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THIS PAPER AIMS to present a mathematically consistent formulation of the second
gradient dependence in the constitutive equations for material instability phenomena
in case of finite deformations. Thus the set of fundamental equations of the solid
continuum (the kinematic equations, the Cauchy equations of motion and the consti-
tutive equations) should also be written for finite deformations. Two basic properties
are required: the existence and regular propagation of waves and the generic behavior
at the loss of stability. Firstly, the wave dynamics is studied. To encounter the second
gradient effects, we should use the third order waves here. Secondly, the system of
fundamental equations completed with initial and boundary value conditions forms
a dynamical system. Then, identifying material stability with Lapunov stability of
a state of the continuus body, the loss of stability should be one of the two basic
types of instabilities of dynamical systems: a static or a dynamic bifurcation. These
instability modes should be strictly different for a generic dynamical system.

1. Introduction

IN THE RECENT YEARS, the study of material instability problems received an
increasing interest [8, 13]. However, most of the investigations published dealt
with small deformations and static or quasi-static loading conditions. To perform
works encounter also dynamic effects with high rate loadings we need appropriate
constitutive equations. Such materials were studied by postulating the existence
of a (second order) acceleration wave with finite wave speed [2].

Unfortunately, the constitutive theory based on the second order waves can-
not include such cases of non-locality as the so-called second gradient materials
[16] being widely used for numerical investigations of post-localization. The ef-
fect of inclusion of second gradient terms and the difficulties in dynamic studies
can be described by applying the theory of dynamical systems [5, 6]. Dynamical
systems are widely used for (Lapunov) stability investigations of various cases.
Quite recently we obtained results for the forms of possible constitutive relations
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by combining the acceleration wave dynamics and the theory of dynamical sys-
tems [4].

The aim of the paper is to find constitutive formulation for non-local material
instability problems. The definition of material stability /instability is based on
the Lapunov stability concept of the theory of dynamical systems (see [5] for the
details) for this reason we call it “dynamic material instability”. We assume for
the solid body that a generalized wave exists in the derivative of the acceleration
field [7] and this singular surface propagates forwards and backwards with finite
velocities. From that assumption, the conditions are obtained for the second
order derivatives of the variables of the constitutive equations. Additionally we
assume that the loss of stability should be a generic [1] one in terms of the
theory of dynamical systems [15], which is essential in dealing with instability
problems. There are two main points at this topic. The one is quite practical: a
numerical solution of the material instability problems in non-generic case may
suffer serious technical difficulties (loss of convergence, mesh sensitivity [8] etc.).
The other is of theoretical significance. By modeling physical phenomena we
should obtain a set of equations which is typical (or generic), that is, differs only
a little from the “exact unknown mathematical model”. This modeling concept
is treated in details by FARKAS [10].

All the studies are performed for finite deformations. The resulting consti-
tutive equations are suitable for solving material stability /instability problems
with large deformations.

The second section presents the set of fundamental equations of the solid
continuum at large deformation. It consists of the Cauchy equtions of motion,
the kinematic equation (for large displacements) and the constitutive equations.
Constitutive formulation should satisfy the so-called Axiom of Objectivity, that
is, should be form-invariant under arbitrary rigid motions of the spatial frame
of reference and a constant shift of the origin in time. As a special case, this
requirement includes the invariance under Galilean transformation (see for ex-
ample [9] or [12]). Such physically objective quantities are the Lie derivative of
the stress gradient tensor, the Lie derivative of the (Euler) strain gradient tensor
and the second covariant derivative of the stress and strain tensors.

In the next section, a dynamical wave study of constitutive equations is
applied based on the existence of a third order generalized wave with regular
propagation properties. Here the wave speed equation [2] derived from the fun-
damental equations implies conditions (Wave Dynamical Condition, WDC) for
the existence of the required waves.

In the fourth section, as an application of wave dynamical theory, we perform
a material instability investigation for finite displacements with an appropriate
constitutive equation in uniaxial case. In this section, the wave speed equation
is a scalar third order algebraic equation and should have real nonzero solutions
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[2]. By using dynamical systems theory we should be able to study a generic
behavior (as it is defined in the theory of dynamical systems [5]) at the loss
of stability because of the aforementioned general modeling concept of physical
phenomena. Thus we obtain additional conditions. There are two different ways
for the loss of stability of a dynamical system [15]. These are the so-called static
and dynamic bifurcations and should be strictly different phenomena (Dynamical
Systems Condition, DSC). Thus the system of fundamental equations (especially
the constitutive equation) should meet both the WDC and DSC requirements.

2. The basic equations for large deformation

If we would like to have constitutive equations containing the second (phys-
ically objective) derivatives of the stress and strain tensors, we should need
besides the conventional equations of motion

(2.1) e =i, =
also the equation of motion for the Lie derivative of the stress tensor (3, 7]

(2.2) (Lvt’"’)_ + (t‘""ufz + tk”v;’,)_p Fg* - q“vf; =p (ijk - ﬂ”vf, - i}kv;) :

where
Lyt"? = ik — hsyl — Pk

denotes the Lie derivative of the stress tensor. Here, in (2.1), (2.2) and in all
further equations and expressions, Roman indices run from 1 to 3.
For finite deformation

(2.3) vij = Ly (ai;) ,

where
=Tl e P
Lya;j = ai5 + aipV;; + Apjvs;.

Then the kinematic equation is written for the Lie derivative of the deformation
rate tensor

(2.4) Iy (”ij) = i:i.ij <} aik'ﬂf} = akj?}ﬁ -+ 2('3,;;:'1.!5-
. k k. £ k.2 k. £
+ 20k + Qigvigv;; + kU + 2agkv;jvn-

The notations are: ¢* denotes the body force, p is the mass density, X";’ is the
deformation gradient, g,q, G i1, are metric tensors in the current and the initial
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configurations, v* and 'U’J are velocity and velocity gradient, v;; is the deformation
rate tensor. Cauchy stress tensor is denoted by tP¥, and

aik = % (gix — XX X%Gk1)

denotes the Euler strain tensor, respectively. Semicolon means covariant deriva-
tive and an overdot indicates material time derivative:
i

= — + ukvfk,

ar

where 7 denotes time. Remark that brackets used at the Lie derivative preserve
upper and lower indices as in (2.3); we use them to show clearly for which

variable it is applied. (For example L, (tk’fz) is the Lie derivative of the covariant

derivative of the stress tensor t*? and not the covariant derivative of the Lie
derivative.) Assume that the constitutive equation has the form

(2.5) fa (Lo (%) Lo (@550) s s iem ) = 0,

where a = 1,2,...,6. We use physically objective quantities such as
e the Lie derivative of the stress gradient tensor

Ly (#7) = (%) — 1% ol — 49,08 + im0t

e the Lie derivative of the (Euler) strain gradient tensor,

I =y o o, (el -
Ly (aijk) = (aijk) + agjipvy; + Qig;kVj T QijigVsks

e the second covariant derivative of the stress tensor tk’,’gm s

e the second covariant derivative of the strain a;j.em.

In the set of equations (2.2), (2.4) and (2.5), the number of scalar variables
and equations are the same thus it can be considered the set of fundamental
equations. Remark that the continuity equation for p can also be introduced,
but it is not necessary for the following calculations. Moreover,the dissipation
inequality should also be satisfied

(2.6) $= ptILy(ai;) >0,

where s denotes entropy and pt* is the dissipative part of the stress tensor.
Introducing also the reversible part gt we have

fi= g4 ptil
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and by introducing the elasticity tensor C*7k¢
Dtij = tij - Ci’juakg ;
Thus (2.6) implies

(2.7) t¥ L, (aij) — C"*ayeLy (ai5) > 0.

3. A wave dynamical theory of constitutive equations

As promised in the Introduction, assume that there are jumps in the second
derivatives of stress and strain and in the third derivative of acceleration fields
along surface ¢ (J:‘, 7) =0, that is,

[(#%) ] =7 (1 +v"0n) 1,
(3.1) [(aijik)] = @ij (w4 + ™ 0n) Pk,
[(Uk;q) ] = —1* (4 + v"pn) g
6] =v* (eat+vmen)?,
where jumps are denoted by [ | and ¢y = —“% and @4 = Bﬂ There are no jumps
in other derivatives. The dynamic, kmematlc and constitutive compatibility con-

ditions can be obained by using (3.1).
The wave speed can be expressed as

Pt V' on

Vo orpp’

and the unit normal vector of the wave front reads n, = ——22—.
P Vedowe

The set of the dynamical compatibility conditions are

(3.2) [(Lut“ﬂ)_p] + [(t?”uf‘; + t*’”vfs)_p] + ¢ + g0 — g*vk]

& [p (v“ - v‘v*)]

that is
03 [(2ot) ] + 00 ]+ £ ) =[]
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the kinematic compatibility conditions are (for large displacements)

(34) [Ly (vij)] = [as] + [a:‘k"}ﬁ‘] + [akjiiﬁ] + [%fkvf}

+2dkj*u§ + aikvfevfj + akjv:‘evfi + agkvgvvi- 3
that is
(3.5) [045] = [ai;] + aix [U'}] + ag; [U’i] :
The constitutive compatibility conditions are
(3.6) fa (Lo () + [Lo (¢ )} Ll

. a | v ol v )| o o \Gigie
&
+[Ly (aijie)] , £ + [5’“:3,,;] s Gijiem + [st;em]) -h=0,

where circle over a symbol denotes its value in front of the surface ¢ (z*,7) = 0.
For example, f, is the value of function f in front of the surface ® (-J:*','r] = 0.

By using the set of equations (3. 1), (3.2), (3.4) and (3. 6), we can introduce
kinematic, dynamic and constitutive compatibility conditions for such general-
ized waves |2]|. These conditions lead to the wave propagation equation

Ofa Ofa
(3'?J a(pd [104 + a(pr e 0'
Introducing notations
T, = Ofa giik = __9fa

e, (#7,) °  OLolasn)

kms — afﬁ E:‘jhz s afor
= 1 e 1

equation (3.7) takes the form
— A neny (2 — gik) 15 + (2085 — grj) 1) €

+E"nymany ((2aik — gix) nj + (2ax; — gk;) ”-i)} ¥ =0.
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For v*? # 0, Eq. (3.8) should have a solution, thus the polynomial of matrices
in brackets {...} should have a zero determinant

(39) det {...} = 0.

Ecuation (3.9) is called the wave speed equation which implies Wave Dynamical
Cenditions (WDC) for the existence of the required waves (for details see [2]).
Ttese conditions should be added to (2.7).

By using the dynamical systems theory and assuming a generic behavior (as
it 1s defined in the theory of dynamical systems [5]), at the loss of stability we
obtain additional Dynamical Systems Condition (DSC). Thus in studying the
system of fundamental equations, we should consider (2.7) and both the WDC
and DSC. The next part shows how DSC can be formulated in a uniaxial case.

4. Material instability and dynamical systems

Now we perform a material instability investigation of state SO of the solid
bedy by considering finite displacements in uniaxial case with an appropriate
constitutive equation

{41) L, (t,.‘c) + K\ L, (a.::) + Kﬁt,r: 1 K3a,zz =1{),

where partial derivatives of a function g are denoted by g, = gg, or g, = aT

and coefficients K, K,, K3 are considered to be piecewise constant. Now at S?,
Eq. (2.7) has the form
dayg

(42) (to iy E(IU) g > 0.,

where E denotes the Young modulus, as usual. Then WDC means that the scalar
third-order algebraic equation

(4.3) pc® — pKac? — K1(2a —1)c+ K3(2a—1) =0

should have real nonzero solutions ([2]). Assume that S° is described by values
ag, to, v of the field variables. Then such values should satisfy the system of
fundamental equations formed by (4.1) and the uniaxial forms of (3.2) and
(3.4)

(4.4) V= ;t,:m Q=g —2av;.

Lapunov stability investigates the response of a mechanical system for sufficiently
small perturbations, thus the perturbed quantities ag+Aa, to+At, vg+Aw should

http://rcin.org.pl



326 P. B. BEpa

be substituted into (4.1) and (4.4). Having done the necessary calculations and
by linearizing the set of equations at S, a system of differential equations is
obtained for the perturbations

Vqrr = C1v + Caa gz + C3a + Cyvz + Csv 5z + Ca 2z + Cr0 27,

(4.5)
ar =D+ Dyagy+ Dia+ Dyv 4,

where A is omitted for the sake of simplicity, and the following notations are

used:
2K,

C= _ZUIJ,.‘.."T —= 2“0,::::”[]: Cy = TUO,J:}
2K 2K
Cs = — 0,24, C1 = —agz — Ko,
P P
K 2K K
Cs = ’Ug B + -—lao,CG = ~—§,C7 = 2vg,
P P P

D, = —ag4, D2 = —v9, D3 = —2v0,2, Dy = —2a0 + 1.

Introducing new variables y; = a,y2 = v,y3 = v, and vector y = [y1,y2,y3], a
dynamical system can be added to (4.5) [5]

9 H, H, 0
o Hs H, Hs

where operators H) = Dga‘% + D3, Hy = an‘% + Dy, H3 = Cﬁai:g - 023.6; -+
Cs, Hy = Cs &5 +Ci + C1, Hs = C1 2.
The characteristic equation of (4.6) reads

H, Hy 0
(4.7) Ap=-| 4 @ L.
H3; Hi Hj

and the linear Lapunov stability condition of state S? is: Re XA < 0 for all eigenval-
ues of (4. 7). Stability boundary is at Re A = 0. The loss of stability can be classi-
fied as a static bifurcation (or divergence) type instability (ReA = 0, Im A = 0),
or a dynamic one (ReA = 0, ImA # 0) [5]. Determination of the eigenvalues
of (4.7) requires the solution of a boundary value problem, which may cause
serious difficulties and needs numerical computations.

To remain at analytic methods, we should perform simplifications: the use
of small periodic perturbations. While stability is considered here as a local
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property of state, the small perturbation technique is quite obvious, but not
the periodicity of perturbations. It is really a restriction, but used widely in
engineering literature of the linear case [16]. (A detailed study on that restriction
is presented in [5].) While perturbations are small, a; = v, and then Eq. (4.5)
can be transformed into the velocity field,

(4 8) Phrgr = Cl vy + CQ'U;M + C:;'U_r + C41-’r-r + CSUxxT =i CSUJ:;:J: -+ CTU::TT
Vpr = D10y + Dovgr + Dav, + Dyvgr.

By assuming periodic perturbations
(4.9) v = exp (twzx)

in a similar way as it was done in the general case with (4.7), the characteristic
equation yields a set of algebraic equations

= Cy ) — Cow? — Csw?\?

(4.10) 0 = C3 + Gy — Cgw?® + C7A2
0 = D1\ — Dow?,
A = D3+ Dy,

and the static bifurcation condition is the existence of a A = 0 solution of (4. 10).
Then we obtain the following relations:

(4.11) Dy=o &5 %0 4
Oz
(4.12) Dy =0, < 19=0,
oy
(4.13) C=0, Kza =
and finally, the equations
2
(4.14) Oy =0, +=> KI%UD 0,
and
(4.15) Cs=0, <= K;3=0,
or
32
(4.16) Cz — Cew? =0, < 2K;— 53 9 + Kaw? =0,

should be satisfied. Obviously (4.11) implies (4. 13) thus there is a static bifur-
cation if
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A : (4.11), (4.12), (4.14) and (4.15), or

B :(4.11), (4.12) and (4.16) are valid.

Now let us return to wave dynamics. Case A does not meet the WDC: there
is a zero wave speed solution ¢ of (4.3) because of (4.15). In the classical ma-
terial instability concept [13] it means localization. On the other hand, if (4.15)
holds the constitutive equation (4.1) has no second strain gradient-dependent
term, which corresponds to the fact that there is a stationary singular surface
(a localization zone of zero width). Thus we have exactly the classical result of
Rice [13]. However, in case B, from (4.16) we obtain

2 2K1 32'3{)

K3 or?’

if %%ﬁl < 0. This means that there is a critical eigenfunction to the zero

eigenvalue, that is, we have a critical periodic perturbation (4.9)

Ver = €Xp | iz 2K; 0o
cr = p K3 BI‘Z L

at which state S° unergoes a static bifurcation.
Let us now study the dynamic bifurcation case. Then we need for A\* < 0, a
solution of (4.10). The corresponding conditions are (4.11), (4.12) and

(4.17) RPN B W < Y
p =T

(4.18) Ci=0 &= g?ag,, —K; =0,

(4.19) D=0 < qp; =0,

(4.20) Dy=1 &= ap=0.

Then from (4.17), (4.12) and (4. 20)

(4.21) K1 =0,

and from (4.18) and (4.19)

(4.22) Ko =0.
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Moreover from the second equation of (4.10) and (4.18) with (4.12) we obtain
(4.15)
K3 =0.

Finally, from the first equation of (4.10) substituting (4.12), (4.11) and (4.17),
we have

62‘-'..’0

0xdt’

thus there is a dynamic bifurcation if conditions (4.11), (4.12), (4.15), (4.19),
(4.20), (4.21), (4.22) are satisfied and

(4.23) N=—2

82U0

(4.24) el

Additionally, if (4. 20) is substituted into the dissipation inequality, the condition

to%—c_;rq >0
is obtained. Unfortunately this is not a generic dynamic bifurcation. We can
easily see that (4.21) implies (4. 14); consequently, dynamic bifurcation is coex-
istent with a static bifurcation of case A. Moreover, if (4.15), (4.21) and (4. 22)
are valid, Eq. (4.3) has a zero solution ¢ = 0, thus neither WDC nor DSC are
satisfied.

As a summary of this section we find that costitutive equation (4. 1) can only
be used for the description of the static bifurcation-type loss of stability. In case
B both WDC and DSC are valid. When we disregard WDC, even case A can be
accepted, if at least one of the conditions (4.19), (4.20), (4.22), or (4.24) fails,
because then no coexistent dynamic bifurcation is present and we may speak
about a stationary discontinuity as the instability phenomenon.

5. Summary

In the nonlinear case of finite deformations, by using a second order constitu-
tive equation of form (4.1), both A and B types of static bifurcation instability
are generic in the sense of dynamical systems theory because there is no coexis-
tent dynamic bifurcation. Moreover, we could preserve the nice property of the
linear study of second strain gradient-dependent material: the dimension of the
critical eigenspace at the static bifurcation type loss of stability remains finite
(case B). This result shows that in a post-localization study even now we should
use constitutive equations including second strain gradient dependence. When
we neglect this term (case A) we cannot find a unique critical eigenfunction
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but a “stationary discontinuity”™ the jump (discontinuity surface in the higher
derivatives of the field variables) stops at the conditions of instability. Now the
material instability condition and the critical eigenfunctions (if they exist) are
explicitly dependent on the values of the field variables at the state under con-
sideration. Of course they do depend implicitly on the material properties (K,
K, K3) because the values of the field variables at state S are determined by
solving the whole set of fundamental equations. Unfortunately such constitutive
equation cause a seriously ungeneric behavior at the dynamic bifurcation insta-
bility. It does not exist as a distinct type of instability, because the necessary
conditions of a dynamic bifurcation are sufficient for a static one.
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