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On quntum turbulence in superfluid *He
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[HE ALTERNATIVE APPROACH to the homogeneous quantum turbulence is proposed
n order to derive the evolution equation for vortex line-length density. Special
ttention is paid to reconnections of vortex lines. According to our previous
aper, the summary line-length change AS of two vortex lines resulting from the
econnection (in the presence of counterflow V) can be approximated by the
xpression: AS = —at'/? + bV t¥%, with a > 0, b > 0. The dynamics of vortex
ines in the tangle is considered as a sequence of reconnections followed by “free”
wvolutions. For the steady-state turbulence, the average line-length change <AS>
etween reconnections has to be zero. If, for a given value of the counterflow,
he line density is smaller than the equilibrium one, the reconnections occur less
requently and <AS> becomes positive. As a result, the line density grows until the
«quilibrium is restored. On the other hand, when the line-density is too large, the
‘econnections are very frequent, so the lines shorten between reconnections and the
ine density becomes smaller. The time derivative of total line density is proportional
o the reconnection frequency multiplied by the average line-length change due to
v single reconnection. The evolution equation obtained in the proposed approach
esembles the alternative Vinen equation.

ey Words: "He, quantum turbulence, reconnection.

1. Introluction

THE VARETY OF THE DYNAMIC phenomena exhibited by the superfluid ‘He in-
volves tle appearance and motion of quantized vortices. Due to the existence of
these sirzularities, the superfluid component is coupled dissipatively with the nor-
mal one. We recall that at low velocities, He II (superfluid *He) flows in the fric-
tionless,presumably laminar manner consistent with the ideal fluid description.
When tle counterflow (the relative velocity of the components) Vi3 = V, — Vj
becomessufficiently large, the superfluid laminar flow develops into a superfluid
turbuler flow in which the quantum vortices form a chaotic tangle.
Thesimplest way of generating a sizable Vs (SCHWARZ and ROZEN [11])
is to sel off one end of the channel and place a heater there. The normal
fluid traisporting the entropy flows out of the channel with average velocity
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24 T. LIPNIACKI

Vi = Q/ApST, where @ is the heat input, A is the channel cross-sectional area,
p is the total fluid density, S is the specific entropy, and T is the temperature. The
normal fluid moving away from the heater is replaced by the superfluid flowing in
the opposite direction, the superfluid velocity being determined by the condition
of zero net mass transport p,V, + psVs = 0. Since the normal and superfluid
densities p, and ps are known functions of temperature, V;,; can the be varied in
a controlled way, by simply adjusting the heater input Q.

The pioneering studies of superfluid turbulence were conducted by VINEN [14,
15, 16, 17|, who proposed the mechanisms of vortex generation and decay. He
observed that in the presence of the counterflow velocity V;,5, the vortex ring can
blow up, and that the line-line reconnections (predicted by Feynman) can give
rise to new rings. These phenomenological considerations led him to the (Vinen)
equation which described the evolution of line-length density L

oL
ot
where @, and 3, are temperature-dependent coefficients which must be deter-
mined experimentally.

Since than, a considerable progress has been made and the new methodology
based on careful analysis of the motion of quantized vortices using extensive
numerical simulation has been developed.

ScHWARZ [10] simulated the evolution of a vortex tangle basing on an equa-
tion describing vortex motion in the localized induction approximation, and on
the assumption that vortex lines reconnect when they get close enough. Schwarz
defined some characteristic measures [j, c; describing the vortex tangle, and in
terms of these measures he interpreted the original Vinen coefficients «, and f,.
He showed by scaling arguments that for the equilibrium turbulence, these mea-
sures do not depend on L, and evaluated them for various friction parameters c.
Later SCHWARZ and ROZEN [11] analyzing, by numerical simulations, large tran-
sients when the line-length density grows from very small to very large values,
concluded that the coefficients ¢ and especially I; deviated substantially from
their steady-state values. This means that despite the fact that Vinen equation
can satisfactorily fit most of the experimental data, it is probably not proper,
from a more theoretical point of view.

The more powerful computers allow now (NORE et al. [7], BARENGHI et al.
[1]) the numerical simulations of quantum tangle basing on nonlinear Schrodinger
equation (NLSE). NLSE describes the evolution of complex field ¥ = p, exp(:10),
which is related to superfluid velocity (Vi =grad ©) and density p, = |¥| via the
Madelung transformation. The quantum vortices are traced by lines on which
=0

(1'1) — avaLw? == ﬁvL2 s
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ON QUANTUM TURBULENCE IN SUPERFLUID *He 25

In the present paper an alternative approach to the homogeneous quantum
turbulence is proposed. The main aim is to derive the evolution equation for the
vortex line-length density L in which the coefficients may be determined with
the help of relatively simple simulations of evolution of single vortex lines. The
paper uses the analysis of motion of quantum vortices presented in two previous
papers of the author (LIPNIACKI [4, 5]). The various aspects of the vortex three-
dimensional dynamics like line-line and line-boundary reconnection, pinning and
depinnig, can be found in the paper by SCHWARZ [9].

The dynamics of quantum vortices will be considered in the localized induc-
tion approximation (LIA) supplemented by the assumption that when two vortex
lines cross each other, they undergo a reconnection. If the curve traced out by
a vortex filament is specified in the parametric form s(&,t), the instantaneous
velocity of a given point of the filament can be approximated by the equation

(1.2) $=P8s xs"+Vi+as' x (Vs — Bs' x s")
— s x[s' x (Vas — Bs' x ")],

where the dot and prime denote instantaneous derivatives with respect to time

t and arc length £, respectively, o and @' are the nondimensional friction coeffi-
cients, and

K ¢
(% = (ag <s"'>) e i
where & is the quantum of circulation, ¢ is a constant of order one, <s"”> is the
average curvature of the vortices in the tangle, and a, ~ 1.3 * 1078 cm is the
effective core radius of a quantized vortex.

The parameter « is small and according to SCHWARZ (9] considerations con-
firmed by numerical analysis, the last term in Eq. (1.2) (proportional to o') can
be neglected when the quantum tangle is considered. In the further analysis we
also put o' = 0.

The fector f can be absorbed into the reduced time 7 = gt and the velocity
vp = Vo /B, vs = Vi/B, with vys = v, — vs. Hence in the superfluid reference
frame Eq. (1.2) reduces to

(1.4) s=8xs"+as" +as’ xXvp, .

Moreover (SCHWARZ [11]), if one takes any solution of Eq. (1.4) and multi-
plies it by a scale factor ), all the velocities by A™!, and the time (times) by
A%, one obtains another solution of this equation. Any property P(r,v,T,...)
evaluated in any particular solution of Eq. (1.4), relates to the same property
P(Ar,v/) M%7, ...), but evaluated on the scaled solution, according to

(1.5) P(Ar,v/) M%7,...) = f(A)P(r,v,7,...) ,
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26 T. LIPNIACKI

where the form of f()\) depends on the particular combination of distances and
times represented by property P. For example, the evaluation of the line-length
density at some point in the vortex tangle involves measuring the length of quan-
tized vortex line contained in some sampling volume and dividing by the sampling
volume. These scale as A and A%, respectively, so that f(A\) = A~2 for the line-
length density L:

(1.6) L(Ar, vns /A A%7) = A72L(x, Uns, T) -

Hence for the steady-state turbulence, when the line density depends only on v,
one gets from Eq. (1.6)

(1.7) L~vd, .

Let us note that the given line-length density determines the characteristic
space scale [,

(1.8) L=t ¥8

The length [, plays an important role in the analysis of the turbulence. First,
the quantities like average spacing between vortices or the characteristic radius
of curvature <|s”|> of lines in the tangle, scale as L~/2 and are of order l,. The
length [, gives also the minimal scale below which the macroscopic description
of vortex tangle loses its sense.

If the motion of vortex filament fulfills Eq. (1.4), its line-length | = /df
satisfies the equation (SCHWARZ [9])

a = f (avm (8! x ") - a|s"|2)d£ :

or

The first term of the above equation describes the influence of the counterflow
velocity onto the line-length. This term can be positive or negative, depending
on the angle between the binormal (s’ x s”) and the counterflow. It is obvious
that when the totally isotropic vortex tangle is considered, the first term has to
average zero. This means that in the steady-state the vortex tangle cannot be
totally isotropic since some directional anisotropy of the binormal is needed to
balance the second term, which is always negative.

In the presented model, special attention will be paid to reconnections of
vortex lines (Fig. 1). To see why the reconnections play the crucial role in the
quantum turbulence, let us consider the evolution of a single circular vortex
ring subject to the counterflow v,s. Let ©(¢) be the relative angle between the
counterflow v, and the vortex binormal. It can be shown (LIPNIACKI [4]) that
if initial ring radius R; and ©; = ©(0) satisfy the inequality

Oi
Uns Sil’l eg g

(1.9)

(1.10) Ri > Ry(©;) =
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ON QUANTUM TURBULENCE IN SUPERFLUID *He 27

then the ring will blow up and die on the boundaries, and if R; < R,(©;), the
ring will contract to a point. The picture is not very different when instead of
rings, one considers ovals. This simple example shows that to sustain turbulence,
the reconnections are needed to produce new kinks which can develop into new

loops.
/ / __RECONNECTION \/

0
i T #

F1G. 1. Collision-reconnection of two vortex segments.

2. The model

Let us recall (LIPNIACKI [5]) some facts concerning the specific behavior of
quantum vortices after reconnection. Immediately after each reconnection, both
resulting Ines have very big curvature (close to the reconnection point), the sec-
ond term of Eq. (1.9) prevails and the lines shortens. Note also that just after the
reconnectin, close to the reconnection point, the two vortices have the binormals
of opposite directions. During further evolution the characteristic curvatures get
smaller, ard also the two vortices turn so that the average value of vy - (s’ x s")
becomes jositive. As a result, the total length of vortices starts growing. The
anisotropy of the distribution of the binormal results from the “action” of the
counterflov. In the idealized reconnection of two straight vortices, the summary
line-lengtl change AS(7) of two vortices resulting from the reconnection can be
satisfactonly approximated in the following form:

(2.1) AS(t) = —a 72 4+ b 7322, |

where @ >0, b > 0 are the nondimesional coefficients dependent on friction coef-
ficient a and the specific reconnection configuration (the relative angle between
reconnectig lines and the counterflow velocity vps).

If the vortex tangle is considered as a whole, more important is the average
line-lengt! change <AS(r)> of lines resulting from reconnection. The function
<AS(7)>has the same form as AS(7) and its parameters <a>, <b> have been
estimated (for isotropic tangle) in the previous paper (LIPNIACKI [5]); we will
recall this-esult later. For steady-state turbulence, the average line-length change
between mconnections has to be zero. If for the same value of the counterflow
Uns the lime density is smaller, the reconnections occur less frequently, and so, the
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characteristic time between reconnections is longer and according to Eq. (2.1),
the line-length change between reconnections becomes positive. As a result, the
line density of vortex tangle grows until the equilibrium is restored. Inversely,
when the line-length density is too large, the reconnections are more frequent
so that the decaying term in Eq. (2.1) prevails and the line density gets smaller.
The model of quantum turbulence we will construct below, bases on the presented
mechanisms which explains how the equilibrium density of vortex tangle can be
sustained and restored.

We concentrate on the quasi-isotropic turbulence (i.e. with net macroscopic
superfluid vorticity equal to zero), derive the evolution equation for line-length
density. Later, after some discussion and comparison of the obtained results with
those of the Vinen-Schwarz theory, we signal how the model may be generalized
in the case in which the considerable macroscopic vorticity is present.

In the quasi-isotropic case we assume (constructing the model) that direc-
tional distribution of vortex lines is uniform, i.e. we assume that the unit vector s’
is distributed uniformly over the unit sphere. Next we find that such assumption
cannot be strictly valid; some directional anisotropy of vortex tangle results from
the action of the counterflow V,,;. Moreover, the nonuniform distribution of the
binormal is needed just to sustain the vortex tangle. The assumption of uniform
directional distribution should be understood as the zero order approximation,
while the anisotropy resulting from the model is the first order perturbation.

The plan of our considerations is the following; first we estimate the average
velocity v, of vortex lines. This will be used to calculate the reconnections fre-
quency fr, and the characteristic time spacing 7. between reconnections. Then
the average line-length change due to a single reconnection will be found as
<AS(7.)>. Having the reconnection frequency and length change due to single
reconnection, we will obtain the time derivative of line-length density.

2.1. The average line velocity v, =<|§|>

Let us note that all three terms of Eq. (1.4) lie in the plane which is perpen-
dicular to the local tangent s’ to the vortex line. Besides, the first two terms are
perpendicular to each other, |s'| = 1, hence

(2.2) vy = |8 x 8" + as"| = |s"|V1+a?.

The mean square value of the third term of Eq. (1.4) (under the assumption that
the distribution of s’ is isotropic) is

T 27

& 2
(2.3) <|s" X vps|*>= B-Z—Ef)—//sins(@j) dO; do; = g(c:m,,w)2
00
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ON QUANTIM TURBULENCE IN SUPERFLUID *He 29

Hence v? raads:

' ¥ # 2 -
(24) v=<g">> 1+ + g(avm)z + <(8' x 8" +as")(as’ x vys)> .

We assume (in the zero order approximation) that for given s’, both s” and —s”
are equally probable i.e that the sign of curvature is not correlated with the
tangent tothe vortex. This means that the last term of Eq. (2.4) vanishes, and
as a result

(2.5) Up = \/<|3”12> (1+a?)+ %(a”ns)z .

Assuming that |s”| = 1/l, = L'/? we get finally the estimate of the mean square
value of votices velocity v, in the form

(2.6) 1, = \/L(l +a?) + ;i—(o:‘uns)z i

2.2. The tot:l reconnection frequency (number of reconnections per time and unit volume)

Let us divide the vortex lines into segments of length [, which is equal to
average valie of the radius of lines curvature, and characteristic spacing between
vortex line: forming the tangle. Because the length [, is equal to spacing between
the lines, ve may expect that each segment moves (more or less) as a unity, but
the motions of the neighboring segments are not strongly correlated. Moreover,
because th: length of segments are equal to the characteristic radius of curvature,
when consilering the collisions, the segments can be roughly treated as straight
ones. We vill assume that every collision of vortex segments leads to a reconnec-
tion; such assumption is well justified by numerical simulations (SCHWARZ [9]).
For the sale of simplicity we assume that all the segments move with the same
speed v,.

Consid:r now the collision of two segments parallel to unit vectors e?, e’ .
Let us asig1 the reference frame to the first unit vector. Let R;; be the rhombus
with cente: placed in the center of the first segment, and sides (having length [,)
parallel to<*, e,

When the center of the second segment goes through R;;, then the two
segments ome into collision (Fig. 2). The oriented area S;; of rhombus R, ;,
called from now on the “collision surface”, is

(2.7) Sij = (lo)%€' x ¢ .

The cdlision frequency f;; of the given segment parallel to e' and moving
with velocty v;, with other segments parallel to e/ and moving with velocity
v;, I8

(2.8) fij =ni8:05 - (0 —9y) ,
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where n; denotes the density of segments parallel to e; and moving with velocity
vj. Let ©;, ©; denote the angles between normal to S;; and velocities v;, vj,
respectively, then

(2.9) fij = njvolZle’ x €’|| cos(©;) — cos(©;)| .
e
F =i i e
/ /
7 /
4 !
i & ;
AR | /
/ /
/ /
A g AT sy

Fic. 2. Collision surface S;;, corresponding to the collision of two vortex segments
which have length [,, and are parallel to e, e’.

Hence the average collision frequency for a segment (of length [,) is
(2.10) F(lo) = nwl? <|e* x €l|| cos(©;) — cos(©;)|>

where <> means averaging over the directions e',e’ and angles ©; € (0,7),
©; € (0,7), and n = L/l, is the total segment density. Let us note that because
unit vectors ef, e/ are uncorrelated with ©f, ©7, one can average |S;;| and
| cos(©;) — cos(©;)| separately. Calculating the average collision surface g, one
can, without any loss of generality, assume that e' is parallel to the Z axis. Then

T 2w
l 2
(:T)r //Sin(@j)2 dO; dp; = %53 :
00

(2.11) 00 =<|Sij|>=

while

(2.12)  <|cos(®;) — cos(©;)| >= %}5// | cos(©;) — cos(O;)| dO; dO; = % .
0 0

Finally from Eq. (2.10)

2
(2.13) Flo) = 05 <| co8(0;) — cos(0©;)|> nv, = ;IOUOL
since n = L/l,.
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In fact, such a calculated reconnection frequency is probably underestimated
due to the following reasons.

(1) According to SCHWARZ [9] numerical considerations, the reconnection is
initiated by nonlocal interactions when the spacing between lines is smaller than
A =~ 2R/In(R/a,), where R is the radius of curvature and a, = 1.3 1078 cm is
the vortex core radius. The typical tangle density is L ~ 10* + 10%/cm?, what
corresponds to R ~ 1072+ 107%cm, so A = R/5 = l,/5. This means that even if
©1 = O3 or S; ; = 0, the reconnection may take place if only the passing distance
is smaller than [,/5. Because of a very complicated nature of nonlocal interactions
it is very difficult to analyze the effect of additional collisions quantitatively. For
example, two antiparallel vortices reconnect when passing close enough, being
parallel do not. Probably the best way to take into account those additional
reconnections is to enlarge the collision surface by [2/5 or just the reconnection
frequency by l,v,L/5.

(2) The assumption that all the vortex segments move with the same speed
reduce the average relative velocity of segments, and the reconnection frequency
flo).

Taking into account points (1), (2) we have

(2.14) fllo) = elovoL .

where ¢ is close to unity.
Hence, the total reconnection frequency (per unit volume) f, is equal to

= nf(ly) . cvoL?

2:1
(2.15) Ir D) D)

The factor 1/2 results from the fact that in each reconnection two segments are
involved.

The lines resulting from reconnection are sharply bent close to the reconnec-
tion point where the characteristic curvature is much greater than the average
curvature of the vortex lines forming a tangle. In our considerations we neglect
the lnes curvature at the moment prior to reconnection and use the results of
the previous paper (LIPNIACKI [5]), where the reconnection of straight vortex
filamsnts has been analyzed. Such approximation seems reasonable until the
charzcteristic curvature caused be the reconnection is greater than the average
curvature in a vortex tangle, or (what in fact means the same) until the length of
recornection disturbance is smaller than [,. Fortunately, the average time 7.(l,)
after which the segment of length I, = L~/2 will come into next collision is

]. 1 to

fllo) ~ L'y, v,

http://rcin.org.pl

(2.16) Te(lo) =



32 T. LIPNIACKI

while time 7,(l,) in which the disturbance caused by reconnection grows to the
size of order [, is (LIPNIACKI [4])

(2.17) Tollo) =15 .
Because
(2.18) = \/(1+a2)L+§(aum)2zL‘f2 2 b8

these two times are roughly equal. This means that the evolution of line seg-
ment of length [, looks as follows: reconnection - evolution during which the
reconnection disturbance grows (roughly) up to the size of the segment — next
reconnection. Of course after each reconnection the segment loses its identity.

According to the above, the line-length change caused by each reconnection
will be approximated by the line-length change of straight reconnecting lines
AS(7.), where

1

(219) Tc(ia} -— m .

Hence the time derivative of line-length density L reads

(2.20) 2= v <AS(r)> |

where (recall) f, is the total reconnection frequency and < AS(7.) > is the
average line-length change due to the single reconnection. According to Eq. (2.1),
the average line-length change reads:

(2.21) <AS(1)>= — <a(a)> 7%+ <b(a)> /%2,

where < > denotes the averaging over all reconnection configurations (which
are described by directional vectors of reconnecting lines in the direction of coun-
terflow velocity vys).

Putting < AS(7.) > from Eq. (2.21) with 7. from Eq. (2.19) and f; from
Eq. (2.15) into Eq. (2.20), we get finally

dL 1 0. e
(222) —= §( — 2 <a(a)> L4 vM? 4 712 <b(a)> L34 o;1/? ugs) ;
with
2
(2.23) U5 = \/< |s"[2> (1 + a?) + E(Qv,;ﬁ)2 .
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ON QUANTUM TURBULENCE IN SUPERFLUID *He 33

The nondimensional coefficients <a(a@)>, <b(a)> have been estimated in the
previous paper (LIPNIACKI [5]) with the help of numerical simulations, and in
the following section we will recall these results.

3. Numerical estimations

To determine the average line-length change <AS(7)> of lines AS(7) result-
ing from reconnection, one should average over all reconnection configurations
with respect to the direction of counterflow. Numerically it is rather impossi-
ble, hence to estimate <AS(7)> it was assumed that all lines in the tangle are
parallel or antiparallel to 3 directions: &,, 2, while the direction of counterflow
is (1,1,0). Let us note that such assumption may be only adequate for quasi
isotropic case. For anisotropic case other representation should be used. The
accuracy of the above method may be augmented by taking more directions into
account.

The numerical simulations for the equation

3.1 §=5xs"+as"+as" xv
ns

were carried for & = 0.1. The best fit for AS, =< AS > in the form (discussed
previously)

(3.2) AS, = — <a(a)> 7%+ <b(a)> /%2

Uns

was found for a = 0.710 , b = 0.0138. The characteristic nondimensional time
ToV24 after which AS, = 0is 7 v2, = a/b = 51.2. The time 7, plays an important
role in the analysis of turbulence, because in the equilibrium state 7, and 7. -
characteristic times between reconnection should be equal.

To estimate the average line-length change for different «, we note that ne-
glecting the first term of Eq. (3.1) i.e. the self-induction and using the simplified
dynamic equation in the form

(3.3) s=as"+as’ x v,

one gets roughly the same rate of line change, when averaging over representative
sample of reconnection configurations. This is due to the fact (see LIPNIACKI [5]
for more details) that the first term in Eq. (3.1) pushes the vortex along local
binormal which does not change the vortex length. Indeed (for @ = 0.1) the
characteristic time of zero line-length change obtained in the simulations without
self-induction is 45.7, so it is only 12% smaller when calculated with the use of
the full dynamic equation. The use of the simplified dynamic equation has such
an advantage that now the coefficient « can be absorbed into time scale. Hence
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Eq. (3.2) can be transformed into
(34) AS, = — <a(a)> 7%+ <b(a)> 7202, = —ay(ar)/? + bo(ar)? 2,

what implies
(3.5) <a(a)>=a,a'?, <bla)>= b,a*?,
with numerically calculated a, = 2.34, b, = 0.514. Let A = a,/2 = 1.17,

B = b,/2 = 0.257. Then from Eqgs. (2.22), (3.5) one gets

ms *

(3.6) j_L = _ M2 A2 1A U;}2 4+ ¢ 12B3/2 /4 v;m 2
%

Now we set ¢ = 1 to get estimated but concrete coefficients in finzl form of the
evolution equation; in primary variables ¢t = 7/8 and V5 = PBuns, Vo = Bu, we
have

dL _ 1/2 1/2 r7/4 171/2 ~1/2,.3/2 15/4 y/—1/2 172
(3.7) E__Aﬂ a'* LV 1“4 BB~ *a* L°* V, Ve

with
(3.8) Vo= \/ﬁ?(l+|£1:2)L-t-‘,?—;(cﬂf’m)2 :

The equilibrium vortex density L. is given by

Ve al Ba\? o2 Vi) 2
(3.9) Lo = m (‘/? + (1 + a?) (T) = ?) = w(a) ('F) :

\}fhen a € 1 and aV,s € BL, the particle velocity can be approximated by
V, = BL'/? and the evolution equation simplifies to
dL

(3.10) - = —ABa'? I? + BB 'e®? L V2, .

4. Results

4.1. Critical remarks
The time derivative of line-length density (Eq. (2.20))

dL
(4.1) ey fr <AS(7e)>

is expressed as a product of reconnection frequency and average line-length
change due to a single reconnection. Such approach includes of course some

http://rcin.org.pl



ON QUANTUM TURBULENCE IN SUPERFLUID “He 35

idealization. In real turbulence one may expect that there are line segments
(of length [,) for which the time of “free” evolution is significantly shorter or
longer than the average 7.(l,) used to calculate AS. Expression (4.1) cannot be
valid when considering the line density changes in times shorter than the average
time spacing between reconnections 7.(l,) (Eq. (2.16)). This can be important
when considering sharp transitions in which the value of V5 grows significantly.
Besides, both the reconnection frequency f, and the average line-length change
AS(7) are estimated with some errors.
1) The coefficient, ¢ appearing in the expression for reconnection frequency

cv, L2

(4.2) fr= D)

has been finally replaced by unity. Fortunately, in evolution equation (3.6) co-
efficient ¢ appears only as ¢'/2 and ¢~'/2. This means that possible input error
is roughly two times smaller than the error made by replacing ¢ by unity, and
probably is not greater than 10%.

2) The possible errors in estimation of the average line-length change
<AS(7)>
i) The initial curvature of reconnecting lines has been neglected.

ii) The relat:vely small sample of reconnecting lines has been considered to cal-
culate the average value of AS(7). The possible error is of the order of 10+ 20%
(see discussion in LIPNIACKT [5]).

iii) To calculate AS(r) for @ # 0.1, the simplified dynamical equation has been
applied; the expected error is also of the order of 10 + 20%.

Keeping in mind the above remarks one cannot expect that the numerical
accuracy of Eq. (3.7) will be better than 50%; what is not so bad when com-
paring with the experimental data which varies significantly from experiment to
experiment.

4.2. The obtaized evolution equation versus Schwarz and Rozen simulation and experiments

Equatiors (3.7), (3.10) should be confronted with other two equations de-
scribing the evolution of vortex line density, namely:
1) The dassical Vinen (-Schwarz) equation

dL ;
(4.3) - = —Bacy? L2 + al; L*?|Vy| ,

with nondinensional coefficients co(e) and Ij(«):

(4.4) 3 = h—lﬁ (s")2dE ,
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[ Pg 1 ! "

where Vm is the unit vector in the direction of V,,; and Q is the element of
volume. This equation, originally devised by VINEN [16] in phenomenological
considerations, was later developed by SCHWARZ [10]. Schwarz expressed original
Vinen coefficients by es(e) and Ij(a), which describe the microscopic state of
quantum tangle. He showed also by dynamical scaling that in the case of steady-
state turbulence, these coefficients do not depend on L or V.

2) Alternative Vinen equation (VINEN [16])

(4.6) S = —fau I + ol V3,
where f,;; and a,; are some new parameters.

First, we should note that the simplified Eq. (3.10) obtained in the proposed
model strictly corresponds to the alternative Vinen equation. The generation
term is proportional to LV,% what is closer to the phenomenological theory of
classical turbulence (LANDAU, LirsHITZ 1980). Indeed, (NIEMIROWSKI, FISZDON
[6]) by assuming that turbulence can be characterized by a parameter, say, L, and
that its time derivative dL/dt is an analytic function of L, the alternative form of
Vinen equation can be interpreted as the first two terms of the series expansion.
Furthermore, as the generation term is the scalar function of vector argument
Vis, it is reasonable that the series expansion starts with this argument squared.
The last comment concerns also the complete form of the evolution equation
obtained in the model, i.e. Eq. (3.7) where the counterflow velocity V) is also
everywhere squared. The presence of absolute value of V, in the classical Vinen
equation is rather strange.

Now we concentrate on the steady state turbulence and compare the equi-
librium line-length densities Lo, obtained in the model (Eq. (3.9)), in numerical
simulations done by Schwarz (with the use of Vinen-Schwarz theory) and in real
experiments. The equilibrium density obtained in our model is given by:

(A7) Loo = w(0) (%)2 ,

while in the Vinen-Schwarz theory

w e

As the dependence on V;, is the same (as we noted in the introduction Lo
must be proportional to V), we have only to compare our function w(e) with
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Schwarz’s ¢ (@) = (I;/c:ﬁ)g. and with experimental results. Because the line-

length density is measured indirectly by measuring the mutual friction force,
we have to remind some facts. The normal fluid component exerts a force on
the quantized vortices of the vortex tangle, and on the other hand, superfluid
interacts with vortices by the Magnus force. In the result the vortices give rise
to the friction force F; between the two components

(49) Frs = psiady, Ly

where I,,(«) is another anisotropy coefficient, characterizing the vortex tangle.
When the tangle is isotropic I, = 2/3, but usually it varies between 2/3 and 1.
Schwarz found that it can be expressed as Iy, = I) — ¢, I;, where

(4.10) I = -Ql—Lf(l — (5" Vns))dé

is the other directional anisotropy coefficient, and calculated it in his simulations.
Because we cannot simply calculate /)| in our model, to compare the results we
take I, from the Schwarz simulation.

Putting L from Eq. (4.8) or from Eq. (4.7) to Eq. (4.8), one gets:

Pskcy
(4.11) F,, = “6—2

where the coeflicient f, = C}{l’m in the Vinen-Schwarz theory or f, = wl,, in the
proposed model. The force F,,; can be determined in the counterflow experiments
by measuring the temperature gradient

% e

(412) Fps = pSVT ,

where S is the entropy per unit mass.

The coefficient f, was used by SCHWARZ[10] and later by SCHWARZ and
ROZEN [11] to compare the numerical results with experiments. In Fig. 3 we
compare our results with Schwarz predictions and some experimental results cho-
sen by Schwarz. Besides in Table 1 we present some coefficients characterizing
quantum turbulence. From Fig. 3 one can see that the experimental results vary
significantly from one experiment to another. For the same « the coefficient fé’J ?
vary by 20 — 40%, when considering various experiments; this gives the uncer-
tainty of L of the order of 2. This is because the experiments are still not a
good test for the model proposed here, or for the Schwarz theory. We may notice
however, that our theoretical curve fits relatively better the recent SCHWARZ and
ROZzEN [11] experiment than the Schwarz theoretical curve.

Now we concentrate on non-equilibrium turbulence. Because even the mea-
surements of steady state turbulence give very different results, comparing our
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Temperature (K°)
L1 L2 L4 LELB 20 21 1S
0.5 T T T T T T T T
0.4 L

0.3

"
0.2

0.1

0.0 -
0.01 0.1 1.0

Friction Coefficient
FI1G. 3. The a dependence of the friction coefficient (f,)'/®. The line ending with
arrows — model predictions (3.9), second line — SCHWARZ [10] predictions basing on
numerical simulations. Crosses represent pure superflow in 0.0057 cm by 0.057 em chan-
nel (OraTowsk! and TouGH [8]), dots represent counterflow in 0.0366 cm capillary
(BREWER and EDWARDS |[2]), triangles are counterflow in a 0.240 by 0.645 cm chan-
nel (VINEN [14, 15, 17, 17]) squares represent counterflow in a 1.0 by 1.0 cm channel
(SWANSON [12], SwaNsON and DONNELLY [13]), and open circles are counterflow in 1.00
by 2.32 cm channel (SCHWARZ and RozEN [11]).

evolution equation with experiments seems to be not useful. SCHWARZ and
ROZEN found that the Vinen equation can fit satisfactorily their experimental
curves, however the fitted coefficients I; and ¢y, differ substantially from the cal-
culated ones. In Fig. 4 we fit our evolution equation to Vinen evolution equation
(with coefficients used by SCHWARZ and ROZEN to fit their experiments). Those
two curves lie so close to each other that until we have no better experiments,
we can not judge from them which form of evolution equation is better.

Table 1. Values of dimensionless parameters characterizing quantum turbulence. S — Schwarz
simulation, M — proposed model.

Temp 1.07 1.26 1.62 2.01 2,15
pulp 0.013 | 0.039 | 0.174 | 0.576 | 0.886
a 0.010 | 0.030 | 0.100 | 0.300 | 1.00
Li—culi |ome |072 |em [e7r |o085
wa [M] 0.0022 | 0.0070 | 0.019 | 0.041 | 0.061
eL ~wa [S] | 0.0013 | 0.0053 | 0.019 | 0.0484 | 0.076
7% M) 0.115 | 0.171 | 0.238 | 0.317 | 0.374
52 8] 0.097 | 0.156 | 0.238 | 0.334 | 0.401
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F1G. 4. The evolution of line-length density during the growth and decasy transient. At
t = 0 the counterflow velocity is switched from V,,s =1 cm/s to 2 cm/s, thanat t =0.8 s
it is switched again to 1 cm/s. The “inner” line is a prediction of the Vinen equation
with coefficients ¢;,, = 0.0937 and I;,, = 0.65 used by Schwarz to fit his experiments
with Rozen. The “outer” line is the solution of our Eq. (3.7) with A = 0.86, B = 0.137.

Instead of comparing the theoretical predictions of our model with exper-
iments, we propose to compare them with SCHWARZ [10] and SCHWARZ and
ROZEN [11] simulations. In the paper [10] SCHWARZ assumed that the coefficient
I; and ¢y depend neither on L nor on Vy; and calculated them in the numer-
ical simulations for equilibrium turbulence. Later, in the paper [11] SCHWARZ
and ROZEN analyzed, by numerical simulations, large transients when the line-
length density grows from very small to very large value, and concluded that
I} = I})(tLy, Li/Ls) and ¢3 = ¢3(tLoo, Li/ Los) where L; is the initial value of
line-length density. That conclusion written in a rather curious form (curious
because it can not be simply applied e.g. to the case when V4 varies harmon-
ically) means in fact that [; and ¢z depend on L and V,,s. This means that the
classical Vinen equation is improper. Especially, as they found, the coefficient I;
which measured the anisotropy of the distribution of the binormal to the tangle
varied significantly. In the simulations with 7 = 1.6 K i.e. @ = 0.1, the sudden
change of counterflow V;,; by factor 3 causes a sharp change of I; by roughly 50%
(see Fig. 5). This phenomenon can be interpreted in our model; as we noted,
the anisotropy results from the action of the counterflow between two subsequent
reconnections, so it is clear that for the same line-length density the anisotropy
will be larger for larger V,,s. Moreover we can calculate the anisotropy coefficient
1, from our model, by comparing the growth term of our evolution equation with
the Vinen one. As the result we get:

(4.13) f; = Ball? g~12 |y, | LA 2
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First, we notice that for steady-state turbulence (L = L)

" 2 ~1/4
(4.14) Ijso = Bal/? (wﬁ ((1 + &®)wq + gaz)) ;

For a = 0.1 we get I;oo = 0.55, while Schwarz obtained Ijo, = 0.45 as asymptotic
value for steady state turbulence. During the transition I; varies. To conpare the
dependence of I; on scaled time ¢, = StL with Schwarz numerical reults, we
multiply our I; by 0.45/0.55 to have the same asymptotic value; such (¢ifference
of order 20% in asymptotic values is rather meaningless. The result isshown in
Fig. 5. The coefficient &3 corresponding to c3 can be calculated by comparing the
decaying terms in both equations:

(4.15) & = Aa~V2 g~12 14 L2

its asymptotic value (for L = L) cgm is

(4.16) & = Aa~1? (1+a2+§gi)m.
»
! (@
®) ®)
e m % w » S S R e
BtLo, Pl

F1G. 5. The evolution of coefficients (a) - I; and (b) - ¢3/20 and the coresponding

coefficient T; and &3 /20 during the growth (left) and the decay (right) trandient. The

smooth lines are the coefficients I; and 3/20. In the growth transient the counterflow

velocity Vs is suddenly increased from V, to 3V,, while in the decay trasient it is
decreased from V, to V, /3.

For a = 0.1 we get ¢2, = 4.00 while the Schwarz numerical value is § = 3.31.
Again, to compare our result with those of Schwarz, we rescaled our &3 t« have the
same asymptotic value. From Fig. 5 we see the time dependence of our wefficient
I; and & corresponds somehow to the time dependence of Schwarz coeficients I
and c3. This means that our dynamic equation corresponds better tc Schwarz
simulations than to Vinen equation with constant coefficients. Our ciefficients

http://rcin.org.pl



ON QUANTUM TURBULENCE IN SUPERFLUID ‘He 41

I ,& depend only on L and V,, but in reality, some time after V;,, is switched,
it is needed to change them. The reaction time in which the coefficients change
is roughly equal to the characteristic time between the reconnections (Eq. (2.17))

1
T (B,

For the steady state turbulence for @ = 0.1 one gets t. = 0.86/8L. This
corresponds to the scaled time ts, = BtLo; tse = 8 in the beginning of growth
transient, ty. = 0.1 in the beginning of decay transient. This roughly agrees with
the reaction time which can be deduced from Fig. 5. During the reaction time,
the coefficients f; and E% cannot agree with those measured in the simulations.
To determine the behavior of f; and &% during the reaction time, the separate
equations are needed to supplement the evolution equation for line-length density.

(4.17) t,

5. Conclusions and perspectives

The main result of this work is the construction of the simple model in which
the microscopic analysis of quantum tangle leads to macroscopic evolution equa-
tion for line-length density. The numerical simulations needed to estimate co-
efficients A, B in Eq. (3.7) are relatively simple and not time-consuming, when
compared with the simulations of Schwarz. The main advantage of the presented
approach is the possibility of generalizing it to anisotropic flows with significant
macroscopic superfluid vorticity. Such flows are expected in such phenomena as
spin-up or boundary layer forming. The viscous forces in a cylinder, which start
spinning from the rest, acting on normal component, may give rise to the coun-
terflow, large enough to cause the quantum turbulence which may significantly
influence the dynamics of both components. In this way the angular momentum
can be transferred from the cylinder via the normal component to the super-
fluid component. One may expect the following scenario: due to viscous forces,
the normal component starts spinning, and this implies counterflow which gener-
ates quantum turbulence. The mutual friction forces couple the two components
(Vaus = 0) and in the end, the quantum vortices polarize to form a pattern of
straight parallel lines and both fluids spin together. However, because of the
large normal fluid velocity gradients, even in first stages of spin-up process the
arising quantum turbulence is highly anisotropic; the tangle of quantized vor-
tices is polarized to carry considerable macroscopic superfluid vorticity. This is
probably why the description of spin-up process in terms of the Vinen model was
found to be inconsistent (LIPNIACKI [3]). The line-length density calculated from
Vinen equation was smaller then the line density calculated from superfluid ve-
locity profiles. The origin of these vortices cannot be explained within the Vinen
model.
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To analyze the superfluid turbulent flows with net vorticity, the generalization
of the model for an anisotropic turbulence is needed.

Macroscopic vorticity introduces into quantum turbulence an additional
anisotropy parameter g.

q=&=ﬂ=/s'-2d£
7. TR /d{ 4

where L) = ws/k is the minimal vortex line-density needed to generate superfluid
vorticity ws, Z is unit vector parallel to the z axis, and s’ (recall) is the unit vector
tangent to vortex line s(€, 7). The parameter ¢ € [0,1]; ¢ = 0 corresponds to the
isotropic case, while ¢ = 1 corresponds to the system of straight parallel vortex
lines.

The anisotropy influences significantly the evolution of the tangle, and at
least three aspects must be taken in to account:

1) The non-zero macroscopic superfluid vorticity ws influences the superfiuid
flow. Hence to calculate the counterflow V¢ the superfluid macroscopic velocity
Vs must be calculated from macroscopic wy by the Biot-Savart law. Another way
will be to calculate the superfluid vortex velocities directly from the Biot-Savart
law basing on positions of all vortices (see BARENGH!I et al. [1]) but this method
is numerically very expensive and can be applied only to relatively rarefied vortex
tangle.

2) For ¢ > 0 the vortex lines prefer to lie along one direction, so the av-
erage relative angle between vortex lines is smaller than in the isotropic case.
This implies that average collision surface o(g) and reconnection frequency frq
are smaller than o, and f,, respectively. Because the reconnection frequency is
proportional to the collision surface (Eq. (2.13), (2.15)), we may express fr, as

follows: () @
= O\W e . ONE
(5-2) fqr = o Ir 7o lovo L ,

(5.1)

where 0, = 7/4 and f, = l, v, L correspond to the isotropic case, and o(g) has
to be calculated.

3) The average relative angle between reconnecting lines will be smaller, hence
the average line-length change AS,(q) due to each reconnection will be different.
AS,(q) may be expressed in the same form as in Eq. (3.4)

(5.3) AS,(g,7) = —a(g) (ar)*/? + b(q) (ar)¥?v2,,

but with coefficients a(q), b(q) instead a,, b,.
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