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A MODEL OF BOUNDARY layer suction through small opening is suggested. A
procedure of neutral curve construction is described. The dependence of the shift of
neutral curves on the intensity of suction and on the position of the opening is studied.
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1. Introduction

THE LAMINAR-TURBULENT transition in wall boundary layers is important for
many practical applications. To study the problem it is necessary to treat the
downstream development of the disturbances. The transition is strongly influ-
enced by nonlinear effects, which become important when, by growth, the un-
stable disturbance has reached a certain level [20]. But at the first stage of
the process when disturbance is sufficiently small, one can consider the linearized
problem [3, 8]. Linear boundary layer stability problem reduces to investigation of
Tollmien-Schlichting wave evolution [19]. In the framework of this approach sta-
bility corresponds to the downstream decrease of the Tollmien-Schlichting wave
amplitude, and instability to its increase.

Suction of boundary layer is a widely used method of stream laminarization
[7, 19]. We shall study the linearized problem of boundary layer. But even linear
problem faces great difficulties [13, 17]. That is why it is interesting to construct
rough and sufficiently simple models allowing one to estimate the influence of this
small perturbation on the stability of boundary layer. It is conventional to use an
approximation of uniformly distributed suction [7], but in the framework of this
approach we have no possibility to investigate the influence of aperture position.
There is another way- to replace a small opening (strip) by a point-like one [5,
14]. A goal of the present paper is further development of this idea. Namely, we
analyze a shift of neutral curves and, correspondingly, the critical value of the
Reynolds number under the influence of additional perturbation of the velocity of
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main flow by a point source (sink) at the wall. The result is compared with [11,
17]. The model allows one to vary the choice of the model function - disturbance
of the main flow due to aperture in the boundary (in the model it is replaced
by a point-like window). In [10 - 12| the excitation of the Tollmien-Schlichting
waves and the receptivity of boundary layer to the Dirac line source (sink) at the
wall was studied. One can use this function which corresponds to the point-like
source as a disturbance in our model. But comparison of our model with the
results [13, 17] shows that, in order to obtain appropriate result (outside some
neighbourhood of the aperture), it is sufficient to use more rough and simpler
model functions, for example, a point source for the Stokes flow [6, 16]. It should
be mentioned that Stokes-flow solutions are widely used in multi-layer analysis
of boundary layer for the flow in the inner sublayer [2, 18].

There is a so-called zero-width slit model which is rather effective in diffrac-
tion theory and creeping flow investigation [6, 15, 16]. It is based on the theory
of self-adjoint extensions of symmetric operators. The model is similar to the
zero-range potential method in quantum mechanics. The suggested approach
allows one to apply the operator extension theory methods in a hydrodynamic
problem.

Consider a two-dimensional flow of viscous incompressible fluid over the semi-
axis I',T' = {(z,y) : ¢ > 0,y = 0}, z,y are Cartesian coordinates on the plane.
It is convenient to use a stream function ¥ instead of the velocity (ug,uy) of the
flow: u; = ll’;,uy = —W/. Then the Navier-Stokes equations transform to the
following boundary-initial value problem for the stream function ¥:

IAT x 0¥ AT OV 0AVY
ot oy Oz dxz 9y

— vA%P = 0,

(1.1)

o
¥ |p= o Ir=0,V¥ |i=0 = ¥y,

where v is the kinematic viscosity.

Let 9 be the stream function of the main stationary flow, u = ;,v = —1l.
A solution of the problem with slightly disturbed initial condition we denote by
9 + . Assuming that the disturbance is small, we linearize Eq. (1.1). Consider a
region in which the boundary layer has been formed. Assuming that the velocity
field is parallel and its components depend only on the transversal variable y, one
can seek ¢ in the form of a Tollmien-Schlichting wave: ¢(z,y) = f(y) exp(ia(z —
ct)). It is possible to take into account also the transversal component v of the
velocity keeping in mind that u and its derivatives are much larger than v and its
derivatives [1, 7]. Taking into account that ug, < uy,, vy, < vy, in the boundary
layer and considering v and vy, as parameters, one obtains the following modified
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SUCTION THROUGH POINT-LIKE OPENING AND STABILITY... 207

Orr-Sommerfeld problem (in dimensionless form) [1, 7]:

L

12) " —20*f" +a'f = Riia(u—¢)(f" - o*f) — iaull,

+o(f" =) o f),  FO)=F0)=af0)+f(1)=
fly) = const for y — oo,

where R is the Reynolds number for the boundary layer. The system of units is
such that the width of the boundary layer is equal to 1. The first two conditions
mean that the disturbance of the velocity field must vanish at the boundary. As
for the remaining two conditions, they show that the perturbation of the velocity
is concentrated in the boundary layer. It is possible to use other conditions, for
example, f(y) — 0 and f'(y) — 0 for y — oo, but for our purposes it is more
convenient to use the above mentioned condition in which the scale is fixed: the
width of the boundary layer is 1.

Let v be real. It is convenient to use a neutral curve, i.e. a set of points on the
plane «, R, for which Se¢ = 0, to describe the stability. The domain of instability
consists of points for which Se > 0 (because the amplitude of the corresponding
Tollmien-Schlichting wave increases). Minimal value R, of R on the neutral
curve is named the critical value of the Reynolds number. For R < R. the flow
is stable for any value of a. To determine R, it is an important problem of linear
hydrodynamic stability. It is essential for various applications to clarify how the
critical Reynolds number is influenced by different variations of the system.

For the main flow we have u = U(y),v = 0 in the boundary layer. We shall
estimate the influence of small aperture on the stability by means of replacement
of coefficients u,v in Eq. (1.2) by the components of the flow velocity in the
boundary layer in the case when the aperture is present [8]. Unfortunately,
explicit construction of the velocity field in this case is very complicated. That is
why it if useful to find simpler model functions eg for the perturbation of equation
coefficients: u = U(y) + egy,v = —sg_;, where ¢ is a small parameter. Outside
some neighbourhood of the opening, stationary velocity field for small aperture
differs slightly from that for the model with point source at the boundary. The
simplest example of such source is a potential source: g = arctan(y(z — a)™!),
where (a,0) is a point of the opening. It should be mentioned that one can use
the operator extension theory method [6, 15, 16] to construct a stream function
for the potential or creeping flow with point source.

2. Construction of asymptotic expansion

Let us construct main terms of an asymptotic expansion of the solution in
small parameter (vaR)™!. We shall follow the scheme of [1], which is a modifica-
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tion of that from [9]. Let fy, fo be the solutions of the Orr-Sommerfeld equation
without viscosity (for details, see the Appendix):

h(y) = (w=0) ) guly)a™
n=>0

y y
al gl = / (=) 2dy f fiie o el
0

0

fy) = (w=0) Y ta(y)a™
n=0
y v ]
to= [ (u—c)2dy,ta(y) = [ (u—c)2dy [ (u—c)*tn_1(y)dy

Let us make a substitution

Yy
y) = exp( [ ply)dy)
/

in Eq. (1.2) to determine two additional solutions. Then one obtains for p(y) :
(3.1) (u——c)(p' +p® — ®) —u" + (iRa) " "wR(p' + 3pp'
+ p* — o®p) — i), Rp(iaR)™" = (iaR) ™' (p* + 6p°p'
+3(p")° + 4pp" +p" — 2%(p' +p?) + o).

We search a solution of (2.1) in the form of a series in powers of (VaR)™!

(3.2) Z = paly

Substitute (2.2) into (2.1) and select the terms of order aR and vaR :

(u= g} = —ipi
(u — c)pp + 6ipgpy — wRpy = (—4ipy — 2(u — c)po)p1-

Hence,
po = £V/i(u — ), p1 = —5py(2po) " + vR/2.
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Consequently, two “viscous” solutions of (1.2) have the form:
y

fay) = (u—c)"exp (/ (v\/éaR(u —0 + vR/Q) dy) ,

0
(3.3)

y
faly) = (w—c) " exp (/ (ViaR(u—c) +vR/2) dy) |

0

The solution should satisfy the boundary conditions
f(0) = f'(0) =af(1)+ f/(1) =0, f(y) = const for y — oo.
But f4 does not satisfy the last one. That is why we take the solution in the form

f(y) = bifi(y) + bafaly) + bafa(y).

Coefficients are determined from the system of boundary conditions. It is a linear
algebraic system for the coefficients. It has non-trivial solution in the case when
the system determinant is equal to zero. After some calculations, this condition
takes the form:
(3.4) _f;:,(U} 2 cz ,

f3(0)  w(0)(1 +2)

where
2 =2 +iz = w(0)c(f4(1) + afa()) (A1) + afi(1) 7,
” '(0) | w'(0)cuy '(0)e
(3.5) &= —uui + AL lnf:aul — o
u(y*J =t U.:, = u’(y‘}‘l uf = “”(y‘),
(3.6) zi = —mu'(0)cul (u),)°.

Under the assumption that ¢ ~ y,u'(0) [9], one obtains from (2.4):

1= (14 A0

Let ®(y) be the conventional solution of the Orr-Sommerfeld equation

L

®" —20°3" + a'® = Ria((u - ¢)(@" — o*®) — U!" ®).

Then taking into account (1.5), one gets

v
f3(y) = ®(y) exp ( [ (?»'R/Z)dy) :
0
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Hence, (2.4) gives us
(3.7) z+4+1= (14 ®(0)(y.(2'(0) + Rv(0)®(0)/2))~
(1 - F(w)(1 - U(U)RwF(w)/?)_l]" = G (w),

where F(w) = Fy(w) + F;(w) is the Thitiens function (9], w = y.(aRu, )13, We
use Eq. (2.7) for the determination of @, R on the neutral curve. If the model
function is such that v(0) = 0 in a cross-section of the boundary layer which is
considered, then it is necessary to take into account next terms of the expansion
(1.4). One obtains py by collecting the terms of order (aR)? in (2.1):

= (2p3) ' (vR3(poph + pep1) — Spgp} — iu”
— 5p2p? — 12popip) — 3(p)? — 4popl + *pj).

Substituting this expression in (2.1), one obtains the following relation for the
determination of «, R on the neutral curve in the case when v(0) = 0 instead of
(2.7), by extracting the main term:

(38) z+1=(1+®(0)(y.(®'(0) — 5¢/R/a(4po(0 '(0)®(0))) 1)~
= (1-F(w)(1-5 R/ampo(on—‘v'w)y,F(wn‘l)"‘ = Ga(w),

If the model function satisfies both boundary conditions, we should take into
account the next term (p3) of the series (2.2). In this case, one must collect all
terms of order (vVaR)™! in (2.1):

ps = —(2p3) ' (~vR (P} + 3pop', + 3pip2 + 3p1ph + 3pop3 — ’po)
+ 5paphy — 2p1papi + Rpov" + 4pop} + 6popt + 12pgpop2

"

+ 12p1p1pg o+ ﬁpgpl + 4p1p0 - 4pgp1 +po — 20:2;05 + 2pop1)-

Then in the case v(0) = v'(0) = 0 one obtains, by extracting the main term in
ps3, the following condition for the determination of the neutral curve:

(3.9) z+1=(1+ ®(0)(y.(®'(0) — 21i(8(u(0) — c))~'v"(0)2(0))) ")~
= (1 - F(w)(1 + 21i(8a(u(0) — ¢)) 0" (0)y. F(w))~}) ™! = Ga(w).
Expressions (2.7) - (2.9) for Gj(w) have similar structures:

(1 = F(w)(1 + mw’F(w))™")™" = G(w,m),
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if we introduce parameter m which has the value m; for the case Gj:
mi = —v(0)(2yFau) ™,
my = —5vV20'(0)(1 +4)(8v/ a3 Ru,y?u)) !,
ma = —21v0"(0)(8u,ula®Ry?) !

3. Procedure of neutral curve construction

Let us describe a procedure of constructing the neutral curve.
Let G(w,m) = H(w,m)+iQ(w,m),m = r+is,3H = IQ = Sr = s. Then

H(w,m) = (1 + 2rw’F, — 2sw®F; + r*wbF? + $*wS(F? + F?)
+ r*wF? — rwF? — F, — ri®F)((1 + rw’F, — sw®F; — F,.)?
+ (rw*F; + sw?F, — F)*)™,
Q(w,m) = (F, — sw(F2 + F2)((1 + w(rFy — sF, - F,)?

+ (w3(rF; + sF,) — F;)*)~.

It is possible to assume a different initial approximation for the unperturbed

main flow. We use the following profile: U(y) = 2y — 5y* +6y° — 2y5. Coefficients

u,v in (1.2) have the following form: u = U(y) + €g),v = —egy, where € is a
parameter, which characterizes the intensity of suction.

Let us fix e. Choose a set of values of function F(w). For each value one
solves the following system of equations obtained above:

Qw,m) = z(y,),

H(w,m) = 1+ fr(ys, ),
R = v’y (au)7,
m = m(y.,a, R).

The solution a, R of the system gives us the point of the neutral curve. Testing
a sufficient set of values of the function F'(w), one constructs the neutral curve.

4. Suction and critical Reynolds number

To estimate the influence of suction on the stability near the critical point of
the neutral curve we can use another technique. Namely, let € be small, and we
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search a solution of (1.2) in the form of a power series in this small parameter:
(4.1) f=fotefi+elfo+..., c=co+eci+ecy+ ...

Substitute now these expressions into (1.2). Note that the function g depends
on z, but z is treated as a parameter, i.e. the stability analysis is carried out
under the assumption that the boundary layer is treated locally as a parallel flow.
Terms of order £° gives us the conventional Orr-Sommerfeld equation for fo,co :

fee

42)  fy —20*fy +a*fo = Ria((u — co)(fo — & fo) — ul, fo).

For terms of order € one obtains the inhomogeneous Orr-Sommerfeld equation
for fo,co:

e

(4.3) fo =202 fy + @ fo — Ria((u — co)(fo — ®fo) — ul, fo)
= R(ialg) — c1)(fil — a®fo) —iagh, fo — gu(fi' — @ f) + gipys £6)-

The condition of solvability of Eq. (4.1) is the orthogonality of the right-hand
part to a solution @ of the associated Orr-Sommerfeld equation:

fe

0" —20*0" + a*0 = Ria((u — o) (0" — 0?0) + 2u}, ).

The orthogonality condition gives us the value of ¢;:

o0 -1
(44) ¢ = |ia / (fo — o fo)Bdy / (iagy (f§ — @ fo)
0 0

— dagly, fo — g5 (fo' — &2 ) + 9yye f0)0dly.

The sign of £3¢; shows how the stability changes. Inequality €Se; > 0 corre-
sponds to instability, and condition £€3¢; < 0 - to stability.

5. Discussion

It is possible to choose different functions g in the model. Of course, the
best is the stream function for the case of small aperture in the boundary. But
it is very difficult to construct such solution [13]. That is why it is useful to
choose a simpler model functions. Formula (2.7) may be used for the description
of uniform suction through the surface, for example. The simplest choice of the
model function for the case of suction through small opening is a potential source

g = arctan(y/(z — a)).
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Here (a,0) is a position of the opening. This function satisfies only one boundary
condition in (1.1). For this case the function G should be chosen in accordance
with formula (2.8). It is possible to choose a model function which satisfies both
the boundary conditions. The simplest example is the corresponding solution of
biharmonic equation (Stokes flow):

9=9*/((z —a)* +4%).

Note that the Stokes-flow solutions are often used as an instrument of bound-
ary layer investigation in multi-layer analysis for inner sublayer (see, for example,
[2, 18]). For such a choice of the model function, formula (2.9) for G works. But
for a creeping flow, the value of flux across a line is equal to the difference between
the values of stream function on the ends of the line. That is why this source is
not a source (or sink) of mass, but a source of vorticity. From this point of view
it is more appropriate to use a function

9=9*/((z - a)* +¢°) + /2 — arccos(y//(z — @) +4?),

which gives us a flux 7 through the opening.

For the last type of the model function we construct a neutral curve. The
dependence of its shift on € (intensity of suction) is shown in Fig. 1. Here Az =
x — a, where (a,0) is the position of the opening, z is the coordinate of the cross-

a A &= 0.02

20

05

0 1 1 1 1 1 5
2.5 3.0 35 4.0 45 5.0 Ig Re

FiG. 1. Dependence of neutral curve position on the intensity of suction. Az is the

distance between the cross-section under consideration and the point of the aperture;

the unit of length is the thickness of the boundary layer at the point of the opening.
Curve with £ = 0 corresponds to absence of suction.
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section for which the stability is studied. Positive £ corresponds to source. For
these values of the parameter we obtain a displacement of the neutral curve to
the left and extension of instability domain. For e < 0 (suction) we obtain a shift
to the right of the curve and, correspondingly, reduction of instability domain.
The neutral curves for different Az are shown in Fig. 2. Here the case Az = oo
gives us the neutral curve for the boundary layer without suction. Of course,
it is possible to use more realistic model functions (for example, that obtained
by approximate calculations for point-like source [12]; in this situation we have
not an explicit expression for g , but it is not essential). Nevertheless, one can
see that even for such a rough choice of the model function one obtains results
which are in good agreement with that for more realistic, but considerably more
complicated models (see, for example, [17]).

Ax=1
® 4

20

15 |

05 |

0 1 1 1 L 1 }

25 3.0 35 4.0 4.5 50 Ig Re

Fi1G. 2. Dependence of neutral curve position of the position of the aperture. Negative
€ corresponds to suction (sink), positive &- to source.

Obviously, that solution for point-like aperture is not appropriate as a model
solution in the neighbourhood of the aperture of finite width (at the point of
the opening the model solution has a singularity). One can estimate the size
of neighbourhood outside which our model is correct. Comparison of the model
function g with the stream function for the flow near aperture [13] shows that
the ratio of the radius of the neighbourhood to the width of the boundary layer
(at the point of the window) is of the order 10%¢.

Change of stability at critical point due to suction is studied by means of
(4.4). The solutions fy,f# are taken from [4] for critical values of parameters:
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SUCTION THROUGH POINT-LIKE OPENING AND STABILITY... 215

a = 0.304, R = 519,¢9 = 0.3967. The dependence of S¢; on the distance from the
point of suction is shown in Fig. 3 (for the model function ¢ = arctan(y/(z—a)))
and in Fig. 4 (for the model function g = y?/((z — a)? + y?)). Note that the
second function corresponds to the situation when the total flux through the
aperture is zero, for example, there is a cavity coupled with the boundary layer

A ImC,y
+ 0.03
+ 0.02
T 0.01
0
4 I = i +.|-F'_'--1_ }
30 20 -10 10 20 30 x.a
-0.01 +
-0.02 +
-0.03+

Fi1G. 3. The dependence of Se; on a distance from the point of suction for the model
function g = arctan(y/(z — a)).

A\ ImC,
T 0.1
-30 -20 -10 0 10 20 30
4 4 + n 4 + e
-0.05+

Fi1G. 4. The dependence of S¢; on a distance from the point of suction for the model
function g = ¥*/((z — a)* + y?).
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216 I. Yu. Poprov

through small opening. For the first function, the total flux is not zero — there is
a suction. It explains the qualitative difference of the pictures. We must stress
that the model is correct outside a neighbourhood of the opening, i.e. the results
are not valid for small z — a (the unit of length is the thickness of the boundary
layer).

Acknowledgements

The author thanks Yu.V.Gugel for assistance in carrying out the calcula-
tions, and the Referee for useful remarks and suggestions. The work was partly
supported by RFBR (grant 01-01-00253) and ISF.

Appendix

Consider the form of series for f(1) (and f(2)) in powers of a. It is a solution
of the main equation without viscosity:

(u— c](f” —a?f) - iau;yf =,

Substituting f in the form

fy) = @w=0) ) guy)a®,
n=0

one gets
o0
(u—c) Z(u"qn +2u'ql + (u — ¢)gh)a®®
n=0
o0
(u—c) Zq 10" + (u — e)u” ana2“.
n=0

Comparing the terms with identical powers of a, one obtains for n = 0
2(u — c)u'qh + (u — c)*qf =0,

i.e.
((u —¢)?qp)’ = 0.

Hence,

y
g = C /(’U —¢)"%dy + C>.
0
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SUCTION THROUGH POINT-LIKE OPENING AND STABILITY... 217

For n > 0 one gets

((u=0)*qn)" = (u = ¢)°gn-1.

Hence, one obtains the following recurrent relation:

Yy y
)= [0 2 f R
0 0

Taking two linearly independent solutions gg, we obtain the form of series for f;

(f2):
00
) = (u=10)) amly)e™,
n=
) u
9 = 1,qn(y) = f u—c) 2du/ u = )’ gn-1(y)dy,
0 0
oo
Ry) = w=-03 taly)a™,
n=0
y u v
to = /(u - &) %dy, tn(y) = /(u — )~ %dy /(u — ¢)*tn-1(y)dy.
0 0 0
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