB _
) + K5 (F; 7y

.
s == [B 1
vl Jy, B Wt g ), B

This law is similar to the one derived in [74] for two-phase flow through unde-
formable porous medium provided that our symbols 1 are indentified with V
in [74] and B, with W. The local problems for the determination of functions
V, W, etc., are specified and studied in [74].

o apA0)
J oz;
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8. An example

As an example we consider one-dimensional stationary flow of two-phase
liquid through a bundle of tubes in the direction z in the cylindrical coordinate
system. We assume that the local problem has a cylindrical symmetry. Hence
only the velocity in the z-direction does not vanish. For the sake of simplicity
we assume that the fluid A occupies the pipe of radius R4 and is surrounded
by the fluid B which forms a ring of the external radius Rp. Let us pass to the
study of local problems derived from (7.6). For simplicity we wrrite x*? instead
of ng; obviously now x® = *?,

LOCAL PROBLEM P,

L (oh Gy ar )
dr

=———=4+1=0, for 0 <r < Ry,
dz

1d [ dyBA dnBA
= (,. Xdr(r}) = Wdz(z) =0, for R4 <r < Rp.

The interface conditions are now specified by

dX*’ll dXBA
AA _ . BA =
82) X Ra)=x""(Ba)y G4~ o (Ba) =ns 0

yA4 =484 for r = Ry,

(Ra), x*(RB) =0

Similar problems have to be formulated for x#8, 48,488 and 448

The solution ofproblemP, is given by

¥ ) = 3 (r* — R%) + iR‘i L <r< Ry
4 0 2ng Rp
(8.3)
BA 2
T‘=—R In—, for R4 <r < Rp.
% r) B RB A B

The local functions 22 and x“2 are specified by

X*P(r) = o~ (Fh — R}) - 5 —R4In 4, £ 0<r < Ry,
nB 2?? Rp
(8.4) ]
BB e = o 2 i e :
x 2(r) 4??3(1* Rg) — R InR . X Rs<r<Rp
LOCAL PROBLEM pg
Now B* = (0,0, 4%(r)) and we have
dp’(r) dn(z)
. — — < 2
(8.5) A dr( = = 0, for0<r <Ry
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Similarly A2 is a solution to

dp®(r) dr®(2)
e —— = <
(8.6) 7}3 oy ( Fa 5 0, for R4 <r<Rp.
The boundary and interface conditions are:
dpA dpB
B4 (Ra) = BP(Ra), ’?Adi(RA) = ﬂB‘dﬂ_(RA) BE(Rp) =0,
(8.7) o
74 =B +R_A forr = Rjy.
The solution of the local problem Pj is trivial,
(8.8) BA(r) = g%(r) =0.

According to formula (7.6) Darcy’s law assumes now the form

<U(0}>L_fﬁ={8ﬂA|Y|R 21“3|Y|Rz(‘l32 Ri)(%’I“RB)}(FA O3

apB[[])
+ (R2—R2) (FF - ).

8 BIYf ¥ O0z3
We observe that a similar stationary flow was investigated by ZANOTTI and
CARBONELL [83]. However, an explicit form of the Darcy law was not given by
these authors. Moreover, homogenization was not used.

9. Final remarks

Essential feature of viscous flows through microperiodic porous media studied
in the present paper and in [14,15] is a linear elastic solid phase and Stokesian
fluids. A challenging problem is to derive macroscopic flow for Navier-Stokes or
other nonlinear fluids and more involved solid phases. We think of hyperelastic
and inelastic phases. For instance, one can think of the solid phase made of
elastic Ogden’s material or elastic-plastic phases. Also, thermal flows are worth
of examination.

Another open problem is to extend our results to the case of porous me-
dia with random distribution of micropores, cf. Sec.2 of our paper for a brief
discussion of simpler problems.

Darcy’s law for nonstationary flows is nonlocal in time, also in the case of
one-phase flow, cf. [14, 15]. Such a law is complicated and in general not directly
applicable. Hence the need for elaboration of reliable approximate methods, the
problem well known in micromechanics.
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Appendix A. Asymptotic analysis

Equations of motion(4.1); 2 and (4.1)3 after substitution of expansions (4.4)
take the form

(A.1) p [ m(x y,t) +£ﬂ£”(x,y,t) +£2u( )(x,y,t) v }

0 1 o d 1 8
L e i = S e (0)
(33?3‘ i € 33}3') {%mn (&cn i E(’Jyn) [ (x,y.1)

+€u£,lt}(x, vy, t) + sgugﬁ)(x‘y, t) + ]} -+ Ff,

(A.2) pA [ﬁfto](x,y, t) + €v; (1](x,y,t) + 621}1'-“2}():,)/, t) + ]

e .t 3 A(0) A1)

5.7 BN T
-I-Egp’“?)(x,y,t} = o ] (5115,' = 52‘1?;-},,1,1 (8_.1:,,_- + ;é;:) [’IJm(D} (x,y,t)

+eviV(x,y,t) + 223 (x,y,1) ]} + F,
and

(13 (o + 150 ) [1 0.0

+51Jf‘(1)(x,y, t) + 521;;“2) (x,y,t) + ] = ).
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Similar relations held for v?, only the index A should be replaced by B. The
interface conditions (4.2) read

0 1 &
o o8 (0)
(A-4) Qijmn (a:{:u =+ X 6!}1;) [Um (x=Y=t)

—I—Eu,[,,i) (x,y,t) + 6211.5,21) (x,y,1) + ] n;

= {— [p"“w](x,y, t) + Ep“m](x v, t) 4 g* A{z}(x,y,t) B ] dij

- 0 1 0
e2pA . A(0)
+ € Nijmn (31‘“ 1= ann) [ (x,y,t)

+evia®(x,y,1) + e ""“}(x,y,tH---]}ﬂj on T,

( WO 4 eal) 424 4 )| A ( AD) | A 4 2,4) )l
S A
on ['4
(A.5)
(ﬁgo) +Eu( }+E‘)'u(2) #=3 )Iq = (U,-Bw] +5”;:Bm +52""a‘8(2) + )‘B
onl'p

(A.6) (1}}4(0) - E‘U:‘“) + 520;‘(2) s ) ’A

= (070 + 0D 4 27 4. ) IB on Tpp
and
(A7) {— [p"”m(x v, t) +ep?V(x,y,t) +2p*® (x,y,t) + ] dij

A1)

l(ll} (e, ¥, ) +ev  (x, v, t)

2.4
ol f i
+ naJmn (()J}n € 8%;)

+e202 @ (x,y,t) + .. ]}nJ { [me) x,y,t) + ep®?V(x,y,1)

) [vﬂ{{” (x,¥,1)

d
+62p13(2)(x y,t) + .. ]613 sloete n,j.mn (dT e
n T
+

-i‘E‘ufl(l)(x,y, t) + 5303{2) (x,y,t) ]}nj. +eoHijn; onT4p.
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Analysis of terms of different orders of £ in equations at interfaces
From the interface condition (A.4) we find that at e~ appears the term
(A.8) a,-jmnayuu,(,g) nj =0 on I

while the terms linked with £° give

[""i}'mn (aznua(rg) i 33:,.“%})]71? = —pAm} nf on. Ly,

(A.9)
[a“]mn (82" U‘E!ol) + ayuuLl;))]flf = _pB(D} n;g on FB.

Comparing the terms at different orders of ¢ in (A.5) we get

U;i(ﬂ)|

£, -

.(0)| __, B(0) (3
t [sﬂv" 'B’ ui)

(1) _ A1) -(2)] _ ,A((2) .
N u, |s_v‘ |A, 1, |S“U* ‘A etc. onl 4,

(A.10)

o Bt1)| -mk l 3(21|
= y; : - =, ete. onT'p,
S ¥ B’ ks S L B b

and similarly in (A.6)

A(0)|  _ . B(0) A _ . B() A@Q)| _ B2
(A.11) w; }|A—vi ’B v; ’_4-vi( |B v; |l‘l—v‘- ‘B ete. on I 4.

The terms at €° in (A.7) give

(A.12) p'Ox,y,t) =p?O(x,y,t)  onTap
and at &'

(A13) - [pA“}(x,y, t)di; + n;?mn Bynv;im)(x, y, t)] n;

=- [PB“)(X, ¥, 8)8ij + Nfima Aynval®) (KJ,U] nj + oHiymn; onT4p.

2

Analysis of terms of order £ ° in equations of motion

Now we get
(A.14) 3y, [asimnynuld)] =0.
Multiplying (A.14) by ugo) and integrating by parts we get

(A.15) / at-jmay“uﬁﬂJuE”’njdA - /a,-jmn(i?yj uEU))Bynugg)dy =0.
8Ys Ys
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By virtue of the interface condition (A.8), the surface integral in the last equation
vanishes and the rest implies, by positive definiteness of @;jmn, that u depends
on x and ¢ only

(A.16) HEU} = uw} (x,t)
but does not depend on y.

Analysis of terms of order ¢! in equations of motion

From Eq. (A.1) we get the following relation for x € Q and y € Yy :
(A.17) 8, [amn (anum) + a,,,nuﬂl)] =i

In turn, Eq. (A.2) for the fluid A and its counterpart for the fluid B give for
x€Qand yeYy

(A.18) 30" =0 ye Yy and 9,9°0=0 ye Vs
Hence, taking account of (A.12) we obtain

(A.19) pA0 = pBO) = 50 = O (x ¢)  for x € Q.

The incompressibility equation (A.3) yields

(A.20) 8y,.v:‘(0) =0 y€ Yy and By‘vf(o) = YE Y

what means that the fields v*(® and vP(©) are divergence-free with respect to
for y € Y4 and y € Yp, respectively.

Local function for the flow problem

From (5.24) we get by the time differentiation

t
. 1
wp® = —4/ xms(yat—ﬂ
o
0
B d  aB 24
+07(x,7) = Xk (v,t = 7)]dr + BA(, ),

(A.21)

1

t
,wB(O B/q)AxT d Xms(yst—f)
0

=]

d ;
+08(x,7) = XBE(y,t = 7)]dr + By, ),
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where the following zero initial conditions for local functions were used in agree-
ment with the initial condition (5.21) for the relative velocities w# and w2,

(A22) Xma(¥:0) = 0, Xme(¥:0) = 0, Xpms (¥,0) = 0, Xpms (¥,0) = 0.
Applying (5.24) to the interface condition (A.11) we find on T'yp

X;ja‘:: (Y1 t) |;l

= x'ms yr IB!
(A.23) X2 (¥, t)a = xme(y.t)lB,
By, t)la = BE(y,t)ls.

Substituting (A.21) and (5.22) we obtain, apart from the system (5.25), the
following local equations

oA LBy, + 00t (1,0) — By, (nhmndaBR) =0 yEYa,

dt
(A.24)

d
- '&Eﬁ!y(yl ) + dy. al (y! t) y, (nzgmnaynﬁf;) — 0 y = YB'

Substituting (5.24) into (A.20) with taking into account the definitions (5.19)
and the propriety (A.16), we obtain

ay,- X&A(ys t) =0, 6?;,' X:};B(Y= t) =0,

(A.25) s ”
Oyixik (¥,t) =0, Oy Xk (y,t) =0.

and

(A.26) 8, B82(y,t) =0,  8,8B(y,t)=0.

Finally, substitution of (5.22) and (5.24) into (A.13) yields the following condi-
tions on the interface I'ap :
(A.27)

(=4 (7)8:508 mnByn Xoms (£ — 7)] il 4

= [=PA(T) 6iinE mnOy. Xoa (t — 7)] 1] B,
[=72B(7) 8:i03mnOya Xime (¢ — T)] mjla

= [ 'T: T}‘su??zjmnayn)(msﬁ(t Ei "")] n;l s,
(=0 (7)8i1mnOyn B (t — 7)) 1jla

= [—QP(T)ﬁijﬂgmuaynﬁfE(t =T} GHfJ] “ji:\'
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Appendix B. Scalling

According to Auriault et al. [6], one considers a relation Q between the pres-
sure term \7p and the viscosity term: n A v

| v pl
InAv|

(B.1) Q=

Those terms should be of the same order in the Stokes equation if the pressure
and viscosity effect were meaningful in considered phenonemon

(B.2) |v p| = O(n & v).

The estimation of the quotient (B.1) may be written as

2 L2
B.3 =l 2B aah=
o eeofd)-of)

Since the pressure changes in the macroscopic scale, we have

= o2
(B.4) vr=0(%).
However, the liquid velocity changes in the pore scale, thus we write
v
(B.5) |n A v|=(9(n£—2).

Hence, instead of (B.3) we obtain

2o 2 - ofrt).
and
p v p v?[? 4

The second scaling o ~ €0 can be proved similarly. To this end we observe that
now of the L.h.s of (4.2), only the first derivative is present.

Acknowledgements

The authors were supported by the State Committee for Scientific Research
(KBN - Poland) through the grant No 6 P04D 039 15. The second and the third
author were also supported through the grant No 8 T11F 017 18.

http://rcin.org.pl



362 W. BIELSKI, J. J. TELEGA and R. WOINAR

References

1

2.

10.

11,

12.

13.

14.

16.

17.

. R. A. Apawms, Sobolev spaces, Academic Press, New York 1975.

P. M. ApLER, J.-F. THOVERT, Real porous media: local geometry and macroscopic prop-
erties, Appl. Mech. Reviews, 51, 537-585, 1998.

G. ALLAIRE, Homogenization of the unsteady Stokes equations in porous media, [in]:
Progress in partial differential equations - calculus of variations, applications, C. BANDLE,
J. BEMELMANS, M. CHIFOT, J. SAINT JEAN PauLIN[Eds.], pp.109-123, Longman 1991.

G.ALLAIRE, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23, 1482-
1518, 1992.

. G. ALLAIRE, S. KOKH, Simulating interfaces in two-phase flows, Preprint, Laboratoire
d’Analyse Numeérique, Université Paris VI, 2000.

. J.-L. Auriavrr, O. LEBaIGUE, G. BoNNET, Dynamics of two itmmiscible fluids flowing
through deformable porous media, Transp. Porous Media, 4, 105-128, 19809.

J.-L. Auriavrt, E. SANcHEZ-PALENCIA, Etude du comportement macroscopique d'un
milieu poreuz saturé déformable, J. de Mécanique, 16, 575-603, 1977.

J. L. AurtavLt, E. SANCHEZ-PALENCIA, Remarques sur la lo1 de Darcy pour les écoule-
ments biphasiques en milieu poreuz, J. de Méc. Théorique et Appl., (Special Issue), pp.
141-156, 1986.

. A. BADEA, A. BoUurGEAT, Homogenization of two-phase flow through randomly hete-
rogeneous porous media, : Mathematical modelling of flow through porous media,
A.P. BourceaT, C. Carasso, S. Lucknaus, A. MikeL¢ [Eds.], pp. 44-58, World
Scientific, Singapore 1995.

J. BEAR, Y. BacuMmar, Introduction to modelling of transport phenomena in porous
media, Kluwer Academic Publishers, Dordrecht 1991.

L.S. BenneTHUM, T. GloRGI, Generalized Forchheimer equation for two-phase flow
based on hybrid mizture thery, Transp. Porous Media, 26, 261-275, 1997.

Y. BERNABE, On the measurement of permeability in anisotropic rocks, in: Fault mechan-
ics and transport properties of rocks, B. Evans and T.- F. WoncG [Eds.|, pp. 147-167,
Academic Press, London 1992.

W. BieLskl, J. J. TELEGA, Effective properties of geomaterials: rocks and porous media,
Publications of the Inst. of Geophys. Pol. Ac. Sci., A — 26(285), Warszawa 1997.

W.R. Bieuskl, J.J. TELEGA, R. WoiNAR, Macroscopic equations for nonstationary
flow of Stokesian fluid through porous elastic skeleton, Arch. Mech., 51, 243-274, 1999.

W. R. BigeLsk1, J. J. TELEGA, R. WoOJNAR, Nonstationary flow of a viscous fluid through
a porous elastic medium: asymptotic analysis and two-scale convergence, Mech. Res.
Comm., 26, 619-628, 1999.

W.R. BieLski, J. J. TELEGA, R. WoINAR, Nonstationary flow of diphasic viscous fluid
through porous deformable medium, Comput. Geosci., 26 [in press|.

S.C. Brair, J. G. BERRYMAN, Permeability and relative permeability in rocks, in: Fault
mechanics and transport properties of rocks, B. Evans and T.-F. Wone [Ed.], pp.169-
186, Academic Press, London 19.

http://rcin.org.pl



NONSTATIONARY TWO-PHASE FLOW ... 363

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

R. pE BoOER Highlights in the historical development of the porous media theory: toward
a consistent macroscopic theory, Appl. Mech. Reviews, 49, 201-262, 1996.

A.P. BourGeaT, C. Carasso, S. Lucknaus, A. MIKELIC [Eds.], Mathematical mod-
elling of flow through porous media, World Scientific, Singapore 1995.

A. BourGeAT, Homogenized behavior of two-phase flows in naturally fractured reservoirs
with uniform fractures distribution, Comput. Meth. Appl. Mech. Eng., 47, 205-216, 1984.

A. BOURGEAT Two-phase flow, in: Homogenization and porous media, U. HORNUNG [Ed].
pp. 95-127, Springer-Verlag, New York 1997.

A. BourGeat, M. PanriLov Effective two-phase flow through highly heterogeneous me-
dia: capillary nonequilbrium effects, Comput. Geosci., 2, 191-215, 1998,

A. BourGeat, A. Hipami, Effective model of two-phase flow in a porous medium made
of different rock types, Applicable Anal., 58, 1-29, 1995.

A. BouRrGeaT, A. MIKELIC, S. WRIGHT, Stochastic two-scale convergence in the mean
and applications, J. Reine Angew. Math., 456, 19-51, 1994,

A. BourGear, S. M. Kozrov, A. MIKELIC, Effective equations of two-phase flow in
random media, Calc. Variations, 3, 385-406, 1995,

A. BOURGEAT, S. LuckHAus, A. MIKELIG, Convergence of the homogenization process
for a double-porosity model af immiscible two-phase flow, STAM J. Math. Anal., 27, 1520-
1543, 1996.

A. BouRrGeAT, A. MIKELIG, Homogenization of two-phase immiscible flow in one-
dimensional porous medium, Asymptotic Anal., 9, 359-380, 1994.

H. BRenNER, D.A. EpwarDS, Macrotransport processes, Butterworth-Heinemann,
Boston 1993.

R. BurrinGe, J. B. KELLER, Poroelasticity derived equations derived from microstruc-
ture, J. Acoust. Soc. Am., 70, 1140-1146, 1981.

G. CHAVENT, J. JAFFRE, 8. JAN-JEGOU, Estimation of relative permeabilities in three-
phase flow in porous media, Inverse Probl., 15, 33-39, 1999.

G. Curistakos, D.T. Hristoruros, X. L1, Multiphase flow in heterogeneous media
from a stochastic differential geometry viewpoint, Water Resources Res., 34, 93-102, 1998.

G.N. CoNSTANTINIDES, A. C. PAYATAKES, A three-dimensional network model for con-
solidated porous media. Basic studies, Chem. Eng. Comm., 81, 55-81, 1989.

G.N. ConSTANTINIDES, A, C. PAYATAKES, Network simulation of steady-state two-phase
flow in consolidated porous media, AIChE J., 42, 369-382, 1996.

G.N. ConsTANTINIDES, A. C. PAYATAKES, Effects of precursor wetting films in immis-
cible displacement through porous media, Transp. Porous Media, 38, 291-317, 2000.

0. Coussy, Mécanique des milieuz poreuz, Editions Technip, Paris 1991.

J.M. CroLeT, M. EL Hatri [Eds.], Recent advances in problems of flow and transport
in porous media, Kluwer Academic Publishers, Dordrecht 1998.

J.H. CusuMaN, The physics of fluids in hierarchical porous media: angstroms to miles,
Kluwer Academic Publishers, Dordrecht 1997.

http://rcin.org.pl



364 W. BieLskI, J. J. TELEGA and R. WOJNAR

38

39.

40.

41.

42,

43.

44,

45.

46.

a7.

48.

49.

50.

52.

3.

54.

. M. DALE, Averaging of relative permeability in composite cores, [in:] The mathematics of
oil recovery [Ed.], P. R. KiNg, pp. 649-683, Clarendon Press, Oxford 1992.

M. DALE, Darcy equations in heterogeneous porous media: interface conditions and
uniqueness of periodic solutions, Working paper from Stavanger College, School of Science
and Technology, 43/1998.

J.T. DarrLey, D. W. RutH, Relative permeabilility analysis of tube bundle models,
Transp. Porous Media, 36, 161-187, 1999.

F. A.L. DULLIEN, Porous media: fluid transport and pore structure, Academic Press, San
Diego 1992.

S. EKRANN, M. DALE, Averaging of relative permeability in heterogeneous reservoirs, in:
The mathematics of oil recovery, P. R. King, pp. 173-198, Clarendon Press, Oxford 1992.

Exkrann, M. DaLe, K. Langaas, J. MYKKELTVEIT, Capilary limit effective two-phase
properties for 3D media, SPE Int., Proc. European 3-D Reservoir Modelling Conf., Sta-
vanger, Norway, 16-17 April 1996, pp. 119-129.

H.I1. Eng, D. PouLisevski, Thermal flow in porous media, D. Reidel Publishing Company,
Dordrecht 1987,

M. Firpaouss, J.-L. GuerMmonD, P. LE QUERE, Nonlinear corrections to Darcy's law
at low Reynolds numbers, J. Fluid Mech., 343, 331-350, 1997

G. Fras, J. C. BenET, Physical approach to averaging theorems on phase interfaces in
a dispersed multiphase medium, Transp. Porous Media, 15, 209-227, 1994.

V. GANESAN, H. BRENNER, A diffuse interface model of two-phase flow in porous media,
Proc. R. Soc. London, A 456, 731-803, 2000.

W. G. GRAY, Elements of a systematic procedure for the derivation of macroscale con-
servation equations for multi-phase flow in porous media,in: Kinetic and continuum the-
ories of granular and porous media,[Eds.| K. HuTTER AND K. WiLMANSKI, pp. 67-129,
Springer-Verlag, Wien-New York 1999.

W.G. Gray, S.M. HassanizaneH, Averaging theorems and averaged equations for
transport of interface properties in mulliphase systems, Int. J. Multiphase Flow, 15, 81-95,
1989.

W. G. Gray, S. M. HAssANIZADEH, Paradozes and realities in unsaturated flow theory,
Water Resources Res., 27, 1847-1854, 1991.

. W.G. Gray, S. M. HassAnNIZADEH, Unsaturated flow theory including interfacial phe-
nomena, Water Resources Res., 27, 1855-1863, 1991.

W.G. Gray, S. M. HASSANIZADEH, Macroscale continuum mechanics for multiphase
porous media flow including phases, interfaces, common lines, and common points, Adv.
Water Resources, 21, 261-281, 1998.

T. HarteEr, T. C.J. YEH, Flow in unsaturated randomn porous media, nonlinear numer-
ical analysis and comparison to analytical stochastic models, Adv. Water Resources, 22,
257-272, 1998.

S. M. Hassanizaped, W. G. GRray, Recent advances in theories of two-phase flow in
porous media, [in:] Fluid transport in porous media, P. pu Pressis[Ed.], pp.105-160,
Computational Mechanics Publications, Southampton 1997.

http://rcin.org.pl



NONSTATIONARY TWO-PHASE FLOW ... 365

60.

61.

62.

63.

G4,

66.

67.

68.

69.

70.

il IF

T2

73.

. J.G. HeEywoob, On convergence to steady state of solutions of parabolic equations in

unbounded domains, J. Diff. Eqs., 20, 336-355, 1978.

. U. HorNuNG |Ed.|, Homogenization and porous media, Springer-Verlag, New York, 1997,

. S. Jemioro, J.J. TELEGA, Modelling hyperelastic behaviour of soft tissues, Part I

Isotropy, Eng. Trans., 2001, in press.

M. Kaviany, Principles of heal transfer in porous media, Springer-Verlag, New York
1991.

. M. Krarczyk, M. Scuurz, E. RANK, Lattice-gas simulations of two-phase flow in porous

media, Comm. Numer. Meth. Eng., 14, 709-717, 1998.

J. Kusik, M. Cieszko, M. KAczZMAREK, Foundations of dynamics of saturated porous
media,in Polish,Biblioteka Mechaniki Stosowanej, Instytut Podstawowych Problemow
Techniki PAN, ZTUREK, Warszawa 2000.

V.G. LevicH, V. S. Kryrov, Surface-tension-driven phenomena, Ann. Rev. Fluid Mech.,
1, 293-316, 1969.

R. W. Lewis, B. A. SCHREFLER, The finite element method in the static and dynamic
deformation and consolidation of porous media, John Wiley&Sons, Chichester 1998.

E. MARUSIGC-PALOKA, A. MIKELIG, A derivation of a nonlinear filtration law including
the inertia effects via homogenization, Nonlinear Anal., 42, 97-137, 2000.

A. MIKELIG, A convergence theoremn for homogenization of two-phase miscible flow
through fractured reservoirs with uniform structure distribution, Applicable Anal., 32,
203-214, 1989.

5. A. MikeLié, L. Paoul, On the derivation of the Buckley-Leverett model from the two

fluid Navier-Stokes equation in a thin domain, Comput. Geosci., 1, 59-83, 1997.

C.T. MiLLer, G. CurisTAKOS, P.T. ImHoFr, J.F.C. McBRriDE, J.A. PEDIT,
J. A. TRANGENSTEIN, Multiphase flow and transport modeling in heterogeneous porous
media: challenges and approaches, Advances in Water Resources, 21, 77-120, 1998.

C.D. MonTEMAGNO, W. G. GRrAY, Phofoluminescent volumetric imaging: A technique
for the ezploration of multiphase flow and transport in porous media, Geoph. Res. Letters,
22, 425-428, 1995.

L. W. MoRrLAaND, A simple constitutive theory for fluid-saturated porous solid, J. Geoph.
Res., 77, 890-900, 1972.

G. NGUETSUNG, A general convergence result for a funectional related to the theory of
homogenization, SIAM J. Math. Anal., 20, 608-623, 1989.

G. NGUETSUNG, Asymplotic analysis for a stiff variational problem arising in mechanics,
STAM J. Math. Anal., 21, 1394-1414, 1990,

M. PanriLov, Macroscale models of flow through highly heterogeneous porous media,
Kluwer Academic Publishers, Dordrecht 2000.

P. pu PLessis|Ed.|, Fluid transport in porous media, Computational Mechanics Publica-
tions, Southampton-Boston 1997.

M. Rubman, One-field equations for two-phase flows, J. Austral. Math. Soc., B39, 149-
170, 1997,

http://rcin.org.pl



366

W. BIELSKI, J. J. TELEGA and R. WOINAR

74.

75.

76.

[

78.

79.

80.

81.

82.

83.

84.

J. SAINT JEAN Pavnin, K. Taous, A generalized Darcy law. Homogenization of a dipha-
sic flow problem in a porous medium, Ric. Mat., 40, 1991, 223-241.

E. SANCHEZ-PALENCIA, Non-homogeneous media and vibration theory, Springer, Berlin
1980.

M. Sauimi, Flow and transport in porous media and fractured rock: from classical methods
to modern approaches, VCH, Weinheim - New York, 1995.

B. R. SimonN, Multiphase poroelastic finite element models for soft tissue structures, Appl.
Mech. Reviews, 45, 191-218, 1992,

L. TuicGen, J. G. BERRYMAN, Mechanics of porous elastic materials containing multi-
phase fluid, Int. J. Eng. Sci., 23, 1203-1214, 1985.

G.C. Tzimas, T. MATSUNRA, D. G. AvRaam, W. VaN pDER BrRuGGHEN, G. N. CoN-
STANTINIDES, A. C. PAYATAKES, The combined effect of the viscosity ratio and the wet-
tability during forced imbibition through nonplanar porous media, J. Colloid Interf. Sci.,
189, 27-36, 1997.

M. 8. VarLavanipes, G. N. ConsTANTINIDES, A.C. PAYATAKES, Mechanistic model of
steady-state two-phase flow in porous media based on ganglion dynamics, Transp. Porous
Media, 30, 267-299, 1998,

S. WHITAKER, The method of volume averaging, Kluwer Academic Publishers, Dordrecht
1999.

L.P. YAriN, G. HETSRONI, Turbulence intensity in dilute two-phase flows, - Part I.
Effect of particle-size distribution on the turbulence of the carrier fluid, Int. J. Multiphase
Flow, 20, 1-15, 1994; Part 2. Temperature fluctuations in particle-laden dilute flows, ibid.,
17-25; Part 3. ibid., 27-44.

F. ZanotTl, R. G. CARBONELL, Development of transport equations for multiphase sys-
tems - I. General developments for two phase systems, Chem. Eng. Sci., 39, 263-278,
1984; II. Application to one-dimensional azi-symmetric flows of two phases, thid., 279-
297; I1II. Application to heat transfer in packed beds, tbid., 299-511.

D. Z. ZuanNG, A. PROSPERETTI, Averaged equations for inviscid disperse two-phase flow,
J. Fluid Mech., 267, 185-219, 1994.

O.C. Zienkiewicz, A.H.C. Cuan, M. Pastor, B.A. SCHREFLER, T. SHiomi,
Computational geomechanies with special reference to earthquake engineering, John Wi-
ley&4Sons, Chichester 1999.

Received March 23, 2001; revised version June 1, 2001.

http://rcin.org.pl



