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Thermomechanically consistent formulations of the standard
linear solid using fractional derivatives

A. LION

Institute of Mechanics, University of Kassel,
D-34109 Kassel, Minchebergstrafie 7

WE STUDY THE THERMOMECHANICAL properties of a frequently used fractional general-
isation of the standard linear solid. Its mathematical structure arises from an ordinary
linear differential equation between stress and strain when replacing the first order
time rates by fractional derivatives of the order 0 < «, < 1. If the parameters o
and /3 are not further restricted, the model leads to an unphysical behaviour. In the
case of harmonic deformations the dissipation modulus can become negative. This
corresponds to a negative entropy production and violates the second law of thermo-
dynamics. Then we propose two generalisations of the standard linear solid which are
based on a so-called thermodynamically consistent fractional rheological element. It
possesses a non-negative free energy and rate of dissipation for arbitrary deformation
processes and is compatible with the second law of thermodynamics. The differential
equations between stress and strain of the proposed generalisations contain also frac-
tional derivatives of different orders but both the dynamic moduli and the relaxation
spectra are non-negative functions of their arguments. No restrictions on the material
parameters are required.

Notations
E, €0 strain, strain amplitude
o, 0o stress, stress amplitude
w angular frequency
a, &, G complex modulus, storage modulus and dissipation modulus
) specific dissipation
¥, Ymean free energy, temporal mean value of the free energy
p mass density
v, H(v) relaxation frequency, relaxation spectrum
wy dissipated energy per loading cycle
d* f/dt® fractional derivative of a function f(t)

1

imaginary unit

E, G, E., Eg, E, elasticity parameters

a, B, parameters of fractional differentiation

Ty TRy, TC time constants
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1. Introduction

THE FRACTIONAL CALCULUS as a tool to formulate constitutive models is a fairly
modern field of scientific research which fits the theory of linear viscoelasticity.
Its fundamental idea is based on real-order derivatives of stress and strain which
occur in the constitutive equations. If we formulate, for example, a so-called
fractional damping element of the type 0 = E7%d% [dt® with the order 0 < o < 1
of fractional differentiation, we can show that it interpolates between two limit
cases: linear Hookean elasticity corresponds to @ = 0 and linear Newtonian
viscosity to @ = 1 (see e.g. L1ON [11]). In the intermediate region, i.e. for 0 <
a < 1, it leads to strongly nonlinear stress-strain characteristics (power functions)
and to a relaxation or creep behaviour of the power law type; it can be shown
that the dynamic moduli and compliances are also of this type. More complicated
models containing fractional derivatives lead to creep and relaxation functions, for
example of the Mittag Leffler type (cf. KOELLER [10], MAINARDI and BONETTI
[15], NONNENMACHER [17] or LiON [11]) and are frequently applied to represent
the short and long term behaviour of viscoelastic materials (cf. BAGLEY and
ToRVIK [1], METZELER et al. [16], LiON [12] or HAUPT et al. [7]). In the case of
many viscoelastic materials one can observe a very fast rate of relaxation at the
very beginning of the process (short term behaviour) and a super-slow rate after
some time (long term behaviour). These phenomena can easily be represented
using fractional calculus because one needs only a very few number of material
parameters. On the basis of relaxation functions of the exponential type one
would need a very large number of terms and thus of material constants. The
authors BAGLEY and TORvic [1] have shown that the dynamic behaviour of a
corning glass can by represented over seven log cycles in the frequency domain by
means of a fractional model containing only four material constants. A model of
similar type was applied by HAUPT et al. [7] to describe the dynamic properties
of polyethylene and by HARTMANN et al. [6] to represent the creep behaviour of
concrete. Models of the fractional type have also been implemented into finite
element codes (cf. SCHMIDT et al. [19]).

The fundamental theory of viscoelasticity based on the fractional calculus
was originally applied by CAPUTO and MAINARDI [3]. HEYMANS and BAUWENS
[9] worked out relations between self similar rheological models and fractional
differential equations. In addition to this, they proposed fractional differential
equations whose structure is motivated more or less by rheological models. An in-
teresting question concerns the thermodynamical properties of linear viscoelastic
models containing fractional derivatives. A first attempt towards this direction
was undertaken by BAGLEY and TORVIK [2] who derived restrictions on the mate-
rial parameters to satisfy the non-negativity of dynamic moduli under sinusoidal
loadings. Unfortunately, the free energy function is not specified in their paper.
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For comparison, FRIEDRICH [4] has investigated the temporal decay behaviour
of the relaxation function belonging to a fractional differential equation under
thermodynamical aspects.

The present work starts with some fundamentals of fractional calculus and
the classical theory of linear viscoelasticity. Then we study the thermodynam-
ical properties of a frequently used generalisation of the standard linear solid.
We demonstrate that this type of generalisation, named type A, can violate the
natural laws of thermodynamics if the material constants are not chosen cor-
rectly. Motivated by this result, we propose a systematic approach to formulate
fractional generalisations of the standard linear solid, named type B and C. It
is based on rheological networks of fractional damping elements. These models
lead, for example, to non-negative relaxation spectra and dynamic moduli for
any values of their parameters and arbitrary loading processes.

2. Fundamentals

In order to prepare the following studies, let us summarise some basic proper-
ties of the dynamic moduli in the sense of the classical theory of linear viscoelas-
ticity. For more details and a deeper understanding concerning the mathematical
theory of linear viscoelasticity we refer the interested reader to the textbooks of
TSCHOEGL [20] and GROSS [5].

Let us assume that we have a linear viscoelastic material which is loaded by
a uniaxial harmonic deformation process (t) of the type

(2.1) e(t) = eo sin(wt).

As we know, the stationary stress response o(t) is also a sinusoidal function and
can be written as

(2.2) o(t) = eo(G' (w) sin(wt) + G" (w) cos(wt)).

The parameter w is the loading (angular) frequency and g the deformation am-
plitude. The frequency-dependent storage modulus G’(w) describes that part of
the stationary stress response which is in phase with the deformation process.
The function G”(w) is the dissipation modulus representing that part of stress
which is in phase with the deformation rate.

2.1. Thermodynamic compatibility in terms of the relaxation spectrum

In continuum mechanics it is a common practise to express the second law
of thermodynamics in the form of the Clausius Duhem inequality. For details we
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refer the reader to HAUPT [8]. In its uniaxial and isothermal form the Clausius
Duhem inequality reads

(2.3) §=—pp+0€ >0,

where o is the stress, £ the strain, d the rate of dissipation and pt) the specific
free energy per unit volume. This inequality expresses the fact that the temporal
change in the free energy has to be equal or smaller than the supplied stress
power. In the case of linear viscoelastic constitutive models possessing a so-called
relazation spectrum H(v), it can be motivated that the isothermal free energy,
i.e. the mechanical energy which is stored in the material, has the functional
form

o0 4 2
(2.4) pb(t) = % f H(v) f e t=9)¢(s)ds | dv,
0 0

where the variable v is the relaxation frequency or the reciprocal relaxation time
(cf. LioN [11]). Now we show that a model of linear viscoelasticity whose free
energy is given by (2.4) with

(2.5) H(v) >0

is compatible with the second law of thermodynamics. To this end we calcu-
late the material time rate of (2.4), insert the result into the Clausius-Duhem
inequality (2.3) and rearrange terms:

L

(26) 0= |o— [ Hw) | [ et De(s)ds | dv]| €(t)
fro(f

0
0o t “
+/vH(u) /e'”("“)é(s)ds dv > 0.
0 0

In order to satisfy this inequality for any value of the strain rate at the current
time £, the first term in brackets has to vanish. Interchanging the sequence of
integration in the first term leads then to the following relations for the stress
and the rate of dissipation:

t 00

(2.7) o(t) =/ /H(v)e""“_s)dv £(s)ds
0

0
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0o t 4
1(2'?; and  §(t) = / vH(v) f e =0e(s)ds | dv > 0.
0 0

Taking a look at (2.7)2 we see that the rate of dissipation §(t) is non-negative if
the relaxation spectrum H (v) is non-negative; the same statement is valid for the
free energy (2.4). If we have any constitutive equation of linear viscoelasticity and
we can show that its relaxation spectrum is non-negative, the model is compatible
with the second law of thermodynamics. Thus H(v) > 0 is a sufficient condition
for thermodynamic compatibility.

2.2. Thermodynamic compatibility in terms of the dynamic moduli

Let us consider the general stress-strain relation given by (2.7); and a har-
monic deformation process in the form of (2.1). Based on standard calculations
we can demonstrate that the asymptotic stress response has the form of (2.2)
where the storage and dissipation moduli read

@8 @' /H

In order to express the free energy #(t) and the speciﬁc dissipation 4(t) in terms
of the dynamic moduli G’ and G” we take the sinusoidal deformation £(t) =
g0 sin(wt) into account, evaluate the formulae (2.4) and (2.7)2 and consider large
times t, so that the initial transients are vanished. As an intermediate result we
obtain the relations

du and G"(w H(v dv.
u2+w3

2

bt 2
29) (1) =2 [ H) [ 5 sin(wt) + s cos(wt) | dv,
2 vé 4+ w v 4w
0

and
o 2
5 9 7 v
(2.10) 5(t) =€ | vH(v) A sin(wt) + St cos(wt) ) dv
0

leading finally to

& OOH( H(v)(w* — w??)
50 —
(2.11) = 1 / +w2du / 1) dv cos(2wt)
0
T Hw
+2 / 3 +w2 dusm{Zwt)
0
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and
2, 1 E 2
_ Egw H(v H(v)(v® — vw?)
(212} 4= 5 / 3 du + w/ 02+ o2 dv cos(2wt)
0
-+ Qw/ £y dusm{?wt}
0

Comparing these integrals with the dynamic moduli (2.8), we can show that
the final form of the free energy and the specific dissipation under sinusoidal
deformations can be written as

!

2
(2.13) pY(t) = %U (G’(w] - (G'(w] - w%) cos(2wt)

+ (G”(w) - w%) sin(?wt))

and

2 " !
& [ dG' dGg' .
(2.14) 8(t) = (G’ (w) + w—— cos(2wt) + W sin(2wt) | .

These expressions correspond to those which were obtained earlier by TSCHOEGL
[20] but on the basis of different mathematical techniques. As we see, the current
values of the free energy #(t) and the rate of dissipation §(¢) depend in a compli-
cated manner on the storage and dissipation moduli as well as on their first and
second derivatives with respect to the frequency w. Both expressions consist of a
positive mean value which is superimposed by harmonic oscillations. Since both
mechanisms energy storage and dissipation occur in tension and compression as
well, it is obvious that 9 and ¢ depend on the double frequency 2w.

2.3. Consequences for the storage and dissipation moduli
Let us estimate the amount of energy wy dissipated per loading cycle. To
this end we integrate the specific dissipation (2.14) over one cycle and obtain
t427 fw
(2.15) wy = / 8(s)ds = meaG" (w).
t

Since wy or equivalently, the hysteresis area under cyclic stress strain curves
are non-negative, the dissipation modulus G”(w) has to be non-negative for any
frequency w:

(2.16) G"(w) >0
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Otherwise the model violates the natural laws of thermodynamics. In addition
one can show that the expression wy = me3G" (w) is also valid in the case of non-
linear constitutive models whose stationary stress response is given by a complete
Fourier series (cf. LioN [13]). Calculating the temporal mean value of the free
energy (2.13) over one cycle, we obtain

€8
(2.17) PY¥mean = EG (w),

implying G'(w) > 0 and confirming the interpretation of the storage modulus G’
assumed by FERRY [21]. Taking an additional look at (2.13) we see that the free
energy reduces to

et dG'

(2.18) pp(te) = Zwa

for wtp = km and k = 0,1,2, ... implying dG'/dw > 0, i.e. the storage modulus
is an increasing function. Additional consequences can be derived by analysing
(2.13) and (2.14) in more detail but this is not the aim of the present work.

2.4. Introduction to fractional calculus

The mathematical theory of the fractional calculus is explained in detail in
the textbook of OLDHAM and SPANIER [18] but we also refer the reader to the
original paper of CAPUTO and MAINARDI [3]. For our purpose we apply the
Riemann Liouville definition and define the operator of fractional differentiation
of real order a > 0 as

t
daf d*

e 1 m—a—1 &
(2.19) 8 = F(m—a)/s f(t—s)ds ],
0

where the natural number m is chosen so that m—a > 0and m—a—1 < 0. The
quantity I'(z) is the Eulerian Gamma function satisfying the functional relation
z['(z) = '(z + 1). Carrying out the differentiation d™/dt™ of (2.19) we find the
equivalent representation

t

duf = (k_q}f(k]( m—o— ldm
R0l kz Th+l-a) ' l"(m a) fs ggm /(& — 8)ds.

0

As we see, the sum incorporating the initial conditions of the function f(t) van-
ishes for large values of ¢; if f(t) satisfies homogeneous initial conditions, it is
even zero. To calculate, for example, the fractional derivative of order 0 < a < 1
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we set o = 1 so that the sum is given by only one term. If f(t) satisfies the
initial condition f(0) = 0, this term is zero and we obtain

t

af _ /
. <
(2.21) = )" s)ds with 0<a<l.

0

In the case of 1 < a < 2 we have to set m = 2 in (2.20) and to prescribe an
additional initial condition. In other cases one has to proceed in a similar way.

Since we shall calculate the dynamic moduli corresponding to fractional dif-
ferential equations between stresses and strains, we need the fractional derivative
of the complex exponential function

(2.22) z(t) = e

in the stationary case, i.e. for large times ¢ where the influence of the initial
conditions is vanished. Application of (2.20) then leads to the expression
t ! 00
dC[

S sl m-a-1,—iws inmQWt / m-—a-1,-iws 4
(2.23) i [‘(m i /s ds = | s e s
0 0

where the upper limit of integration can be replaced by oo under stationary
conditions. Introducing the transformation iws = u we obtain the intermediate
result

: 00
- YU i )2 ptwt
(2‘24) d ik (u"’} € /u(m—-aj-le—udu,

O I'(m - a)
0

where the integral in the limits between u = 0 and u = oo equals the Eulerian
Gamma function I'(m — a). Thus we found the simple relation
a* o

. Ao dwt
(2.25) dtc'e = (i) "e™",

which holds under stationary conditions for any real number a > 0.

3. Standard linear solid

Let us first define the so-called standard linear solid which is visualised in
Fig. 1.

The model is given by a linear Maxwell element (modulus E and viscosity 7)
which is in parallel to a Hookean spring with the modulus G. The stress o splits
into oy and o9, the strain € into £; and &;,, and the constitutive relations read
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G
E n|_
: E" e 8in W
= E Sl

F1G. 1. Standard linear solid.

(3.1) o = oy + o9,
(3.2) E = Eg| + Ein,
(3.3) a1 = Ge,
(3.4) o2 = Eeq,
(3.5) 02 = 1in.

After some calculations and eliminating the internal variables we obtain the fol-
lowing differential equation of the first order between the stress and the strain:

E
(3.6) TrO+0=G(Tcé+¢€) with 7= % el U, ;G

For the purpose of calculating the complez dynamic modulus G* = G' +1G" we
prescribe a harmonic deformation in the form of a complex exponential function

(3.7) e(t) = eoe™”,
where g¢ is the strain amplitude. For the stationary stress response we assume
(3.8) o(t) = og(iw)e™!,

where og(iw) is the frequency-dependent stress amplitude. Inserting (3.7) and
(3.8) into (3.6) and application of (2.25) leads to

1 + (iwte)

(3.9) oo =G"(iw)eg with G* = Gl v o

Computing the real and imaginary parts of G* we obtain the storage and dissi-
pation moduli

L+ wlrpre d G"= w(te — TR)

#10) & = P e e
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Taking a look at (3.10)2 we recognise that the dissipation modulus G” is non-
negative for arbitrary frequencies w. Considering (3.6) we see that the require-
ment 7¢ > Tg is automatically satisfied for the standard linear solid.

4. Fractional generalisation (Type A)

To obtain a so-called fractional generalisation of the standard linear solid (3.6)
there are different methods. From the point of view of the author, a quite formal
generalisation, named as type A, can be obtained if one replaces the first order
time derivatives of stress and strain in (3.6) by arbitrary non-integer derivatives
0<a<land0<f <1 (cf. BAGLEY and TORVIK [2]):

d%o gd’e
4.1 Tp—+o=G|1,—= +¢€].
&h R dta C dtP
The powers of the time constants 75 and 'rg. have been introduced for dimensional
reasons and in comparison with (3.6), the model now contains 5 non-negative
material parameters. For the purpose of computing the dynamic modulus G*
we apply a harmonic deformation in the form of (3.7) and assume stationary

conditions so that the stress is given by (3.8). Inserting these assumptions into
(4.1) and application of (2.25) leads finally to the modulus

- Gl + (iw'}"c)ﬂ

i & = T )

To calculate the real and imaginary parts G’ and G” of G*, we need the following
representation of the a-th power of the imaginary unit i = /—1:

(4.3) i® = €"/% = cos(ar/2) + isin(an/2).

Taking this formula in combination with the modulus (4.2) into account leads to

(44) &=6

: 1 + (w7c)? cos(Bm/2) + (wTRr)* cos(am/2) + (f,erJ"(w'rc)*6 cos ((8 — a)%)
1+ (wTr)2® + 2(wTR)™ cos(am/2) .

48 @'=G

(wre)? sin(fr/2) — (wrgr)® sin(ar/2) + (wTRr)*(wre)? sin ((ﬁ - a)%)
1+ (wrr)?® + 2(w7R)® cos(am/2)

for the storage and dissipation moduli. As we see, the storage modulus G’ is
non-negative for any frequency w > 0 but the numerator of dissipation modulus
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G"(w) contains one term with a minus sign. In addition we recognise that the sign
of the third term changes in dependence on the difference between the fractional
orders o and 3 of the stress and strain differentiation.

4.1. Investigation of dissipation modulus and relaxation spectrum

To analyse the frequency-dependence of the dissipation modulus (4.5) let us
start with the case of # > «, so that the sign of sin((8 — a)m/2) is positive. Then
we rewrite the modulus G” as

wﬁ“"rg sin(fw/2) — 7§ sin(an/2) + ‘rg'r}’éwﬂ sin(f — a)7/2)
1 + (wrgr)?® + 2(wTR)? cos(am/2)

(46) G"=Guw"

Since we assumed both 8 > 0 and 8 — a > 0,the power functions w? and wP—°
tend to zero in the limit w — 0. Thus for sufficiently small frequencies, the
dissipation modulus becomes negative provided that the other material parameters
are different from zero, i.e. @ > 0, G > 0 and 7 > 0. In the case of a = 0 or
7r = 0 the dissipation modulus remains non-negative for any value of w. The
same statement holds in the case of G-rg > 0 and G = 0 which can easily be
realised by introducing a new parameter for the product Gfg. in the fractional
differential Eq. (4.1). Taking a look at Eq. (4.1), the cases of « = 0 or T = 0
are nearly identical but the requirements GTg > 0 and G = 0 would change the
type of the model.

For the purpose of analysing the case of & > f we rewrite the dissipation
modulus (4.5) as

TgSill(ﬁ‘i‘T/Q) — w* P72 sin(ar/2) - TCTRw sin((a — B)n/2)

e "no__ 8
47) G"=Gw 1 + (wTr)?® + 2(wTR)® cos(an/2)

Since a@ > 0 and a — 8 > 0 is assumed, the terms w® and w®? tend to oo in
the limit w — co. As a consequence, the dissipation modulus G” tends to —oo
for sufficiently large frequencies. Looking at Eq. (2.16) this corresponds to an
unphysical effect.

In the third case of & = 3 the dissipation modulus G” (cf. Eq. (4.5)) can be
simplified to the expression

w®*(7& — 7§) sin(am/2)
1 + (wrr)?® + 2(wTgr)® cos(an/2)’

(4.8) G"=G

which is non-negative for any frequency if the condition 78 — 75 > 0, or equiva-
lently 7¢ > g, is satisfied. If we compare (4.8) with the dissipation modulus of
the standard linear solid (3.10); we observe similar mathematical forms.
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Practically the same properties can be found if we analyse the relaxation
spectrum H(v) of the model defined by Eq. (4.1). The common method to
compute the spectrum on the basis of the dynamic modulus uses the inverse
Stieltjes transformation (cf. GROSS [5] or TSCHOEGL [20]):

T S

To calculate the spectrum on the basis of Eq. (4.9) we rewrite the complex number
—v + 1y in terms of the complex exponential function and carry out the limit
transition:

(4.10) lim —v + iy = lim /12 + y2eFi(r-arctan(v/v)) — ) pdim
70 ¥—0

Inserting this formula into Eq. (4.9), considering the complex modulus Eq. (4.2)
and elementary calculations lead to the following relaxation spectrum:
(411) HW)=G
(v1ec)? sin(fw) — (v7R)® sin(aw) + (.'ITR)Q(VTC)'S sin((f — a)n)
(1 + (vTR)%® + 2(vTR)® cos(a))

Since the mathematical structure of Eq. (4.11) is similar to that of the dissipation
modulus (4.5), the same changes in sign of the numerator occur, but now as
a function of the relaxation frequency v. Since the analysis would run along
the same lines as before, we do not repeat it here. Let us take a look at the
general expression for the rate of dissipation (2.7),. Since the spectrum H(v)
can be negative in certain ranges of the relaxation frequency, there may exist
deformation processes which lead to a negative rate of dissipation, excluding the
case of & = 8 with 78 — 7§ > 0. The result that only the case @ = f is physically .
meaningful was proposed by a different line of argumentation by BAGLEY and
TORVIK [2].

This analysis has shown that the formal generalisation (type A) of the stan-
dard linear solid leads in general to thermodynamically inconsistent models which
can have a negative dissipation modulus for certain processes. Only in the spe-
cial case where the parameters of fractional differentiation of stress and strain
are equal (a = ), the model leads to a non-negative dissipation modulus and a
non-negative spectrum. This type of a fractional model was originally applied by
CAPUTO and MAINARDI [3] but no thermodynamic analysis has been carried out.

5. Fractional generalisation (Type B)

In order to specify a more physically based generalisation of the standard
linear solid which is compatible with the natural laws of thermodynamics for any
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values of its parameters, we first consider a so-called fractional damping element.
It can be understood as an additional rheological element and is compatible with
the Clausius Duhem inequality (2.3) (cf. Lion [11]). Its free energy can easily be
specified and the proof of the thermodynamic compatibility is based on the non-
negativity of the relaxation spectrum. A fractional damping element is defined
by the linear functional

t
" 8% i
(5:1) at) = Ear™ g a(t) = I‘{l—a / t—s)" ds
0

with 0<a<l1,

where the constant 7 = 1s is introduced for dimensional reasons. Its relaxation

spectrum H(v) can easily be calculated (cf. TSCHOEGL [20] or LioN [14]),
E.m*

(1 - a)l'(a)ri-o’

(5.2) H(v) =

and is positive for E, > 0 implying that the rate of dissipation (2.7)y is non-
negative for any deformation process; thus the thermodynamical compatibility is
shown. As a consequence of Egs. (5.2) and (2.7);, the functional form Eq. (5.1)
of the fractional differential Eq. (5.1); can be rewritten as

(5.3) o(t) = / / —e =9 dy | é(s)ds.
1—-rx) T(a)vi—=

This equation can physically be interpreted and expresses that a fractional damp-
ing element in the form of Eq. (5.1) corresponds to a superposition of an infinite
number of continuously distributed Maxwell elements in parallel.

(+3

Egt? Ea®

— e =

FiG. 2. Fractional linear solid, type B generalisation.
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Motivated by this discussion we replace the rheological elements of the stan-
dard linear solid in Fig. 1 by three different fractional damping elements in the
form of Eq. (5.1). This idea is visualised in Fig. 2 and named the type B gener-
alisation.

The stress o is decomposed into the sum of two internal stresses, named oy
and o7 in Eq. (5.4) but this is not shown in the figure. In the lower branch
we have a splitting of the strain € into the sum of two internal strains €, and
gg corresponding to two fractional elements in series. As we see, the model
contains 6 material parameters, namely the non-negative constants E,, Es and
G as well as three parameters of fractional differentiation 0 < «, 8,7 < 1 and the
constitutive equations read

(5.4) o = 01+ 0y,
(5.5) € = Eq + €5,
(5.6) o = Gﬂg—:,
(57 0 = BarSle,
(5.8) oy = Egr? dj;ﬁ.

Comparing these relations with those of the standard linear solid (3.1) - (3.5)
we notice a similar structure. The fundamental difference is that the order of
differentiation in (3.3) - (3.5) is given by the integers 0, 0 and 1, whereas in (5.6)
— (5.8) it is given by the real numbers v, a and S.

To eliminate the internal strains and stresses €4, €5, 01 and oy, we first replace
the strain €, in Eq. (5.7) using (5.5) and differentiate the result fractionally with

the order f:
dP oy z (d""”ee d“+ﬁ65)
E, i

(5.9) di?F dtatB ~ qgotP

Then we differentiate Eq. (5.8) with the order «, rearrange terms and obtain the
intermediate result

da+ﬁ 1 de
(5.10) o =

dtetf — Egrf dte’

which can be used to eliminate the internal strain ez in Eq. (5.9). The final
result is

(5.11) 480 _ o arpd®tPe  Ear® doop

ap T GetB T TE; dte
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To eliminate the internal stress in Eq. (5.11) we express o2 by means of Egs. (5.4)
and (5.6) and find

d? de sl T d'e
B .55, fnilic ) [ a+f ¥
(5.12) 7~ (0 Gt ) = Eu7 e » FTY (0' Gt dt"f)

leading to the final expression in the form of

gdPo 4 d%0 d'+Pe detfe
- s v+ a+f
(823 = g e E,g as =0 gt BT Gars
Bs v nag B T
+ E—BGT de'o y

after rearranging terms. In comparison with the type A generalisation specified
by Eq. (4.1) we recognise an additional term on the right-hand side of Eq. (5.13);
all terms are fractionally differentiated with a different order. If we set, for
example, one of the parameters a or 8 to zero, we recognise that in Eq. (5.13)
no strain derivative of the order 0 occurs.

For the purpose of solving the fractional differential equation (5.13) one can
prescribe, for example, the deformation process . Since the orders a and g of
fractional stress differentiation are between 0 and 1, it is sufficient to prescribe
only one initial condition, namely o(0) = 0. Taking this into account, the frac-
tional differential operator in the form of Eq. (2.21) can be applied to differentiate
the stress. The strain differentiation is more complicated because, in dependence
on the values of the sums vy + 8, @ + # and 7 + a, the general form Eq. (2.20) of
the differential operator has to be taken into account. If we have, for example,
1 <y+ B <2, weset m=2in Eq. (2.20) and have to consider the initial value
of the strain rate. Assuming the initial strain £(0) to be zero we obtain

t

dtPe  t1-17F¢(0)
5.14 1=B-7¢(t — s)d
(5.14) e e T2 =~ - p) 0/3 E(t — s)ds.

Since the exponent 1 — v — 3 is negative, the first term incorporating the initial
strain rate vanishes for large times or under stationary conditions.
5.2. Investigation of dissipation modulus and relaxation spectrum

Under harmonic loads and the assumption of stationary conditions, the anal-
ysis in the frequency domain is much easier. In this case we assume the represen-
tations Egs. (3.7) and (3.8) for the strain and the stress, insert them into (5.13)
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and apply (2.25). Then the complex modulus reads

EoEp(iwr)2t?

(5.13) G =Gl e P Bl

Splitting (5.15) into real and imaginary parts leads to the formulae
(5.16) G’ = G(wr)” cos(ym/2)

E2Eg(wr)?** cos(Bm/2) + E.Ej} (wr)2*28 cos(am/2)
E2(wr)?e + Eg(wr)ﬁ + 2Eq Eg(wT)tP cos((a — B)7/2)’

(5.17) G" = G(wT)" sin(y7/2)

E2Eg(wr)?*P sin(Bn/2) + EqE3(wr)**? sin(an/2)
" B2(wn) + By(wn)? + 2B, Ep(wr)* 7P cos((a — A)r/2)’

for the storage and dissipation moduli. Taking a look at Eqs. (5.16) or (5.17)
we recognise that both functions are non-negative for any value of the frequency
w and any value of the material constants compatible with E,, Eg, G > 0 and
0£La,8,v <.

Calculating the relaxation spectrum H(v) on the basis of the inverse Stieltjes
transformation Eqs. (4.9) and (4.10), a series of calculations leads to the final
expression

(5.18) H(v)= % (G(UT)"’ sin(y~)

E2Eg(vr)?*P sin(Brr) + E(,EE (v7)2+28 sin(am)
E%(vr)? + E5(v7)% + 2E, Ep(v)*+F cos((a — B)7) |

which is non-negative for any value of material constants 0 < FE,, E3,G and
0 < a,B,v < 1. As a fundamental result we recognise that the fractional model
of type B is compatible with the second law of thermodynamics (cf. Sec. 2.1).

5.3. Correlation between the thermodynamical consistent form of type A and the model of
type B

The thermomechanical consistent form of the first generalisation, named type
A, corresponds to the case of @ = f in the fractional differential equation (4.1).
This model can very easily and without any further investigation be derived on
the basis of the type B generalisation Eq. (5.13). The only thing to do is to set
B =0 and v = 0. The result can be interpreted as a spring with modulus G in
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parallel with a fractional Maxwell element consisting of a spring with modulus
Ej in series with a fractional damping element. Let us confront both equations:

d®o L d% E, .d%
(5:19) TEF”:G( dt_ﬂ+€) 5@ O
‘G( G Es d= ¢

As we have shown, the requirement on the material constants for the thermo-
dynamical consistency of the type A generalisation Eq. (5.19), is 78 — 7§ > 0.
If wee take a look at Eq. (5.19);, we see that this requirement is automatically
satisfied if the generalisation is based on fractional damping elements.

6. Fractional generalisation (Type C)

To discuss a further generalisation based on the fractional damping element,
let us take a look at Fig. 3, where the type C generalisation is shown. The
rheological model corresponds to the Kelvin-Voigt form of the three-parameter
solid: a linear spring is in series with a Kelvin element.

EX
G TT L

Egt?
e——gs e—— & —>

L
a3

m

F1G. 3. Fractional linear solid, type C generalisation.

The corresponding constitutive equations read

(6.1) £ = & +é9,
(6.2) 0 = 0q+0p,
(6.3) g = GT*‘{:;*,
(6.4) O = EaTa%a
(6.5) o = Epr djjﬂ"‘,
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and the fractional differential equation in the form of (6.6), where the internal
variables are eliminated, can be obtained in a similar way as described above,

d'c Eg zdPc E, ,d% d*+7e d?te

P ol Wi/ P el P 3 a+y B+

(5.9 TG Bt e ae BT gen T BT
In comparison with (5.13), this equation contains three terms depending on the
stress o and two depending on the strain €. The dynamic modulus G* is cal-
culated under the assumption of stationary conditions and harmonic stress and
strain processes and reads

GE,(iwT)*t + GEg(iwt)?+7

(6.7) & = Glawn) + Bawr)? + Ealiwn)®

Splitting the modulus G* into its real and imaginary parts G’ and G" and calcu-
lating the relaxation spectrum on the basis of the inverse Stieltjes transformation
specified by Egs. (4.9) and (4.10), leads to

Ba @ gy W g ML

with
(69) ¢ =GPn)? (E (wr) cos (%) + By(ur)? cos (%“))
+ Gur)eos (3) (B3(wr)™ + Bj(wr)®
+ 2Eq,Eg(wr)**? cos ((”—'2@)) :
(6.10) g¢" = G(wr)?" (E (wr)®sin (“‘2 ) + Ey(wr)? sin (%))
+G(wr)"sin (72 ) (E? (wr)2 + E3(wr)?

+ 2EaEﬁ(WT}a+ﬁ cos (((1-_—2,6_)1?)) ,

(6.11) N = EX(wr)*® + Ej(wr)® + G*(wr)* + 2E,G(wr)**" cos ((“ ; T)ﬂ)

2

+ 2E3G(wT)?*7 cos (w—_z?ﬁ) + 2Eq Eg(wr)** cos ((cx_—?'l)_:r_r) g

http://rcin.org.pl



THERMOMECHANICALLY CONSISTENT FORMULATIONS OF THE STANDARD... 271

(6.12)  h=G*(wr)¥(Eq(vr)®sin(ar) + Ez(vr)? sin(fr))
+ G(vr)? sin(']f:rr)(;n':')g(:fr)g’JI B I.‘ij:;-j.(f.rr)zJf3

+ 2B, E5(vr)**? cos((a — B)7)),
(6.13) M = E%(v7)* + E3(v7)% + G*(v)? + 2E4G(v7)** cos((a — 7))
+ 2E3G(v7)P cos((B — v)7) + 2E,Eg(vt)®t7 cos((a — ¥)7).

Taking a look at the relations (6.8) - (6.13) we see that both the dynamic moduli
G'(w) and G"(w) and the relaxation spectrum H(v) are non-negative functions
of their arguments for any values of material parameters satisfying Eo, Eg, G > 0
and 0 € a, 8,7 < 1.

6.1. Correlation between the thermodynamical consistent form of type A and the model of
type C

The thermomechanical consistent formulation of the type A generalisation,
i.e. the case o = f3, can also be derived on the basis of the type C generalisation
(6.6). If we set § =0 and v = 0 we obtain the fractional differential equation in
the form of (6.14)s:

oo % Fo o d%
(6]4) TRF+J_G(TCW+E)1 G+Eﬁ‘?’ dfﬂ +o
e G+Eﬁ( By’ dt0+e)

As shown above, the requirement on the material parameters to satisfy the ther-
modynamical consistency of (6.14), is 78 —7f > 0. Comparing (6.14); and (6.14)
we notice that this condition is automatically satisfied if the fractional general-
isation of the standard linear solid is based on the rheological model visualised
in Fig. 3.

7. Discussion

In this paper we demonstrate that the quite formal generalisation of linear
differential equations by replacing the first order time derivatives by fractional
derivatives leads in general to thermodynamically inconsistent constitutive mod-
els. We show that the relaxation spectrum and the dissipation modulus can
become negative, so that the natural laws of thermodynamics are violated. In
order to avoid these problems we propose a more physically-based method to
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formulate constitutive relations of the fractional type: to this end an additional
rheological element, a so-called fractional damping element, is introduced which
is compatible with the natural laws of thermodynamics. The idea of the pro-
posed method is to replace the Hookean springs and Newtonian dashpots in a
given rheological network by rheological elements of the fractional type. For two
special examples we show that the relaxation spectra and the dynamic moduli are
non-negative for arbitrary values of the material parameters and the independent
process variables. It is obvious that the proposed method of generalisation leads
not to the most general form of a fractional constitutive model but it leads to
a thermodynamically consistent model. We are sure that this method can also
be applied to formulate more complicated models of the fractional type and to
formulate three-dimensional stress/strain relations. In the isotropic case one has
only to replace the uniaxial stress and strain variables by the stress and strain
deviators and to formulate corresponding relations for the hydrostatic pressure
and the volume deformation.
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