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Possible constitutive equations of micropolar solids
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RECENTLY THE MICROPOLAR continuum is used for investigation of some problems
of solids. There exist several theories of micropolar continuum; We will study two
types of them. The simplest one is Cosserat’s continuum while the Eringen’s model
is more complicated. If the solid is not elastic then the constitutive equations are
not generally known. In the paper, a method will be shown for the determination of
possible constitutive equation in case of inelastic solids.

1. Introduction

THE MICROPOLAR SOLID MODEL is now frequently used in mechanics, for exam-
ple for investigation of localization, material instability, plastic bodies, granular
materials etc. The first micropolar model was the Cosserat continuum being the
simplest model, which extends classical elasticity to a generalised form, sup-
plementing the displacement vector field with the rotation vector field and the
stress with the couple-stress tensor. Then the equations of geometry and motion
contain more unknown functions than in the classical model. The rotation vector
is not an independent vector; consequently, the antisymmetric part of the stress
and the symmetric part of the couple-stress remain undetermined [1,2].

Eringen introduced a general theory of a nonlinear microelastic continuum.
This theory in a special case contains the Cosserat continuum. Presently, there
exist several approaches to the formulation of a micropolar continuum. More-
over, we should also deal with the constitutive equation of micropolar continuum
because it exhibits not only the elastic behaviour [1,2].

We would like to investigate the constitutive relations or equations assuming
that the second order wave exists in the micropolar solid. Function ¢ (z;, #3. z3,
z4), which describes the wave surface, satisfies a system of nonlinear partial dif-
ferential equations. This system of partial differential equations results from the
constitutive compatibility conditions. The system of partial differential equa-
tions has a solution if the Poisson-bracket is zero. It is the necessary condition of
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existence of the second order waves. The sufficient condition is that the speed of
propagation of wave ¢ cannot be infinite. The necessary and sufficient conditions
yield the general restriction concerning to the constitutive equations [3 4].

The second order waves are the acceleration and spin wave. When the solid
is isotropic, both longitudinal and transversal waves are possible. There are four
direct and reverse waves. First of all we will investigate the constitutive equations
in case of the simplest theory. We use rectangular Cartesian coordinates in the
following equations.

2. Possible constitutive equations of a Cosserat continuum

2.1. General equations

The fundamental equations of Cosserat continuum are equations of motion,
kinematic and constitutive equations, that is, [1]

(2.1) tjij + qi = pui,

(2.2) Mk e+ Exmn tmn + b = T iy,

(2.3) Yij = Vji + Ejik W,

(2.4) Kke = We ks

(2.5) Fa ('ym‘i, trsis Bpgjs Mpgis Yrss trs s Kpgs m,,q) =0,

a=1,2,..18; r,3,p,¢q..=1,2,3, 1,7 =1,2,3,4,

where t;;, my. and g;, ¢; are stress, couple-stress and body forces, couple body
forces and p, I are mass and inertia moment densities, 7ij and kg the asymmetric
strain and the torsion tensor and wj; is the rotation vector, €xmn is Levi-Civita’s
symbol, v; is the acceleration vector. In all expressions of the paper we use
index notation for the partial derivative of tensors like stress ¢;;; = %2; ete.
Indices with hat ¢ are equal to 1,2,3,4, while if there are no hats, ¢ = 1,2,3.
Space coordinates are denoted by z,z2,23 and z4 =t is the time. Constitutive
equations (2.5) are not generally well known, and for this reason we will look for
their possible form.
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2.2. Conditions of jumps on the acceleration wave surface

In case of acceleration waves, functions t;;, mek,7yij, fke, vi and wy are con-
tinuous, however their derivatives have jumps on the wave surface.
Let the acceleration wave surface be ¢ (21,9, 23,24) = const or with z; it is
Y (.L:) = const (E = s 4) When, for example, acceleration 9¥; in front and
behind the wave surface is denoted by %, and 1):', then the jump is 1};" -y = [ty .
The jumps can be written as
: ) dy
(i) = piiws, [4] = Biwas [1ij] = Tijea, ;= ry
[kl = Mexwes [Wk] = Mk, [Fre] = Qkepa.

The coefficients of derivatives ¢ denote the appropriate amplitudes of the
waves. Function ¢ and the amplitudes should satisfy three kinds of compatibility
conditions. These are the dynamic compatibility conditions

(2.6) 1jiP; = pPi pa,

(2.7) Aexoe = Ingpa,

the kinematic compatibility conditions

(2.8) Lijoq = Bjei,

(2.9) Qreos = Nepr

and

(2.10) fa (7503t Trotys B3+ ey ) — £ =0

(a=1,2,3...,18) are the constitutive compatibility conditions [3].

2.3. Constitutive equations

2.3.1. Possible constitutive equation when the stresses and couple stresses depend
on the strain and torsion. Now the constitutive equations are

tji == fji ('Yr.v ) -*'\"pq) .

Mk = ek (Vrs 5 Kpg) -
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Let us form the time-derivatives of these equations. We obtain

. Afii. d fii . . 2
(2.11) tji = 63;}: Yrs + 6::]3 Kpg = Ajirs¥rs + Bjkerke,
s pq
. A9k . Ogke . ; .
(2.12) Mg = “&aii’: Yrs + *a—i;—qﬁpq = Dikrsrs + EtkpgFipg-

The constitutive compatibility conditions are obtained from equations (2.11) and
(2.12), have the form

(2.13) Kji = AjirsLrs + BjikeSke,

(2‘14) Atk = DegrsUrs + Efkpqnpq‘

Using the unit normal vector n; of the wave front and the wave speed c , that is,

S i o P4
i — ] e 1
VPP VP

we obtain the wave propagation equation from the dynamic, kinematic and con-
stitutive equations [3,4]:

(2.15) (Ajirsnjnr Ty Pcz‘isi) Bs + Bjiklnjnfnk =0,

(2.16) qursﬂanﬁs =+ (Eqpkfnqnf i j:'326;;!:) e =0,
or in invariant (or matrix) form:

(2.17) (A-pc’l)-B+ B-n=0,

(2.18) D-g+(E-IPL)n =0

The acceleration and spin waves exist, therefore the amplitudes 3 and 7 cannot
be zero. Thus the corresponding determinant should be equal to zero, namely

(2.19) det [D— (E- L) - B~ (A- pD)| =0,
if det (B) # 0. Equation (2.19) is wave speed equation, which has at least four

positive roots ¢ . These roots are the propagation speeds of the wave.
Additional special cases are the following:
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CASE (A1). The couple-stress tensor does not depend on strain ., that is
gﬂﬂ =(0if D = 0. Now we obtain two equations for the wave speed: one for
the acceleration wave the other for the spin wave. They are

(2.20) det (A — p’I) =0,
and
(2.21) det (E— L) =0.

The acceleration and the spin waves are independent of each other.

CAsE (A2). The couple-stress is independent of the strain and the stress is
independent of the torsion tensor, that is

dgngO or D=0 and ?—fj—'

=0 or B=0.
a7rs =y d-"kf ==

The wave speed equations are (2.20) and (2.21) again. These equations can be
obtained from (2.17) and (2.18).

CASE (A3). Assume that the inertia moment I is very small. We obtain
from Egs. (2.17) and (2.18)

2 B therefore I=0

n=~E£

and the wave speed equation
(2.22) detfA-B-E™'-D-pc’l] =0.

The spin wave propagates together with the acceleration wave.

2.3.2. The stress and couple-stress depend on strain and torsion and also on their
rates. The possible constitutive equations are

(2.23) ijz' = Fji (Yrs s fipg s Yrs Kpq)

(224) mfk = Gfk {'}'f's 3 -"f-pq 3 Yrs o ﬁpq) )

Now the constitutive compatibility conditions are

(225) HiiPq = F_‘,lt (;Yors SF Frs‘Pé 1 kopq 35 qu‘:ofl y Trs KPQ) i F‘}h
(226) ’\fkﬁod = Gy (;Yor.g 4 Prsﬂotl 3 k'opq i qu‘pd s Trs qu) = °£k1
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where 77, and k;, are the strain and torsion rate in front of the wave surface.
The constitutive compatibility equations have the form of a system of first order
nonlinear partial differential equations. Considering its characteristic equations
and using the dynamic and kinematic compatibility conditions, we obtain the

wave propagation equations [3,4]

(2'27) .u'jf.(:a4 = Fj‘l (‘?urs F FT'S(ao‘i 1 kopq =t qu‘Pd 1 ’Y?’S 1 h‘-pq) Fz--u
(2.28) Meces = Gok (Vs + Drspay £%g + DogtPs s Yrs s Kipg) — Gppr
or in invariant form

(2.29) (4" —pc’L)-B+B"-1=0,

(2.30) D g+ (E -IL) n=0.

Equations (2.29) and (2.30) are similar as (2.17) and (2.18).
We can speak about cases Al, A2 and A3 similarly as it was done in Sec.
2.3.1. in cases B1, B2 and B3, and the conclusions are similar, too.

2.3.3. An important conclusion of the general constitutive equations [3,4]. We re-
turn to the general constitutive equations, (2.5) and the compatibility conditions
(2.10). Constitutive compatibility conditions (2.10) form a system of first order
nonlinear partial differential equations with respect to ¢ ( ) This system has
a solution if the Poisson bracket is equal to zero, that is if

6(,0;: 6.’1?; 8:::; 8‘,0; .

It is satisfied if the constitutive equations are written in form

(2.31)

f“ ( Trsi P(}} 3 'Tr.g-...ﬂ".',pq) =0,

where Tond and ﬁpq,j mean connections among &, =, Vg5 s My 5+ Kip;

Trsi =t + H' sLEU 'Yki_y’

Vpgj = Mg + qukfj‘i Kres

if the next equations satisfy

6} r.'.1+Hk FH;::U,

éjp’\rs i P> kaﬂjp Qk!t =0
thus we may reduce the number of tensorial variables in equations (2.5) from 8
to 6.

frsj";i

http://rcin.org.pl



POSSIBLE CONSTITUTIVE EQUATIONS . .. 313

3. Basic variables and connections of Eringen’s continuum

The Eringen continuum consists of macroelements. A macroelement is di-
vided into microelements. The microelements form a nonpolar continuum. Let
I be the particle of a microelement and z; — the mass centre of the macroele-
ment in the spatial configuration. Similarly, X ¢ and Xx are the particle and
the centre of mass in the reference configuration. The followings define vectors
pr and P in the spatial and reference configurations:

Tk = Tk + Mk Pk
and
Xg =Xk +CriPy.

The geometrical relations between the two configurations are written in the form:
dTy = (zx,k + kL, k PL) dXk + mkxdPi,

dX k = (X k + Ckedpy) dzk + Cxrdpy,

the deformation gradient and microdeformation gradient are

zi,k = (0L +UL,k) OkL
and
Mk = (OLk +YrK) 0L
or their inverse tensors
Xrck = (0ek — uek) Oxe
and
Crk = (Oek — Yex) Oxce,

where ug, Uy, and 4y, W g are the displacement vector and the microdisplace-
ment gradient in the spatial and reference configurations. Let us denote the
Euler’s strain by 4; ..nd the first and second microdeformation tensors by kg
and Ygem- According to [2], they can be expressed by the following formulae:

ke = Uk e + ULk — Um kUm ¢,

Kkt = Pre + Ugk — Um kWPme,
Yetm = —Wkeom + Un k¥ntm-

From these formulae we obtain the kinematic equations by differentiating with
respect to time, that is,

(3-1) Yke = Ve — ("mmym,f 2 'meym,k) s
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(3.2) Kke = ke + Ve — (KkmQme + ﬁmfvm.k) ;

(33) Ykem = —Ctgpm + EkrQem — ('kar”r,m + YermQre + 'ermur,k) )

where vy ¢ is the velocity gradient and age = fkx (ke is microrotation tensor.
Let us interpret the densities of internal force system in both macro- and
microstructures. Denote by dVand dV the volumes of macro- and microelements.
These volumes are bounded by closed surfaces dA and dA. If £;, is the microstress
on dA; then t is the macrostress on dAg, that is, s tred Ay = tredAy. Similarly

dA
we can introduce
/ GrdV = qdV,
dv
/ LoD dAx = AkemdAy / GPmdV = bemdV,
dA dv
/Emfdv = Smfdv s Smé = Sim,

dV

for body force g, couple-stress Aggm, couple body force €y, and microstress $;,¢
on dV.
Equations of motion are [2]

(3.4) tkek + qe = py,

(3.5) tke — Ske + Apemyp + ek = pTek,

where vy is the acceleration, pi,,, is Euler’s inertia tensor and g, — the spin
tensor. Following [2], they are expressed by the formulae

[ﬁﬁmﬁndv = PimadV,
dVv

Tkn = tn (Opm + OkeQen) -

We look for the constitutive equations in the following form

(3-6) tee = fre ('qu y Kpg s 'qur) )

(3.7) Akém = Gktm ('qu s Kpg» 'qur} )
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(3.8) Skt = ke ('qu» ”pqa'}’pqr) .

We use the material time derivative of the system of equations (3.6)-(3.7),
that is,

O fre . 0 fre . 0 fre .

fkg= -+ Kpg + = FrepgVro + Akengfing + Brénar?Y
a,ypq”qu B kpq P T3 ,qur'l'pqr pqYrq pg'ipg par Ypgr
: O Grem . d Gkem . 0 Gkem
Metm = o——Ypg + 5——Fhpg + =,
™ e P gy 1T Dypgy P

- kampq;]'rq =+ Dk!;mququ -+ Ekf;mpqr'.qur-

We determine the microstress s,,,¢ from (3.5) by taking its symmetric part.
The jumps of the deformations and internal force system and their derivatives
on wave surface ¢ can be written as

[vked =0, [kked =0, [vkem] =0, [are) =0, [Pme] =0,

[Ykem] =0, [tee] =0, [ske =0, [Agem] =0,
[Yke] = Trewa, [fre] = Qepa,  [Ykem] = Fkemeps,
[ke] = onews,  [teex] = kevr,  [Apemp]l = Apem@p-

The dynamic, kinematic and constitutive compatibility equations are
Hkepk = pBepa,

Akempk = P inmOmeps,
2T keps = aLgemPm,
Qkemps = aMemPm,
ViemPs = —a (Mpikp0pe + Npnker Br)
pg = ApgkeShe + BpgkeOkem + Fpqkel ke,
Apgr = DpgrieSe + EpgricemOrem + HpgrieL ke,

where
Lyt = (Okm — 2%9km) e + (02rn — 29em) 1k

Mipm = 1k (Ome — Kme) s Nmker = nYeer + %k Yrem,

"=

a = (pjp5)? .
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We use equations of motion (3.4), (3.5), kinematic equations (3.1) — (3.3) and
the constitutive equations in the form (3.9), (3.10). The wave propagation equa-
tions are

1
{np (qukf’MHr = quk?mNmkff -+ 'Q’qukakfr) = ngqr}ﬁr

== anpr;kmemkra'rf =0,

1
Ny (qurkEMkfs =3 qurkﬂn;NmHs =+ EHpquLkh) 13.'-‘

5= (anpr;rkEmNmks *+ pifrdsq) aes = 0.
The wave propagation equations in invariant form are

(4™ - pD) B~ B2 =0,

i

“‘ﬁ—(étt‘f‘;ﬁczi_)--g:g-

These equations are similar to (2.17) and (2.18) if G** = 0 or E** + pc*J ~ E**.
These can be investigated as it was already shown. B D

The wave propagation equations are a system of linear homogeneous algebraic
equations for B and ¢. The determinant of the system is equal to zero. This
equation is called the wave speed equation, which has at least eight real roots ¢
with different signs [3]. The existence of the roots results from the constitutive
equations.

4. Conclusions

These investigations show the general behaviour of the possible constitutive
equations. It follows that the investigations are similar for the Cosserat contin-
uum and the special Eringen continuum. However, in case of the Eringen con-
tinuum, the determination of a more general internal force system is possible.
In both cases the investigation is based on the existence and regular (nonzero
wave-speed) propagation of acceleration and speed waves. Such waves may be
coupled or independent for various constitutive equations.

The results may also be useful for experimental works: they show what kind
of data of wave propagation should be measured to obtain numerical values for
the constitutive equations.
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