Arch. Mech., 53, 3, pp. 243-252, Warszawa 2001

Modeling of elastic slab with periodic breaks
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AN ELASTIC SLAB having periodic breaks across its cross-section is loaded by space-
harmonic forces applied to its surfaces. Due to the breaks, the slab displacement
response to the load includes a series of space-harmonics, A method is proposed for
evaluation of the slab harmonic response within a presumed spectral domain.

1. Introduction

PERIODIC STRUCTURES are frequently encountered in mechanical constructions:
as a modern example recall a space-shuttle frame with periodically attached
ceramic tiles of comparable stiffness. Other examples are: 1) an elastic body (a
halfspace, for instance) with surface-breaking or subsurface cracks, 2) similarly
looking is the composite ultrasonic transducer with deep periodic cuts that lower
its acoustic impedance, 3) a plate with ribs, composite structure with periodic
fillings between bonds, etc. In all cases the period of the structure (the period
of elastic slabs that can be distinguished as attached to a solid frame) can be
comparable to a wavelength of the applied traction, so that any simplifications
like homogenization or equivalent discrete loading is not appropriate for serious
analysis. Also note that in all the above cases, there is a uniform frame that
keeps the slabs in order.

The solid frames in the above examples, an elastic halfspace or an elastic
plate, can be conveniently characterized by a planar harmonic Green’s function
that is the relation between the surface displacement and the surface traction
for any spatial frequency of these surface wave-fields, say © = GT in standard
notation. If we know the similar description for the layer of periodic slabs men-
tioned above, say us = HTy, then the boundary-value problem for static defor-
mation or vibration of the structure can be formulated like u = ug, T' = T, on
the contact plane. Evaluation of H is the ultimate goal of the analysis; simple
one-dimensional structure is considered in this paper (Fig. 1) but there are no
substantial obstacles in generalization of the presented method.
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FiG. 1. The analyzed elastic slab with periodic breaks, and the slab deformed under the

load of ‘improper mode’ in the domain (—A/2, —w) + (w,A/2) (with auxiliary load in

the shadowed area that allows the first part of the slab to relax at breaks). This, and

the similarly evaluated deformation in the other domain, yield together what is shown
in the bottom figure. Note the displacement discontinuity at breaks.

The vibration (or static deformation) of such structures poses a rather dif-
ficult problem that, naturally, can be solved using purely numerical methods.
Analytical approach, being valuable due to its ability to bring better under-
standing of the analyzed structure, requires models of its components; here — a
model of a broken slab. It is evident that the broken slab works as an entity only
when attached to a certain solid frame (otherwise its periodic components would
spill in chaos). This must be taken into account by allowing suitable functional
space for deformation and stress fields in the system.

A natural choice is a domain of harmonic functions; moreover, the harmonic
analysis is a primary tool in the theory of periodic structures [1]. Here, the
mechanical field is expanded in a Bloch series like this

(1.1) V(z,y) = Z\I,[n) (y)e-—j(r+nl\’}::,
n

where K = 2m /A, A is the period of breaks distributed along the z-axis of the
2d-thick elastic slab (Fig. 1, here the field is considered to be independent of
z, and z-component of displacement is neglected for simplicity; also note that
there are two breaks per period); r is a spectral variable, and 0 < r < K to
avoid ambiguity (the inverse Fourier transform becomes an integral over r, any
aperiodic field can be represented by the above series [2]).

The planar harmonic Green’s function (actually a matrix H dependent on r)
characterizing the analyzed slab is sufficient for most applications. It is involved
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in the relation
(1.2) [u™)] = [H®™)[T(m)],

where u is the particle displacement vector on either of the slab surfaces (y = Fd);
T is the corresponding traction (surface load) on these surfaces, and n,m are the
harmonic numbers in the Bloch series (1.1). It is convenient to define u(™ and
T(™) as 4-dimensional vectors describing fields on both slab surfaces, y = —d
d, explicitly: u = Ju7,uz,u7,u3]%, and similarly T = [T5;, T, To-, Toh]T, with
superscripts —, 4+ referring to y = Fd.

For a homogeneous slab without breaks, all matrices H™™ = () except for
n = m, and H"™ dependent on spectral variable p = r + nK € (—o0,00), can
be easily derived analytically (Appendix) from the known equations of motion
of isotropic homogeneous elastic layer [3 — 5|; this is an ordinary boundary-
value problem of mechanics [6] discussed briefly in the next section below. The
slab with breaks however, includes all matrices H™*) because of its periodic
inhomogeneity. This is the aim of this paper to propose a method for their
evaluation. The method is described on a certain simple example.

2. Fields in homogeneous slab

Deformation of isotropic homogeneous elastic slab is governed by a system of
second order differential equations

(2.1) Lu=0,

which, assuming z-dependence in harmonic form exp(—jpz) (and also exp jwt in
the case of time-dependent vibrations), leads to the system

d? _ d
hagte = PPN+ 2u)ug — jp(\ + #)‘C‘@“y =0,
42 _ d
(A + 2#)d—y2uy - PPy — jp(X + u)@uz =,

in the example for isotropic elastic body characterized by Lamé constants pu, A,
under a possible static surface load that is to be accounted for in boundary
conditions, but without any internal forces [6].

The system (2.1) has four partial solutions ¢ (y); conditions ¢r(y = 0) = 1
normalize these solutions. The field inside the slab is

ui(2,y) = S Uiy bk (y) Fre ™72,
Tij(z,y) = Xk Tijk) bk (y) Fre P2,
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where coefficients Fj, can be evaluated from the boundary conditions of the given
boundary-value problem,

(2.3) Toi(y = Fd) = Y oy (y = Fd)Fi,
k

for instance (neglecting harmonic dependence on z), which substituted into
Egs. (2.2) yield Eq. (1.2) presented earlier, with substitution p =7 + nK.
The field at y =0 is

ui(z) = 34 Uiry Fre 777,

(2.4) H .
T (z) = Xk Tix) Fre ™77,

for instance, due to ¢x(0) = 1.

3. Slab with breaks — deformation modes

For simplicity of the presented example, only the stress component 7j; is
required to vanish at breaks and only at the center of the slab cross-section (at

y = 0). There are two required conditions, at z = —w and z = w (w < A/2,
Fig. 1):
(3-1) Tlllx:—w = 01 and Til[.?::w =0:

The involved stress depends on the applied Bloch expansion components,

(32) T“(j; =—w,y = 0) = Z T(ﬂ-}F(ﬂ)ej(f-i-nlf)m’

n

(3.3) Tu(z = —w,y =0) = Y TFme-irnkw,
n

where each F(") is a 4-dimensional column vector [F], and similarly T™). The
summation over harmonics is limited to finite numbers, say n € (—N, N]; this
defines the representation space for the mechanical field in the slab. Applying
large N, one gets better representation at the cost of computation time.

Now, it is necessary to evaluate a vector F (comprising all F(")) that mini-
mizes the divergence of the solution from the conditions (3.2); explicitly, a mini-
mum is sought of

Tfn)e—j(r‘+nK}w

T(n) jlr+nK)w
(3.4) £ =FA'AF, A = [ hlg ]

where F/ and A’ are Hermitian conjugate to column vectors [F(™)] and [A(],
correspondingly, and T depends on all Tix) of Egs. (2.4).
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It is evident that the null-space O of E = A'A solves the problem. In this
particular case, the size of the null-space is 2N — 2, that is shorter by 2 (2 is
the number of conditions at breaks) from the whole space dimension 2N. The
MATLAB [7] is a convenient tool for computation of O.

Each vector F from the null-space O satisfies conditions (3.1) as accurately
as possible within the assumed representation space, and thus they should be
accounted for in the displacement and stress fields of both the homogeneous (for
which all the above equations were derived), and the broken slabs as well. This
is very important because they constitute the majority of possible vectors in
the considered space. We call these solution the ‘proper modes’ of deformation
of homogeneous slab because they simultaneously satisfy the conditions for the
broken slab.

Using Eqgs. (2.2), it is possible to evaluate all harmonic components of dis-
placement and traction on the slab surfaces y = Fd

(3.5) [u™] = U0e, [T™] = TOe,

where U and T are somewhat rearranged matrices [(}i‘{k}(f' + nK)¢(Fd)] and
[ﬁ-‘m(?' + nK)$(Fd)] that appeared earlier in Eqs. (2.2), and a is a column
vector of ‘modal amplitudes’ (note that the same amplitudes appear in both the
above equations).

In fact, the amplitudes o are the least important as we seek the slab charac-
terization in the form of Eq. (1.2), where only the Bloch harmonics of u and T
are involved. There is no way to eliminate o from Egs. (3.4) however, because
this system of equations is incomplete. There are too few unknowns e, because
the dimension of O is smaller by 2 (in this example) from the number of involved
harmonics (2N).

4. Improper modes

The null-space is only by 2, in our example, smaller than the whole space
defined by the matrix E, thus there are only 2 ‘improper modes’ Z which are
eigenvectors of E not belonging to O. In general, these ‘modes’ do not satisfy
conditions (3.1). The surface traction associated with these modes can be eval-
uated from the second of Eqs. (3.4), replacing O by Z and a by 8,

(4.1) [T®] =) "TZ8 ="T,,

in the spectral representation. The first equation of (3.4) is useless here because
it concerns the unbroken homogeneous slab where T}, does not vanish at z = Fw.
It is evident that the broken slab will deform differently under the load T,. Due
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to the breaks, the displacement may suffer a jump at the breaking points. It
is the task of this section to evaluate the broken slab response (in its surface
displacements) to the ‘modal’ loading represented by Eq. (4.1).

The following trick is applied to evaluate this response. There are two breaks
per period, at z = Fw. Let us define a periodic ‘window function’ first that will
be used to discriminate the domains between and outside breaks:

1,-Af2<z < -1,
(4.2) flz)=<¢ 0,~w <z < w,
l,w<z<A/2

it is different from zero outside the breaks (1 — f has a support between breaks),
and periodic in the remaining domain of z. Due to the breaks, the slab displace-
ments under the load

(4.3) t{(2) = f(z)F 1T}, TH = T2,

is rather constrained to the domain of t(¥), that is to the support of f (neglecting
certain residual internal tractions at breaks that can build up in the applied
approximation), and independent of the load F~'{T,}(1—f) in the other domain.
In the above equation, k is the number that counts the considered mode Zy,
Eq. (4.1), and F~! means the inverse Fourier transform (actually the fast Fourier
transform, FFT, is used in computations).

Let us evaluate the slab response in the support of f first. Applying the
equations for a homogeneous unbroken slab, the spectral representation to t‘lk)
is evaluated first. The resulting Ty (z = Fd,y = 0) from Egs. (2.4) indicates
how much the evaluated solution (2.1 - 4) differs from the conditions at breaks.
Considering still the homogeneous slab, an auxiliary load is applied in the other
domain

(4.4) t=" nF TP} -7
k

being a combination of ‘improper modes’ (k = 1,2 in our example) to make the
conditions at breaks (7) satisfied. There are two conditions, and two constants v,
which can be evaluated to satisfy these conditions. The physical interpretation of
this step relies on helping, by means of t, the slab in the other domain to deform
properly in order to allow the slab in the first domain to deform freely at breaks
« = Fw, that is to help realizing the conditions T}, = 0 there. In other words, we
apply (by means of t) additional 7}, at breaks to compensate the force exerted
by the other part of the slab that would not allow it to deform freely there.
Under both combined loads, t, +t, the slab deformation vi®) can be evaluated
from Egs. (2.2) (this requires evaluation of the corresponding F} first, from the
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second equation). We are interested only in the displacements in the domain
of the applied load t(lk}. This is vy f: the broken slab response to the load t,,
with vanishing stress at breaks (within the applied approximation); both the
analyzed stress and displacements belonging to the same domain of z. Here, the
displacement is evaluated with accuracy to the additive ‘proper’ modes which
yield zero stress at breaks; the ambiguity to be removed by means of the energy
conservation law. Some computed results are shown in Fig. 2.

Next, the other domain is analyzed in the same manner. It suffices to remark
here that, replacing f by 1 — f, the analysis repeats the above presented one.

The result is vgk) — a response to the load ték] in the domain (—w,w). Finally

(4.5) v® () = v 5 4+ v - 1) and T(z) =t + ¢,

define the corresponding functions over the whole domain of z, moreover T(z)
is exactly T, from Eq. (4.1) in the spatial domain. The Fourier transform of
v yields the needed spectral representation u(®. Further on, for loads being
a combination of ‘improper modes’ TZf, the n-th Bloch component of the
displacement vector is

(4.6) ™) = [F{v®}18, [T™]="T28,

the second equation being repeated after (4.1) for convenience.
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FiG. 2. Real (thick lines) and imaginary parts (thin lines) of T1,(z) (left figure) for
two ‘improper modes.” Note that 7j; has a maximum rather than zero at breaks; the
corresponding homogeneous slab deformation is shown at right. Center: T\; and u; at
y = 0 resulting from the loading from (4.3-4) with v, evaluated in order to set Ty, to zero
at breaks. Bottom: real and imaginary parts of slab surface traction 75 corresponding
to ‘improper modes’ (left figure) and the evaluated broken slab response, u; at y = 0
(both complex parts are shown). Note the displacement discontinuity at breaks (thick
lines); thin lines represent v, » from Eq.(4.5), but evaluated at y = 0.
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Now, we can join both Eq.( 3.4) and the above Eq.(4.6) to obtain equal numbers
of harmonics (2N) and unknown coefficients (8 and o combined). They can be
eliminated yielding the dependence between u(™ and T{™ directly.

5. Discussion

A generalization of the above method in order to satisfy Ty; = 0, i = 1,2
at many points in the slab cross-section, is straightforward. It requires only the
evaluation of the corresponding matrix A resulting in a new E. It will have smaller
null-space O, thus more computations will be needed to evaluate numerous ‘im-
proper modes’ and the corresponding responses v of larger number.

Naturally, other conditions can be formulated at breaks, for example using
integration of |T1;|% over the slab cross-section. This results only in a minor
modification to E and the rest of the analysis remains as presented above. In this
case however, there may be null-space in no rigorous meaning. But it always exist
within the computational accuracy and this suffices for the analysis. Indeed, the
solution differs from the conditions at the break by ||AF||, that is small for small
eigenvalues |A| of E.

In the above example, only the traction modal load has been analyzed. Anal-
ogously, the modal displacement can be set at the slab surfaces and the traction
response sought for. Both results help to find the slab characterization in the
form of Eq. (1.2).

Acknowledgements

The work was supported by the Polish-US Maria Sklodowska-Curie Joint
Fund II, grant PAN/NIST-97-300.

Appendix

Planar harmonic Green’s function H for homogeneous elastic slab of a mate-
rial characterized by Lamé constants A, g (in standard notation) and mass den-
sity p, vibrating with frequency w (this is zero in statics), possesses the following
symmetry:

o d g
—] L]
(A1) e e

—k —<q —e
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Its matrix elements are:

Hyy = jstk?[(1 — L2T?)w + (22 — 2)(T? - L?)]/D = —Has,
Hyy = jp[(1 + L*T?)w(z — 2s18;) + (z — 2%) (L2 + T?)(z + 2s515,)
+ 4LTz(2zs18y — 2)]/D = —Hy = —Hy3 = —Hay,
Hiz = —j25k?[z?T(1 — L?) + zL(1 — T?)]/D = —Hg,
Hys = jdpsisik?z[L(1 + T?) — T(1 + L?)]/D = Ho3 = H3y = Hy,
Hy = ljsik?[(1 — L2T?*)w + (22 — 2)(L? — T?)])/D = —Hy,
(A2)  Hy = —j2sik?[L(1 — T?)2? + T(1 - L)2]/D = —Hag,
k? = pw?/p, D= p[(1 - L?)(1 — T?)w? + 4222(L - T)?),

kg‘z — pr/(A + 2“)1 sf‘t Fi w ka‘], il p2! p = kl,h
otherwise = —j,/p? — k?,,

T =si—p? z=A4p’s;s;, w=2>+2z, T =exp(—j2sd),
L = exp(—j2s,d).

Applying d — oo splits the above matrix into independent two of dimensions
2 x 2, being Green’s matrix functions of the upper, y > 0, or lower, y < 0, elastic
halfspaces. It suffices to take the limits 7' — 0 and L — 0 simultaneously.
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