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Tue onser of Rayleigh-Bénard convection in a sparsely packed porous layer with
vertical throughflow is investigated using Brinkman's modification of the Darcy flow
model with fluid viscosity different from effective viscosity. The critical Rayleigh
numbers are obtained for free-free, rigid-rigid and rigid-free boundaries which are
insulated to temperature perturbations. It is noted that an increase in the value of
viscosity ratio is to delay the onset of convection. Further, it is observed that the
throughflow can be used either to suppress or angment convection, depending on the
nature of boundaries and also on the values of physical parameters.

1. Introduction

THE POROUS-BENARD problem has been widely studied in recent decades owing
to its numerous fundamental and industrial applications. Some examples of in-
terest can be found in the thermal insulation engineering, water movements in
geothermal reservoirs, underground spreading of chemical waste, geothermal en-
gineering and enhanced recovery of petroleum reservoirs. The growing volume of
works devoted to this topic is amply documented in the reviews by NIELD [1],
TiEN and VAFAI [2], KAKAC et al. [3], KAVIANY [4] and NIELD and BEJAN [5].
Several applications, such as fixed-bed catalytic reactors and in situ coal gasi-
fication, involve the non-isothermal flow of fluids through porous media, which is
called throughflow. The effect of throughflow in a porous medium was first stud-
ied by WOODING [6], who treated the case in which the basic-state temperature
field is dominated by the convective effects on the throughflow. Later SUTTON
[7] presented a linear stability analysis for small throughflow with rigid and con-
ducting boundaries at both top and bottom and insulating walls at the sides.
Homsy and SHERWOOD (8] extended the analysis of [7] to larger throughflow by
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considering an infinite horizontal domain. All these investigators concluded that
the throughflow always stabilizes the convection. JONES and PERSICHETTI [9]
investigated the convective instability in a porous medium with throughflow and
assumed that the boundaries are conducting and either permeable or imperme-
able. They found that a small amount of throughflow can provide a destabilizing
effect in at least one situation, when the throughflow is from a more restrictive
boundary (the dynamically rigid boundary) towards a less restrictive boundary
(the dynamically free boundary). They thought that this behaviour may be due
to numerical inaccuracy and did not offer any reason for the same. NIELD [10]
and SHIVAKUMARA [11] indicated that the destabilization did occur for the above
type of situation and a physical explanation for the same was offered. All these
studies assumed Darcy flow behaviour in which inertia and viscous effects are
neglected.

However, it is well known that in many cases involving porous media with
high permeability, the viscous effects due to frictional drag at the boundary and
the inertia effects are significant, particularly at high Peclet numbers. These ef-
fects are studied recently by SHIVAKUMARA [12] through the use of the Brinkman
extended Darcy model. The analysis is limited to the case of the effective viscosity
equal to fluid viscosity. But the recent work of GIVLER and ALTOBELLI [13] sug-
gests that this assumption does not result in a good agreement with experiments
for high porosity porous media. Therefore, a theoretical solution that is general
enough to yield accurate results for porous media having high permeability is of
fundamental and practical interest. This is the object of the present paper.

In the present study, the linear stability characteristics of a sparsely packed
porous layer with simultaneous temperature gradient and a vertical throughflow
is examined using Brinkman’s modification of the Darcy model. The effective
viscosity is taken to be different from fluid viscosity. The boundaries are assumed
to be either rigid/free and insulated to temperature perturbations. The resulting
eigenvalue problem is solved in Sec. 3 using regular perturbation technique with
wavenumber a as a perturbation parameter. The results obtained are discussed
in Sec. 4.

2. Mathematical formulation

We consider a fluid-saturated horizontal porous layer of depth d with a con-
stant throughflow of magnitude wy in the vertical direction. The physical con-
figuration is shown in Fig. 1. Cartesian axes are chosen with the z-axis directed
vertically upwards in the gravitational field. The lower boundary z = 0 and
the upper boundary z = d are maintained at uniform temperatures Ty and T}
(T < Ty), respectively.
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F1G. 1. Physical configuration.

The governing equations are:

(2.1) V.q=0,

1oq 1 [ ~ 2
2.2 St ua i, =— s -
(2.2) | 55 +¢2 (a-V)q Vp+pg -1 at+iViq,
(2.3) A‘;i: +(q- V)T = skV2T,
(2.4) p=p[l -a(T-T) .

Here q = (u,v,w) is the velocity vector, T' the temperature, p the pressure,
A = (pep)m/(pep) s the ratio of specific heats, x the effective thermal diffusivity,
¢ the fluid viscosity, fi the effective viscosity, p the density, a the volumetric
expansion coefficient, g the gravitational acceleration, k the permeability, ¢ the
porosity and ¢, the heat capacity at constant pressure. The subscripts m and f
refer to the fluid-solid mixture and the fluid respectively.

The basic steady state solution is given by

: . (1 i) ewoz,?ri)
(2.5) Qs = wok, 0y(z) =Ty — To = (Ty — Tp) (1 — ewod/x )’

where k is the unit vector in the increasing z — direction and the subscript b
denotes the basic state. Note that the basic temperature distribution deviates
from linear to nonlinear in z due to throughflow which has a significant influence
on the stability of the system.

We now perturb the steady state basic solution as follows:
(2.6) a=wk+qd, T-To=0,(2)+6, p=py(2) +7,

where q', #' and p’ are infinitesimal perturbations.
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Substituting Eq. (2.6) into Egs. (2.1) to (2.4) and neglecting nonlinear terms,
we get the following equations (after dropping the primes):

(2.7) V-q=0,
10 wy O - 2
(2.8) po[gg.—‘}+g§ 5%] = —Vp+apogﬂk—§q+uv"’q,
00 a0 06, 9

We eliminate the pressure and the horizontal velocity components from the gov-
erning Eqgs. (2.7) to (2.8) by standard manipulations. Then we non-dimensionalize
the equations using the notations

2 =z/d, ' = (s/d9)t, q' =(d/r)a, 0" =0/(Ty-Th)

and drop the asterisks for simplicity to obtain the following equations:

(2.10) 1"-"}} [-{% + Q;%] Viw — (AV? — 0%)V?w = RV34,
Adf

(2.11) + Q% + f(2)w = V?%6.

¢ Ot
Here R = ag(Ty — Ti)d®/vk is the Rayleigh number, Pr = v/k¢? is the
modified Prandtl number, @ = wpd/k is the throughflow-dependent Peclet
number, 02 = d?/k is the inverse of Darcy number, A = ji/u is the ra-
tio of viscosities, V? = §%/dz® + 0?/dy* is the horizontal Laplacian opera-
tor, V2 = V? + 9%/9z% is the Laplacian operator and 06y(z)/0z = f(z) =
—Qe%? /(e? — 1) is the nonlinear steady state basic temperature gradient. Since
the instability appears in non-oscillatory form (see [8]), we drop the time deriva-
tives in Eqgs. (2.10) and (2.11) and seek a steady cellular solution in the form
(w,6) = [W(2), ©(2)] exp {i(lz + my)}, to get

(2.12) (D? - a?) [A(D? - a*) — 0* - MD] W = Ra’0,

(2.13) (D? —a%)© — QDO = f(z)W.

Here D = d/dz, a® = [*> + m? is the square of the overall horizontal wavenumber
and M = @Q/Pr. These equations are to be solved using appropriate boundary
conditions depending on the nature of boundaries. We take the boundaries to
be either rigid (however permeable) or free from tangential stress and insulat-

ing to temperature perturbations (see CHANDRASEKHAR [14] and NIELD [15]).
Accordingly, the boundary conditions take the following form:
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On the rigid boundary

(2.14) W =DW =0=D0
and on the stress-free boundary

(2.15) W = D*W = 0= De.

Equations (2.12) and (2.13) together with the boundary conditions (2.14) and /
or (2.15) constitutes a two-point boundary value problem with R as an eigenvalue.

3. Method of solution

Since the boundaries are insulated to temperature perturbations, the solution
for the eigenvalue problem can be obtained in a closed form for arbitrary Q
because, in this case, R attains its minimum value (R=Rc) at an arbitrarily
small wavenumber [15]. Accordingly, we look for solutions of Eqs. (2.12) and
(2.13) in the form

(3.1) (W,8) = (Wo, 8) + a*(W1,01) + -+ .

Substituting Eq. (3.1) into Eqs. (2.12) and (2.13) and equating the coefficients
of the same powers in a?, we get

(3.2) AD*Wy — MD*W, — 02D*Wy =0,

(3.3) D*© — QDOy = f(z)Wy,

(3.4) AD*W, + (-2AD? + 6% + MD)Wy — MD*W,; — 0*>D*W, = ROy,
(3.5) D?0©, — QDO, = 0y + f(2)W,.

These equations have to be solved subject to the boundary conditions
(3.6) W;=DW;=D8;=90 (i=0,1) at 2=0,1

in the case of rigid-rigid boundaries, and

(3.7) W; = D*W; = DO; =0 (6=0,1) at z2=0,1

in the case of stress-free boundaries.

For any combination of boundaries (i.e. rigid-rigid, free-free and rigid-free),
the solution of Egs. (3.2) and (3.3) is Wy = 0 and ©¢ = 1. Then Egs. (3.4) and
(3.5) become

(3.8) AD*W, — MD*W, — 6®>D*W; = R,
(3.9) D%0, — QDO =1+ f(z)W;.
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The general solution of Eq. (3.8) is found to be
(3.10) Wi = Cp + Ci1z + Ce®? + Cs3eP? — R2?/202,

where o, = [M:I: vV M? +4Aa2} /2A and C; (i = 0 to 3) are constants of

integration. Applying the solvability condition [15] to Eqs. (3.8) and (3.9) [15,
16] (i.e. the zeroth order solutions are orthogonal to the first order solutions), it
follows that

1
< BWy = Band <L+ FIWi]By > =10, where < >=[(---)dz.
0

In these, the first condition is satisfied trivially and the second requires that
(8.11) <1+ f(z)W; >=0.

To determine R, which in fact is a critical Rayleigh number Re, we should find the
constants C; (i = 0 to 3) in Eq. (3.10) which depend on the nature of boundaries.
The critical Rayleigh numbers obtained for different boundary combinations are
detailed below.

3.1. Both boundaries free
In this case the required boundary conditions are

(3.12) Wy=D*W,=DO;=0 at z=0,1.

The constants appearing in Eq. (3.10) are now determined using the boundary
conditions, and they are found to be

Gy =R [fx?(eﬂ —1) - B2(P - 1)] JA?,

C,=R [a25?(eﬁ — %) +2(a? — B2)(1 — %) (1 — é8)] /2002,
C> = RB*? - 1)/A10%,

Cs = —Ra?(e®* —1)/A02,

where A; = o?f%(e? — e?).

Making use of these values of C; (i = 0 to 3) in Eq. (3.11), we get an
expression for Re, which can be written, after some algebraic simplifications, in
the form

4Q%0%(y* — §%)? (cosh g — coshqy)

3.13 Re=
(el ‘ [by cosh g1 + by cosh gy + bs cosh g3 + by sinh gy + bs sinh g + g1]
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where
_ 4P - ) (v - 9) 2 _ §2)2
__4Q*(y* - %) (7 +9) 2 _ 522

b = 165Q? - 83?1 g:*j;* (_ng )
by = —2Q{(v* - 6)? — 8v6},

bs = 2Q{(+* - 6%)% + 84},

g1 = —16Q~4 (sinhgs + sinhqy)

with § = /(M2 +4A0?)/2A, vy = M/2A, qi2=Q/2+dand ¢34 =Q/2% .
It is observed that Re is an even function of @ and the direction of throughflow
(l.e. Q=0 or Q<0) does not change the value of Re.
As 0 — oo (Darcy case), Eq. (3.13) gives

2Q%0?
[Qeoth (Q/2) — 2]
Equation (3.14) is an even function of @ but independent of Pr and it coincides

with that of NIELD [10]. Further as @ — 0 (i.e. in the absence of throughflow),
Eq. (3.13) gives

(3.15) Re ~

(3.14) Re

12A5°
[6% — 125 + 24 tanh (5/2)] ’

where & = ¢/V/A. From this equation it follows that, with A = 1

(3.16) Re~120 aso — 0
and
(3.17) Re~120? aso —

which are the known exact values.

3.2. Both boundaries rigid
The boundary conditions are
(3.18) Wi=DW,=D0; =0 at 2=l
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Then from Eq. (3.10), on using Eq. (3.18), we get

Co = R[a(l+e%) = B(1+ ) +2(e” — e%)] /As0?,
Ci=R [20‘(8’8 —1) - 2B(e* - 1) — af(e® - e“)] /Asa?
Cs = R[ﬁ(l +ef) —2(f - 1)] /Bg0?,
Cs = R[2(e* — 1) — a(l + )] /Ago?,
where Ay =2(8 - a) (1 —e* — €7 +e*?) +2ap(e* — ¢P) .
Substituting these values of C; (i = 0 to 3) in Eq. (3.11) and performing

some integration, we obtain an expression for Re, which can be written in the

form
_ 2Q%0%[—2(sinh g4 + sinh g3 — sinhq; — sinhgy) + f1]

(3.19)  Re= (d cosh gy + dp cosh gz + d3 cosh g3 + dy sinhqy + f2)°
where

b= RO g,

dp = —%+(72—52]=

s = gz 00

e = Q('YQT):T; W s,

5 - Q2(7Q++62Y(2;~25) 45,

fi = (#* = 8%)(cosh g1 — coshgg) ,
fo = dssinhgy + dg sinh g3 + d7 sinh gy4.

We note that Rc is an even function of @, as in the previous case, because of
symmetric boundary conditions and hence the direction of throughflow does not
have any influence on the stability of the system.
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As 0 = o0, Eq. (3.19) gives
2Q%02
[Qcoth(Q/2) — 2]’
which is the same as Eq. (3.14). Further as @ — 0, Eq. (3.19) gives

(3.20) Rc ~

12A5%(2 + & sinh& — 2 cosh &)
[4(6 — 62) + (24 + 62) sinh & — 8(62 + 3) cosh 5]

Hence (with A = 1)

(3.21) Re ~

(3.22) Re~720 aso —0
and
(3.23) Re~120% + 720 as o — oo.

The first term on the right-hand side of Eq. (3.23) is the value given by the
Darcy equation and the second term is the Brinkman boundary layer correction.

3.3. Lower boundary rigid and upper boundary free

In this case the boundary conditions are given by

(3.24) W1 = DW; =0= D6, atr z2=:0),
(3.25) Wy =D*W,=0=DO; at z=1.

Hence

Co

R -0'260 — B2eP 4+ 9(e? — B) — 2> - o:)] /2030°,

Ci = R|a?Be® — af?e? + 2a(ef — 1) — 28(e* - 1)] /20502,

Cy = R[g2%5 —2(ef — B - 1)] 28302,
Cy = R[2(e" —a—1) - aze“] /20302,

where Aj = B2eP(e® —a—1) — a?e®*(e® - B - 1).
Making use of these values in Eq. (3.11), Re is found in the form

(3.26) Be=
2Q%%(e? — 1)A3

[eleQHH + 2977 + e36?%0 4 e4e? + ese” + ege’ + ere1T0) 4+ egl
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where
Q3% -2) 9 3o
e = —Q—_"_—;y—*'*(‘]’ -8 )(Q° +2Q +2),
2
eg=Q72(6+2)+2Q5—2(1+5)72—W,
20% 1
€3 = % — Q6% (y+2) +2Qy+2(1 +v)é?%,
€4. = H2Q{7+5)1
52 2L
e5=.‘*?_Q(_'*:5_2’+2(1+5)72,
2052
b= —W 21+ )8,
er = 2(8° — %),
= PO

(@+M(Q+9)

A glance at Eq. (3.26) reveals that Re is not an even function of Q). Hence the
direction of throughflow alters the value of Re.
As 0 = o0, Eq. (3.26) gives
2Q%0?
[Q coth(Q/2) — 2]’
which is the same as Eq. (3.14). Thus we observe that for a densely packed
porous medium, Re is independent of the types of boundaries. In other words,

the Darcy model fails to take care of the boundary and inertia effects.
Further as @ — 0, Eq. (3.26) gives

(3.27) Re

12A5° (sinh & — & cosh &)

(328)  Re~ o (37 —6)smho + (24 — 59) coshd + 1267 — 2)]

From this equation it follows that (with A = 1)

(3.29) Re~320 aso—0
and
(3.30) Rc~120% + 360 as o — oo.
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The second term on the right-hand side of Eq. (3.30) is the boundary layer
correction as seen in the previous case (see Eq. (3.23)).

4. Results and discussion

Onset of convection in a sparsely packed porous layer with throughflow is
investigated in understanding the control of convective instability by the ad-
justment of vertical throughflow. The Brinkman-extended Darcy model with
fluid viscosity different from effective viscosity is used to describe the flow in the
porous media. The boundaries are assumed to be either rigid-permeable or free
of tangential stresses and insulated to temperature perturbations. Analytical ex-
pression for critical Rayleigh number Re, for free-free, rigid-rigid and rigid-free
boundaries have been obtained and are evaluated numerically for different values
of @, A and Pr. The results are presented graphically in Figs. 2 - 9.

Figure 2 shows the variations of Re as a function of |@| for both free-free
and rigid-rigid (i.e. symmetric) boundary conditions. These plots are for o2 =
10,100, A = .1,1,10 and Pr = 7. Note that increase in the values of ¢? and A
increases Re as expected and makes the system more stable. The direction of
throughflow is not altering the stability of the system and increase in the value
of |@| is to increase Re. This is because the effect of throughflow is to confine
significant thermal gradients to a thermal boundary layer at the boundary toward
which the throughflow is directed. The effective length scale is thus smaller
than the thickness of the porous layer d and so the Rayleigh number, which is
proportional to the cube of the porous layer thickness, will be much smaller than
the actual value of Re. Therefore higher values of Re are needed for the onset of
convection with an increase in |Q)|.

The presence of constant vertical throughflow in the basic state brings in the
effect of inertia through the appearance of Prandtl number, which complicates the
situation. The effect of Prandtl number on the stability of the system is shown
distinctly in Figs. 3 and 4 for free-free and rigid-rigid boundaries, respectively.
These figures are for |Q| = 2, A = 0.1,1,10 and 02 = 10,100. For o2 = 10, the
values of Re are shown on the left-hand side of the figure while for o2 = 100
they are shown on the right-hand side. From these figures it is evident that
Re decreases initially with an increase in the value of Pr and passes through a
minimum, depending on the value of A, before attaining an asymptotic value with
further increase of Pr. Also, an increase in the value of A is to decrease the range
of values of Pr upto which the system becomes unstable (i.e. Rc decreases). The
variation in Re with Pr for free-free boundaries is found to be not so significant
as compared to the rigid-rigid boundaries.
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When the boundaries are of asymmetric type (i.e. rigid-free) the situation
observed is totally different, in contrast to the symmetric boundaries, and the
same is depicted in Figs. 5 and 6 for 02 = 10 and 100 respectively, for different
values of Pr and A. Figures 5(a, b, ¢) and 6(a, b, ¢) show the results for Pr < 1,
while Figs. 5(d, e, f) and 6(d, e, f) are for Pr > 1. These figures show that the
direction of throughflow alters the stability of the system and also the existence
of a critical Prandtl number below which the downward flow destabilizes the
system and above which upward flow destabilizes the system. Note that the
destabilization manifests itself as a minimum in the Re — |@Q| curve up to certain
values of Q depending on the values of 6%, A , Pr and as well as the direction of
throughflow. For antigravity throughflow (Q > 0), it is found that an increase in
the value of Pr decreases the value of Re and thus makes the system unstable.
For gravity aligned throughflow (@ < 0) an opposite kind of behaviour is noticed,
in general, with some exceptions when 02 = 10 and A = 0.1 and 1 (see Figs. 5a
and 5b). Increase in the value of A tends to make the system more stable and also
to increase the range of values of @ up to which the system gets destabilized.
For A = 0.1 and 10, it is found that the destabilization is greater for Pr < 1
and Pr > 1 respectively for the values of 02 considered, where as for A = 1 the
destabilization is greater for Pr < 1 when ¢ = 10 and for o2 = 100 the same is
found to be true for Pr > 1. The destabilization may be due to the distortion of
the steady state basic temperature distribution by the vertical throughflow. A
measure of this is given by the term < f(z)W® > and this can be interpreted as
a rate of transfer of energy into the disturbance by interaction of the perturbation
convective motion with basic temperature gradient. The maximum temperature
occurs at a place where the perturbed vertical velocity is large and this leads to
an increase in energy supply for destabilization. The destabilization may also be
due to other mechanisms, i.e. the momentum transport and the thermal energy
transport.

Figure 7 shows Rc as a function of Pr for rigid-free boundaries. The results
exhibited are for two values of 2 = 10 (shown on the left-hand side of the figure)
and 100 (shown on the right-hand side of the figure) for Q@ = £2 and A = 0.1,
1, 10. It may be noted that the Prandtl number plays a dual role in deciding
on the stability of the system, depending on the direction of throughflow. For
antigravity throughflow Re decreases monotonically with Pr, while for gravity
aligned throughflow it decreases initially with Pr and increases again with further
increase of Pr before attaining an asymptotic value.

The velocity eigenfunction W (z) for different boundary combinations are il-
lustrated in Figs. 8 and 9 for different values of Pr and A in the case 0% = 10 and
@ = £2. As can be seen, increase in the value of Pr (see Fig. 8) and decrease in
the value of A (see Fig. 9) increases the convection in the porous layer.
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