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A MODEL FOR THE PREDICTION of the viscoplastic behaviour of polycrystalline ice is
presented. This model is based on the minimization of the dissipation energy under
the principle of minimal heterogeneity. The grain is supposed to behave as a linear
transversely isotropic medium depending on one anisotropy parameter. Anisotropic
textures can be considered, but the present numerical results are for an isotropic
texture. The model then predicts a linear isotropic behaviour involving an effective
viscosity. The latter depends on the prescribed value for the strain-rate heterogeneity
and on the grain anisotropy parameter. The present model is compared with a self-
consistent model built under the same assumptions for the grain behaviour. The
deviation from the no-correlation condition is studied.

1. Introduction

IN ORDER TO UNDERSTAND the evolution of the polar ice sheets and their response
to climatic changes, it is necessary to build thermomechanical models of the flow
of ice sheet under gravity. Due to the large depth, the internal layers of the sheet
are subjected to very large compression strains that lead to the development of a
strong crystallographic texture (or “fabric”) in the polycrystalline ice. Moreover,
the anisotropy of the constituent crystals is rather extreme: the rate of creep of
a single crystal by basal glide is roughly 10* times faster, at a given stress, than
that of a single crystal oriented such that the resolved shear stress on the basal
planeis negligible [1]. The single crystal of ice deforms mainly by dislocation glide
on the basal plane, normal to the hexagonal symmetry c—axis. This makes the
textured polycrystal strongly anisotropic. As shown by MANGENEY et al. [2, 3],
this macroscopic anisotropy must be accounted for in the mechanical model,
because it strongly influences the flow of the sheet. But, since the macroscopic
anisotropy is due to the texture development, hence to the flow itself, one should
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4 0. GAGLIARDINI, M. ARMINJON AND D. OMBAULT

include the polycrystal texture and its evolution in the constitutive equation -
in other words, it seems that one should use a micro-macro approach for the
constitutive relation. One is then faced with the important computation cost
needed to implement a polycrystal model in a finite element code. For this reason,
a finite-element thermomechanical model of an ice sheet has been based on the
“static” model, that assumes a uniform stress in a volume element of polycrystal
[4]. The use of the static model for ice, as opposed to using the Taylor model that
assumes uniform strain-rate, was suggested by a comparison between “static” and
“self-consistent” predictions, due to CASTELNAU et al. [5].

It is, however, useful to first use the more complex and more exact models to
predict the constitutive relation and the texture evolution for a given deformation
history. This also has a short-term benefit, which is to assess the error involved
in using the simpler (static) model.

In the present paper, a recently proposed micro-macro model is used [6, 7.
It is based on a minimum problem with two constraints and allows a continuous
transition between the extreme models (Voigt-Taylor and “static”), see Sec. 3.1 for
a motivation of using that model. In the present work, the model is adapted to a
linear viscoplastic grain, which allows analytical developments (see Sec. 2). A new
numerical approach is used (see Sec. 3.4) to solve the minimization problem.

The numerical results of the present study are restricted to the prediction
of the effective potential of an isotropic polycrystal, i.e., a randomly textured
polycrystal is considered. However, the present implementation of the micro-
macro model allows also to consider textured polycrystals [8], as observed in ice
sheets.

2. Single crystal behaviour

Since the ice crystal is incompressible, both strain-rate and deviatoric stress
tensors can be expressed as vectors in a 5-D space, respectively D7 and S7 [9, 10].
Here we shall use the transformation proposed by LEQUEU et al. [10]:

(2.1) X = [(X22 — X11)/V2, V/3/2X33,V2X23, V2X31, V2X12).

Because the crystal of ice has an hexagonal symmetry axis, it is assumed
to behave as a transversely isotropic medium. At low temperature (lower than
—10°C') and for the deviatoric stress magnitude typical in polar ice (less than
0.05 MPa), there are some indications from data analysis for a behaviour close
to linear behaviour [11]. Therefore, following MEYSSONNIER and PHILIP [12], we
will assume in what follows that the ice crystal behaves as a linear transversely
isotropic medium.
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AN INHOMOGENEOUS VARIATIONAL MODEL APPLIED TO PREDICT... 5

In the case of power-law viscoplastic behaviour with rate-sensitivity m, the
potential ®, giving the stress as function of the strain-rate is given by

(22) 39, = WH(D9)/(m +1),

where W9(DY) is the energy dissipation per unit volume and unit time due to
the viscous deformation, defined as

(2.3) W9 =D9 .89,

In the particular case of the linear behaviour envisaged here (m = 1), the energy
dissipation is twice as much as the dissipation potential ®%,(D?). The deviatoric
stress derives from ®%,(DY) as

g
(2.4) g8y
oD9
Since the grain is transversely isotropic, only the direction 3 of its rotational
symmetry axis needs to be defined in order to fixe the grain reference frame
relative to the fixed global reference frame. This is done by using two angles, the
co-latitude € and the longitude ¢. The simplest expression for the dissipation
potential ®,(DY), when expressed in the grain reference frame with rotational
symmetry axis along the z3 direction, is given by

@8) o= W= 7 [pe*+ Dg* + 8 (D§* + DF*) + D8]
where 7 is the viscosity for shear in the planes perpendicular to the plane of
isotropy (z1,z2) (n = 1/4 in [13, 14], because the inverse law was used in the
latter works) and /3 is the ratio of the shear viscosity in the planes perpendicular
to the basal plane to that in the basal plane. The parameter [ should be regarded
as a measure of the grain anisotropy: when = 0 the grain can deform only by
basal glide, while § = 1 corresponds to an isotropic grain.
In the global reference frame, the relation (2.4) becomes

(2.6) 89 =n9(6, p)DY,
where nY is a 6-D fourth order tensor, symmetric, and with the dimension of a
viscosity. Its expression can be inferred from Egs. (2.4), (2.5) and by using the

rotation matrix to pass from the grain reference frame to the global reference
frame.

3. Polycrystal behaviour

3.1. Motivation of the micro-macro model under consideration

A well-known approach to defining more accurate models than the extreme
models is the self-consistent approach, initiated almost fifty years ago for lin-
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6 0. GAGLIARDINI, M. ARMINJON AND D. OMBAULT

early elastic aggregates by HERSHEY [15] and independently by KRONER [16].
These models start from the consideration of an ellipsoidal inclusion embedded
in a space-filling matrix material, as envisaged by ESHELBY [17, 18]: in the self-
consistent model, the strain and stress in a given constituent are assumed to be
the same as if that constituent were an ellipsoidal inclusion embedded in a space-
filling matrix endowed with the effective macroscopic behaviour which is sought.
A specific feature of Eshelby’s exact solution to the problem of the linear elastic
inclusion [18] is the fact that the inclusion undergoes a uniform strain state, hence
also a uniform stress state. If one considers, not an ellipsoidal inclusion in a ho-
mogeneous matrix, but instead an aggregate of arbitrarily-shaped constituents, it
is in practice impossible that any constituent may undergo a uniform strain state.
Indeed it is easy to prove the following result [19]: If the strain-rate field has the
uniform value D in the domain © and the uniform value D’ in the contiguous
domain £, and if the boundary between € and ' is not plane, then the strain-
rate field can be derived from a continuous velocity field only if L = L/, where L
and L' are the (necessarily uniform) values of the velocity gradient in  and ¢’
(thus, not merely the strain-rates but also the rotation rates must be the same in
€ and ). This result holds true, of course, if one substitutes “small-strain ten-
sor” for “strain-rate tensor”, and “displacement” for “velocity”. It means that the
strain-rate tensors D!, ..., DV, which are predicted in the constituents Q1 ..., Q"
of some aggregate, e.g. by a self-consistent model, have to be interpreted as vol-
ume averages of the strain-rate field in the different constituents. Accepting this
interpretation for the predicted distribution (Lk)kzl,...,N of the velocity gradient,
then the “compatibility problem” may always be solved, in the sense that, given
any (reasonable or unreasonable) distribution (Lk)k=1,___,m it is always possible
to construct a regular velocity field V such that, for all k, the volume average
of grad V in domain QF is L* [19]. Thus no model can be preferred to another
one as regards the compatibility problem for the strain distribution - except,
of course for the Voigt-Taylor model: but, for the latter, the incompatibility is
found in the stress distribution. In the same way, one should be able to show
that the compatibility problem may always be solved for the stress distribution
in the sense of the volume average.

Furthermore, the self-consistent model provides a particular solution between
the extreme models of Voigt (assuming uniform strain) and of Reuss (assuming
uniform stress; when extended to non-linear behaviour, this is also called the
“static model”). As found by KRONER [20], the self-consistent model for a linearly
elastic aggregate is likely to correspond to the ideal statistical situation called
“perfect disorder”, in which knowledge of the volume fractions of the different
constituents in the aggregate is sufficient to determine the effective macroscopic
behaviour, due to the vanishing of all higher-order correlations. It is unlikely
that this ideal situation could always be representative for real materials. In
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the present paper, it will be shown that, for an isotropic aggregate of linearly
viscous ice crystals, the self-consistent solution is indeed not very close to the
likely effective behaviour.

Finally, following KRONER [21], various extensions of the self-consistent
model have been proposed for the non-linear constitutive relations that describe
elasto-plastic, viscoplastic or other behaviours. These extensions use different
kinds of linearizations of the constitutive relations of the constituent phases. As
shown by GILORMINI [22], the most classical extension, based on an incremental
linearization due to HILL [23], exceeds the tighter upper bound derived by PONTE
CASTANEDA [24] (more precisely, this has been shown for an isotropic two-phase
aggregate of incompressible power-law elastic spheres [22]. This shortcoming of
the classical extensions of the self-consistent model will not be relevant in the
present paper, however, because a linearly viscous behaviour will be assumed on
experimental grounds).

Despite the foregoing arguments, it is acknowleged, of course, that the self-
consistent approach has proved very useful in providing many micro-macro mod-
els capable of capturing observed features in real heterogeneous materials [25,
26, 27, 28]. But these arguments add appeal to a different model, namely the
“‘inhomogeneous variational model” [6, 7]: ) This model is based on a rigor-
ous statistical framework and accounts explicitly for the fact that distributions
only of the volume averages of the stress and strain in the different constituents
are sought [6]. i) It leads to a continuous transition between the two extreme
(Voigt-Taylor and “static”) models. iii) It makes no use of any linearization nor
any perturbation treatment, and it applies to any behaviour that derives from a
convex potential. Thus it is likely to be appropriate for the modelling of strongly
heterogeneous materials (as is polycrystalline ice), for which perturbation tech-
niques do not seem to be best suited. These advantages must have a price,
and this is the fact that the heterogeneity parameter r, allowing the continuous
transition between the extreme bounds (see Sec. 3.2), cannot be predicted from
microstructural information and instead must be phenomenologically adjusted.
This does not prevent the model from exhibiting a predictive capacity, however:
this has been verified already for deformation textures in steels [7] and for the
overall behaviour of fiber-reinforced composites [29].

3.2. Formulation of the micro-macro model under consideration

The micro-macro model formulated by ARMINJON and IMBAULT [7] is based
on the minimization of the average potential under the principle of minimal
heterogeneity. Because of the viscoplastic linear behaviour, it is equivalent here
to consider the energy dissipation W instead of the potential ®p. Let us first
introduce some general definitions that are useful for the presentation of the
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8 0. GAGLIARDINI, M. ARMINJON AND D. OMBAULT

model. In the following, the polycrystal is assumed to be made of N constituents.
Each constituent (k) (k = 1,..,N) occupies the spatial domain ) where the
crystal orientation has some given value (6, px). Note that Q. is in general not
a connected domain, i.e., the zone with given orientation is in several pieces. The
texture is described in the global reference frame by the set of the orientations
(O, k) and the associated volume fractions f. When some quantity Yk is
defined for each constituent (k), we shall denote the weighted average of the
distribution (Y*)x=1,. .~ by:

N
(3.1) Bl ER TN 8
k=1

The average heterogeneity function h of some distribution (strain-rate, stress)
(Y*)p=1,.n around the macroscopic quantity Y is defined as

N 1/2
(3.2) h((Y*)) = [Z JRl¥" = Y‘“‘F] :
k=1
where |Y| = [trY?)!/2 = [Y;Y;]1/2.

This micro-macro model consists in determining the distribution of the ave-
rage strain-rates D¥ (in the constituents (k), k = 1,..,N) by solving a minimum
problem with two constraints. Namely, we have to find the minimum of the ave-
rage viscoplastic dissipation energy W' under the two conditions that (i) the
average strain-rate D over the N constituents is the macroscopic strain-rate
D (consistency condition) and (#i) the average heterogeneity of the strain-rate
distribution A((D*)) does not exceed a prescribed value 7, thus:

N
(33) W, (D) = min [Z ka’*(D")} :
k=1
under constraints
N
(3.4) (i) Y fHD*=D and (i) h((D¥)) < r.
k=1

In Eq. (3.3), W¥*(D¥) is the energy dissipation (2.5) in the constituent g = F,
assuming that the N constituents of the polycrystal have the same behaviour in
their respective axes (1 = n* and B = B¥ for all k).

3.3. The lower and upper bounds in the model considered

The proposed formulation allows the passage from the upper bound to the
lower bound in a continuous manner. Since the upper bound corresponds to a uni-
form strain-rate distribution (i.e., D¥ = D for all k), it appears from Eq. (3.2)
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AN INHOMOGENEOUS VARIATIONAL MODEL APPLIED TO PREDICT... 9

that this bound is obtained when the average strain-rate heterogeneity is null
(i.e., for the heterogeneity parameter r = 0). ARMINJON [6] has shown that
the lower bound corresponds to the static model (i.e. a uniform distribution of
stress, S* = 8 for all k) and that this bound is obtained when the heterogeneity
parameter r reaches a critical value R. This critical value depends on the grain
anisotropy parameter f4.

When the polycrystal texture is isotropic, analytical expressions of the dissi-
pation potential can be obtained for both the upper and lower bounds. This is
done by using a continuous description of the texture with the, so-called, Orien-
tation Distribution Function (ODF). The ODF f(6, ) gives the relative density
of grains whose rotational symmetry axis x3 have the orientation (6,y). With
the use of the ODF, a macroscopic quantity Y2V is defined similar to (3.1):

2r 'ETK'Z
(3.5) ¥ ={¥(0,p)) = // (@,0)f (0, p)sinbdbdy .

Using this definition for the weighted average, the average of the energy dissipa-
tion, W2V, is defined as

(3.6) W = (W(D'(6,9))),

where W is given by Eq. (2.5) in the grain reference frame and D'°¢ = D°¢(8, ) is
the distribution of the strain-rate as function of the orientation. For an isotropic
texture f(#,¢) = 1 and, therefore, after some straightforward integrations, the
analytical expression of the upper bound is found to be

6+
.7 Waupiso = (W (D)) = 1 uD?,
and that of the lower bound is
(3.8) Wintiso = inf(W?'; (D'°(0,¢)) =D) =1 =5 ﬁtrDz.
For an isotropic grain (i.e., f§ = 1) the two bounds are identical and

Waup,iso = Winf,iso = 2ntrD?. The difference between the two bounds increases
as the anisotropy of the grain increases (i.e., as the anisotropy parameter 3 de-
creases). Since Wyyp iso = 0o when 3 = 0, the difference between the two bounds
is infinite when the grain deforms only by slide in its isotropic plane.

The analytical values of the energy dissipation (3.7) and (3.8) will be used to
check the numerical implementation of the model.

3.4. Numerical method for the calculation of the microscopic distributions

We have to solve the convex minimum problem (3.3) involving one linear
constraint (3.4) 1dandoneconvezinequality(3.4)iid. We use the problem formu-
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10 0. GAGLIARDINI, M. ARMINJON AND D. OMBAULT

lation of [30]. The linear constraint (3.4) i is used to eliminate the strain-rate
of the last constituent (k = N), so that the list of the optimization variables is
Y = (D¥)k=1,.n-1 (thus 5(N — 1) variables). From (3.4) i, we get

N-1
(3.9) DY = (D -y ka") /fn .
k=1
The function to minimize is then written as:
N-1 N-1
(3.10) F(Y)=)_ fiW*(D*) + faw" [(D -y ka’*‘) /fN] :
k=1 k=1

and the heterogeneity function (3.2) is rewritten as a function of the list Y

27 1/2

N-1 2 1
(1)  KY)=|Y f|D*-D| s
=1

N-1
Y, f(DF - D)
k=1

The optimization problem is: find Y making F(Y) a minimum, among the
Y's satisfying the constraint C(Y) = h(Y)? — (r|D|)? < 0. The saddle point
theorem characterizes the solution of this problem as follows:

3A >0 such that:
(3.12)
(7) VF(Yy) +AVC(Yy) =0 and (iz) AC(Yp) =0.

In this work, the optimization problem is solved by seeking the saddle point
(Yo, o) of the Lagrangian function

(3.13) L(Y,\) = F(Y) + AC(Y),

instead of using a classical penalty method as in [7, 30]. This saddle point is
defined as

(3.14) L(Yo,X0) = n}}n LY. Xp) = max 11%}11 E(Y, ).
By introducing the function G()) defined as

(3.15) G(\) = min L(Y,)),

the saddle point corresponds to the maximum of G(A).
Numerically, for a given value of A, the value of the function G(A) is obtained
by using the conjugate gradient method. The maximum value of G(A) is then
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AN INHOMOGENEOUS VARIATIONAL MODEL APPLIED TO PREDICT... 11

sought by an inverse parabolic interpolation. Since the function G(A) is smooth,
this method has been found to be more efficient than the Uzawa algorithm.
When r > R, the Lagrange multiplier A is equal to zero and the optimization
problem reduces to finding the minimum of the function F(Y). To obtain conver-
gence of the algorithm in the case r > R, the function G()) (3.15) is transformed
into:
B miny [F(Y)+AC(Y)] if A>0
(355) Gh= { miny [F(¥)] = A 180,26,

4. Results

4.1. Numerical tests of the saddle point solution

In Fig. 1 is presented the evolution of the function G(A) = L(Yo(A),A)
Eq. (3.16) for a given grain anisotropy parameter § = 0.01 and a given het-
erogeneity parameter r = 0.5. The condition (3.12) 7 is verified for every A (for
each ), it is verified with the solution Yo()) of the minimization problem (3.15),
but it appears in this figure that the condition (3.12) i1 (i.e., AC(Yp) = 0) is
confirmed for only one value A = \g, which corresponds to the the saddle point
solution.

70 1 R e 1.5 T T T
LA 4
1=
|
15 os i
D -‘."‘. T
0:.|-l><||| .I...I;:;E -0.5 - L, VTS, W S R S T
0 40 B0 120 160 200 0 40 80 120 160 200
A A

F1G. 1. Evolution of G(\) = L(Yo(A),A) (solid line), the energy dissipation F[Yo(\)]

(dashed line) and the constraint C[Yo(A)] (dotted line) as a function of the Lagrange

multiplier A for 8 = 0.01 and r = 0.5. The arrows show the value of Ay corresponding
to the maximum of G(A) (i.e., the saddle point solution).

This value Ay depends on the grain anisotropy parameter # and on the het-
erogeneity parameter r. Figure 2 shows the evolution of the calculated Lagrange
multiplier A¢ as a function of the heterogeneity parameter r. Theoretically, we
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12 0. GAGLIARDINI, M. ARMINJON AND D. OMBAULT

should get an infinite value for A\g when the heterogeneity parameter is zero (up-
per bound). Numerically, the convergence of the method is not achieved when the
value of r is lower than the precision expected on the constraint C'(Yy). On the
other hand, with the adopted function (3.16), the lower bound can be calculated,
even when » > R. Numerically, when » > R the constraint becomes negative,
but the Lagrange multiplier is very close to zero (of the order of 1071%).

10"|'|'|'|'l'l

10° | .

] [ ] g Pt e e
0.0 02 04 06 0.8 1.0 12
T

FiG. 2. Evolution of the Lagrange multiplier Ay corresponding to the saddle point
solution as a function of the strain-rate heterogeneity parameter r for f = 0.01.

Numerically, with a relative precision of about 1077, it is found that the
Lagrange multiplier verifies the relation

k
(4.1) ol ::((—((15393.—%,

where (SE) and (D) are the microscopic stress and strain-rate distributions,
respectively, corresponding to the solution of the optimization problem.

4.2. Macroscopic behaviour of isotropic polycrystalline ice

In this section, the mechanical response of isotropic ice is analysed as a func-
tion of the strain-rate heterogeneity parameter r and the grain anisotropy param-
eter 3. The value of the viscosity parameter 7 has no influence on the strain-rate
distribution and merely acts as a scaling parameter on the stresses. Therefore, all
the numerical results presented have been obtained for an applied macroscopic
strain-rate such that ntrD? = 1. The polycrystal is made up of N = 200 ran-
domly distributed grains and then the number of optimization variables is 995.
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In Fig. 3a is presented the evolution of the calculated strain-rate and devia-
toric stress heterogeneities as functions of the imposed heterogeneity parameter r.
The calculated strain-rate heterogeneity h is equal to the heterogeneity parame-
ter r until the maximum value of h, i.e. R = 1.2, is reached. As for the strain-rate
heterogeneity, the stress heterogeneity evolution is linear, but it decreases from
the maximum value 96.8 when r = 0 to zero when r > R. As expected, the stress
heterogeneity function h((S¥)) = 0 when r > R, which means that the (average)
deviatoric stress is the same in all the constituents (static model).

T T T T T T 100 K T T T T T = 120
L s sii] : ]
5 RN (a),,--"' 80 2 %% (B) 4w
=40} bl I ]
= ~ = b ] 80 S
Ros| e e - \ e gids
= A gl 2 N 60
= 06 |- 2 = | i ] S
Al Ny 40 (?'_ i N 1 -
N v I 40 o
0.4 = S : : g
. LN 20 ~
0.2 + 3 - ol
0.0 ] I [P | [ | .\\1 o (] Ll LMY DA ] e U ol SR ph it 7ot | 0
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r )

FiG. 3. Evolution of (a) the calculated strain-rate and stress heterogeneities, h((D*))

and h((S*)), (dotted and dashed lines, respectively) and (b) the average of the dissipation

potential W,(D) (solid line) and the viscosity for isotropic ice 75 (long dashed line) as
a function of the imposewd heterogeneity parameter r for g = 0.01.

By testing twenty different D tensors, we have found numerically that the
stress response S is very nearly proportional to the strain-rate direction D and,
moreover, the proportionality coefficient does not depend on the investigated D
tensor. In other words, the macroscopic response of the isotropic polycrystal is
numerically found to be of the form:

(4'2) S = 25D,

where 75, is an effective viscosity of isotropic ice. The numerical departure from
this exact equation is found to be smaller than 1%. This departure can be
attributed to the randomly created texture, which is not ezactly isotropic.
Figure 3b shows the evolution of the energy dissipation as a function of the
heterogeneity parameter r. For g = 0.01, the analytical values of the upper
and lower bounds (3.7) and (3.8) are Wyyp,iso = 120.8 and Wiy iso = 4.92. As
shown in Fig. 3a, the calculated potential reaches these two values for r = 0
and r > R = 1.2, respectively. The upper bound was calculated for r = 10710
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14 0. GAGLIARDINI, M. ARMINJON AND D. OMBAULT

since for r = 0 the convergence is not achieved with the algorithm used here.
Of course, the programming of the Taylor model is trivial and can be included,
so as to take into account the case r = 0.

Because there are very few reliable experimental results on ice crystals and
also because the constituent in a micro-macro model does not behave as a single
isolated ice crystal, it is more convenient to determine the rheological values of
the constituent (here the values of  and f) by using experimental results on
polycrystalline ice.

According to the experimental results of PIMIENTA et al. [31], a polycrystal
with all its grain symmetry axes parallel, undergoing simple shear in a plane
perpendicular to the grain symmetry c—axes, would deform 10 = 2 times faster
than an isotropic polycrystal. Since in a micro-macro model the response of a
polycrystal in which all the constituents have the same orientation is equal to
the response of a single constituent, this leads to the relation:

Tliso

4.3 — =10+£2.
(43) -

As shown in Fig. 3b, nisotrD? is numerically found to decrease linearly as a
function of the heterogeneity parameter r, from the Taylor value to the static
one. Taking benefit of this linearity (assumed exact), and using the analytical
solutions (3.7) and (3.8) for the two bounds, one can easily derive the following
analytical relation between the grain viscosity for shear in the plane perpendicular
to the basal plane, i, and the effective viscosity for isotropic ice, 7iso:

Mso _ 3+28  6(1-B)

r

n 58 5B8(2+38)R’
where R can be approximated from numerical results by R = 2 — 2.235 + 1.23.

The contours of the ratio 7is,/n (??) from 4 to 20 by step of 2 are drawn in
Fig. 4 as a function of the grain anisotropy parameter 3 and the heterogeneity
ratio r/R. If the grain anisotropy parameter 3 decreases, then to get the same
value of the ratio miso/7, the strain-rate heterogeneity has to increase. If the grain
anisotropy parameter is between 0.001 and 0.01, which seems to be a reasonable
range of values for ice [31], then the value 750/ = 10 corresponds to a range of
heterogeneity parameter between r = 0.87TR and r = 0.987R, i.e. very close to
the solution given by the static model (r = R). As shown in Fig. 4, the value
TMiso/M = 10 can be obtained only if the grain anisotropy parameter 8 is lower
than 0.0625. Figure 4 should be used to select a pair (8,r) corresponding to the
required macroscopic anisotropy.

(4.4)
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F1G. 4. Contours of the ratio 7is/n from 4 to 20 by step of 2 as a function of the
grain anisotropy parameter  and the heterogeneity ratio r/R (R is the heterogeneity
obtained for the static solution).

4.3. Deviation from the no-correlation condition
In this section, the deviation from the following no-correlation condition:
(4.5) (DF).(s*) = (D*.s%),

is studied as a function of the heterogeneity parameter r and the grain anisotropy
parameter 3. To this goal, we compare the calculated macroscopic dissipation
energy

(4.6) D8 = (D")(85),

and the average of the dissipation energy (used previously for the minimization
problem )

(4.7) wa = (W*) = (D*.s%).

When formulating the model used here [6, 7], it was assumed that condition
(4.5) apples when DF and SF are the respective average values of the actual field
of strain-rate, d, and of the actual field of deviatoric stress, s, in the volume
occupied by constituent (k):

(4.8) Dt = / ddv/v(Q;) and Sk, = / sdV/V (%) .
Q4 Oy

Furthermore, the model assumes that, for the relevant value ry of the hetero-
geneity jpirameter 7, the strain-rate distribution (D¥) solution of the minimum
problem (3.3) - (3.4) is equal to the actual distribution (DX,). It is well known
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that condition (4.5) applies trivially when the extreme models are used: either
the upper bound model (D¥ = DV k) or the lower bound model (8% = SVk).
Now it is apparent in Fig. 5 that, except for these extreme models (which
corresponds respectively to 7 = 0 and r = R), the strain-rate distribution (D¥)
does not fulfil condition (4.5). Therefore, at least one among the following three
possibilities is true:

(2) The actual distribution does not fulfil condition (4.5). This could be due
to the strong heterogeneity of the polycrystal (due to the strong anisotropy of
the crystals) and it would mean that using a one-point model is not well justified.

(1) The proposed variational model does not predict correctly the actual
strain-rate distribution when the polycrystal heterogeneity is too large. Again,
this would mean that using a one-point model, such as the present model, is not
wise for strong material heterogeneity.

(#42) One of the two extreme models (Static or Voigt-Taylor) corresponds to the
actual solution. This possibility does not seem to be very realistic.

In any case, it should be emphasized that the no-correlation condition (4.5)
is different from Hill's macrohomogeneity condition [32, 33]. The latter must
be written in terms of the microscopic fields and their volume averages in the
representative volume element 2 of the polycrystal (€2 is the union of the domains
(07 2= e

e 1

Sl e T R
=o:d= V(Q)Q/ av ) : V{Q)ﬂ/ddv .

In fact, ARMINJON [6], as well as ARMINJON and IMBAULT [7] derive condition
(4.5) from Hill’s condition (4.9) and using an additional assumption (Eq. (4.5)
in [7]).

As shown in Fig. 5, the ratio (D*.S*)/(D.S) decreases as the grain anisotropy
increases (i.e., as @ decreases) and the location of the maximum difference tends
towards r/R = 1 with g.

MEYSSONNIER and PHILIP [12] have proposed a self-consistent “one-site”
model (SC1) based on the same model for the grain behaviour, ¢.e linear trans-
versely isotropic medium. In the SC1 model, the texture is described by the use of
an ODF, and the linearity of the grain behaviour allows analytical developments
of the strain-rate and stress fields as functions of the grain orientations.
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FiG. 5. Evolution of the ratio (D*.S*)/(D.S) as a function of r{R}, for 8 = 0.1 (dotted

line), # = 0.01 (solid line) and f = 0.001 (dashed line). In this figure is plotted the

value find for the ratio (D*.S*)/(ID.S) by using the 1-site self-consistent model of [12]
for = 0.1 (square), 8 = 0.01 (circle) and # = 0.001 (star).

Since the SC1 model is based on the same model for the grain behaviour, it
allows an objective comparison of both models. In Fig. 5, the value of the ratio
(D*.8)/(D.S) obtained with the SC1 model is plotted for the corresponding
calculated strain-rate heterogeneity (the latter is not imposed in the SC1 model).
As shown in Fig. 5, for a given grain anisotropy, the solution obtained with the
SC1 model corresponds exactly to one solution given by the present model. As
shown in Fig. 6 for # = 0.01 and an applied compression Dy = 1 and Dy = 0,
the strain-rate distribution given by the SC1 model is almost exactly the same
as that given by the present model when the heterogeneity parameter r imposed
for the present model is equal to the value hgey of the strain-rate heterogeneity,
calculated with the SC1 model (hgcy = 0.52). In other words, up to a negligible
error, the strain-rate distribution predicted by the self-consistent model is (in this
linear case) solution of the variational problem (3.3) — (3.4), for some particular
value r. Howewer, that particular value r = (.52 corresponds to r/R ~ 0.42
and gives an effective viscosity niso = 361, which seems to be inconsistent with
the experimental data 7so/n = 10 of PIMIENTA et al. [31]. This latter value of
the ratio is obtained with the SC1 model only for one value 8 = 0.04 [12]. The
behaviour of polycrystalline ice is much closer to the static model than on would
expect using the self-consistent model.

CASTELNAU et al. [34] found similar results with a 1-site self-consistent
model but for a non-linear behaviour of the grains. By introducing an interaction
coefficient «, which is used to constrain the interaction between grains and the
matrix (a zero value of « corresponds to the Taylor model and an infinite value
to the static model), these authors showed that the maximum deviation from the
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no-correlation condition (4.5) is obtained for the classical tangent formulation of
the model (o = 1). (It is recalled that, in the linear case studied here, there is
only one self-consistent solution, i.e., there is no parameter like ).

1.4 T T

12

0.6 L 1 1 1 1
0O 15 30 45 60 75 90

0 (deg.)

F1G. 6. Evolution of the strain-rate Dj in the grains as a function of the grain orientation
angle 8, for # = 0.01, calculated with the present model for an imposed strain-rate
heterogeneity parameter r = (.52 (circle) and with the CS! model (solid line).

5. Conclusions and discussion

A variational micro-macro model has been numerically implemented to pre-
dict the strain-rate distribution in polycrystalline ice, when the behaviour of the
constituent crystals is assumed linearly viscous (i.e., an anisotropic fluid). This
convenient assumption is suggested by an analysis of data resulting from deep
ice-cores [11]. The variational problem defining the model allows a continuous
transition between the extreme (Taylor-Voigt and Reuss-static) models, depend-
ing on the value of the strain-rate heterogeneity parameter r. In this work, the
numerical solution of this variational problem with constraints has been found
by using a saddle point method. This has proved more accurate and even more
efficient than the penalty method that was used previously, though it should
be remembered that the linear behaviour, as envisaged here, leads to a simpler
minimization problem.

From the strain-rate distribution, obtained as the solution of the minimization
problem, it is easy to deduce the stress distribution and the effective behaviour.
All three depend on: (i) the crystal behaviour, here characterized by the crys-
tal viscosity 7 and the crystal anisotropy parameter (3, (ii) the heterogeneity
parameter r and (7i7) the (current) texture or orientation distribution. In this
work, a uniform texture has been considered, thus leading to an isotropic effective
behaviour (for an application to non-uniform textures see [8]). The effective be-
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haviour depends then only on #, # and r, and is found to be an isotropic linearly
viscous behaviour, involving an effective viscosity 7iso. The ratio nis, /7 depends
analytically on £ and r (Eq. (4.4)). Since 7is0/n and B can be constrained from
experimental data, this leads to an evaluation of the heterogeneity parameter r,
which is found to be high: r/R =~ 0.9, where R is the strain-rate heterogene-
ity that corresponds to the static model. In contrast, the self-consistent model
predicts r/R =~ 0.4, which seems incompatible with experimental data. Thus,
the behaviour of polycrystalline ice seems to be much closer to the static model
than is the self-consistent estimate. This is probably due to the strong material
heterogeneity, which is likely to favour a behaviour close to the static model.

Wtlen using “one-point” (volume fractions) models like self-consistent models
or that investigated here, one hopes that the discrete strain-rate and stress distri-
butions calculated by the model are representative of the actual strain-rate and
stress ields and, in particular, allow calculation of the macroscopic work-rate as
the comesponding discrete average. This needs the no-correlation condition (4.5)
to be falfilled. However, it has been found that the distribution predicted by the
model used here, and which depends on the heterogeneity parameter r, does not
satisfy Eq. (4.5), except for the extreme models (r = 0 or 7 = R). The same is
true fo the self-consistent model (it has been found that the self-consistent model
corresponds almost exactly to the model used here for a particular value of r).
The aralysis of this condition by ARMINJON [6] and by ARMINJON and IMBAULT
[7], suzgests that the use of a one-point model cannot be entirely satisfactory
as the material heterogeneity (here the parameter 1/8) is high. More precisely,
it is less justified in that case to assume that the volume average of the stress
field in a given constituent is related to the corresponding strain-rate average by
a consitutive relation. If one keeps using a one-point model to get the effective
behaviur, one should probably consider that the macroscopic work-rate is given
by theleft-hand side of Eq. (4,5), which is greater than the right-hand side. This
would mean that some additional “accommodation work” is not included in the
r.hs. of Eq. (4.5), being due to the correlated heterogeneity of the microscopic
fields ¢ and d at the sub-constituent scale. There is also the possibility to use a
modelinvolving a description of the micro-geometry (see e.g. [29]), at the price
of signficantly increasing the computation time.
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