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A note on the existence and global stability of deformations of
compressible nonlinearly elastic solids
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THE EXISTENCE AND GLOBAL STABILITY of certain deformations of isotropic compress-
ible hyperelastic solids is investigated for the case when the body forces are zero and
boundary conditions of place are satisfied. Certain global stability results are ob-
tained and, using a phase-plane analysis, the existence of deformations describing the
bending of rectangular blocks into annular cylindrical sectors is established.

1. Introduction

THE MAIN PROBLEM of nonlinear elastostatics is the determination of solutions to
equilibrium equations which satisfy appropriate boundary conditions and which
are stable, in the sense that they minimise the total energy relative to an appro-
priate class of variations. Exact solutions to relevant boundary value problems
are, however, rarely available and when approximate solutions are sought, it is es-
sential that the existence and stability of solutions are established beforehand. As
discussed recently in [1], there are two ways of answering questions of this nature.
One way is to establish the existence of minimisers for the total energy within
an appropriate function space which are subsequently shown to satisfy the cor-
responding Euler-Lagrange equation; another way is to establish the existence of
solutions to the boundary value problem for the Euler-Lagrange equation, which
are subsequently shown to be minimizers to the total energy.

In this paper we are concerned with the existence and global stability (i.e.
stability relative to variations of class C! and of arbitrary magnitude) of equi-
librium solutions for isotropic compressible elastic solids and, in this context, we
draw attention to the existence and uniqueness result established in [2] for de-
formations that describe the straightening of annular cylindrical sectors and to
the global stability results obtained in [3] — [6]. Here, assuming (as in [2] - [6])
that the body forces are zero and that the deformations satisfy boundary condi-
tions of place, we obtain certain generalisations of the stability results in [5, 6]
(which, in turn, are generalisations of the global stability results obtained in [2,
3] respectively) and using an approach similar to that adopted in [2], find con-
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ditions which ensure the existence and uniqueness of deformations that describe
the bending of rectangular blocks into annular cylindrical sectors. We show that
in certain instances it is possible to combine these results to conclude that certain
deformations exist and are globally stable.

2. Preliminaries

We consider deformations of isotropic compressible hyperelastic solids which,
in a reference configuration, occupy a domain D of the Euclidean space R3. Such
deformations are smooth and invertible transformations £ : D — D, where D
denotes another domain of R3. The deformations f are required to satisfy

(2.1) detF >0, F=Vf,

where det and V stand for determinant and gradient, respectively. The principal
stretches, denoted here by A;, 1 = 1,2, 3, are the eigenvalues of (FFT)I’,2 where
FT denotes the transpose of F.

The materials under consideration are characterised by strain-energy func-
tions

(2.2) W = W(F) = W(A1, A2, A3)

whose domains are restricted to deformations that obey (2.1), which are sym-
metric in Aj, A9, A3, and which satisfy

w
<l —1.0.3
a)‘t) 1 ) '.!'3

Q

- -

(23) W{)‘l!’\:za '\3) 2 0: Wi(ls 1: 1) =3 07 Wi

equality in (2.3); being possible if and only if \j = Ay = A3 = 1. If W = W(F)
is of class C2, then it is convex if and only if [7]
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As pointed out by many authors (see [8], Sec. 52, for instance), the condition
(2.4) is not acceptable in nonlinear elasticity.
The stress-deformation relation is
oW
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where S denotes the first Piola-Kirchhoff stress tensor [8, Sec. 43A] and the
equilibrium condition reads

(2.6) DivS(F) =0 on D,

when the body forces are zero. According to the principle of virtual work ([9],
Sec. 2.6), an equilibrium solution f satisfies

(2.7) tr [S(Vv)T]dD =0
/

forall veV ={v e CYD):v|pp =0, det(F + Vv) > 0}, where tr is the trace
operator, C'(D) is the set of continuously differentiable functions on D and dD
is the boundary of D.

In the absence of body forces, an equilibrium solution f (that satisfies bound-
ary conditions of place) is said to be globally stable if

(2.8) /W(F + Vv)dD > /W(F)dD, F = Vf,
D D

for every variation v € V. When D is a bounded open set, a strain-energy
function W which satisfies the condition (2.8) at a particular deformation gradient
F is said to be quasiconvex at F (see [9], Sec. 5, for instance).

3. Stability results

In this section we confine our attention to a sub-class of the class of mate-
rials characterised by (2.2) and (2.3), namely the materials whose strain-energy
function can be written in the form

(3.1 W = H [P(\i, 20, X9)] +h(J),

where P(F) = P(\y, As, A3) is a scalar-valued function (assumed to be symmetric
in A1, A9, A3) and where, for convenience, we employ the notation J = AjAgA3.
Our first result is similar to that established in [3] and [5].

ProposITION 1. Let h(J) = aJ + b, where a and b are constants, let P =
P(F) be a convex function, and let H” > 0. Then, for boundary conditions of
place and zero body forces, an equilibrium solution f* is globally stable provided
that

(3.2) H'[P(FY) 20, F*=Vi.
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Proof. By the well-known identities 3J/0F = JF~T and Div(JF~7) =0
(see [5] and [10]), it is clear that we have Div(0h/OF) = 0 and thus, for the
materials under consideration, the equilibrium condition (2.6) reduces to

oP
: i "[P(F)] == ¢ = 0.
(3.3) DIV{H [P(F) HF} 0
By assumption, f* is an equilibrium solution and therefore, in view of (2.7), (3.3)

leads to

(3.4) /H' [P(F*)]tr [g—g(F‘){Vv]T] dD =0, VveV.
D

Our convexity assumptions also imply

(3.5) P(F*+Vv) - P(F*) > tr [%(F’)(VV)T] : Yv ey,

and

(3.6) H[P(F* + Vv)] - H[P(F*)] > H'[P(F*)][P(F" + Vv) — P(F")],
Vv ev,

which, together with (3.2) and (3.4), yield

(3.7) /{H[P{F‘ + Vv)] — H[P(F*)]}dD > 0.
D
Since
(3.8) /{h[J(F‘ + Vv)] = h[J(F*)]}dD =0, Vv eV,
D

we find (see (3.1)) that

(3.9) / (W(E* +Vv) - W(E*)]dD >0, Yvev,
D

which shows that f* is globally stable.
For illustration we restrict ourselves to the case of plane strain and consider
a class of materials characterised by a strain-energy function of the form

(3.10) W = ZHOT+ ) - i)

where ¢ > 0 and 7 > 1 are constants and where H is a function that satisfies
H(2) =1, H(2) = 1/y, H" > 0. We note that if vy = 1, (3.10) represents
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the class of harmonic materials introduced in [11]. An example of material that
belongs to the class (3.10) is provided by

P A+
(3.11) W=5 08 +23) + 2 (8 + 28 -2)" -,
where p and A are the infinitesimal Lamé moduli that satisfy u > 0, u+ A > 0.

Using the specialisation of conditions (2.4) to plane strain (see [7]), we find
that

(3.12) P(F) =B, ) =N+, ~4>1,

is convex. Also, according to the existence result established in [2], equilibrium
solutions of the form

(3.13) g LR, y=ab « = const, a >0,

where (z,y) are Cartesian coordinates in D and (R, ©) are polar coordinates in
D, exist for materials (3.10), boundary conditions of place, and zero body forces,
provided that

(3.14) (y—1)H' +~4A]H" > 0.

We note that the condition (3.14) is equivalent (for material (3.10)) to the tension-
extension condition ([8], Sec. 51)

(3.15) Wi >0

and that the deformation (3.13) represents the straightening of annular cylindrical
sectors. Clearly, if the condition H' > 0 is satisfied (for materials (3.11) this is
equivalent to A < 0), by the above proposition (3.13) are globally stable solutions
(relative to the class of materials (3.10)) for any of the boundary conditions of
place. If the latter condition is violated however, the stability condition (3.2) may
be satisfied only if the boundary conditions are restricted in a suitable manner
(see [5], for instance).

Our next Proposition 2 generalises (in a certain sense) the global stability
results obtained in [4] and [6].

PROPOSITION 2. Let k" > 0 (" # 0), H' > 0 and let P = P(F) be a
convex function. Then, for boundary conditions of place and zero body forces,
an equilibrium solution f* that obeys the condition

(3.16) det(Vf{*) = const,
is globally stable provided that the condition (3.2) is satisfied.
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Proof. Since, by (3.16) and the identities quoted at the beginning of the
proof of Proposition 1, we have
oh
3.1 Div | — =
(3.17) iv [6F (detF )] 0

we find, as before, that (3.2) implies (3.7) and, by the convexity of h, it also
follows that

(3.18) [{h [J(F* + Vv)] = h[J(F*)]}dD > k' [J(F*)]
D
: /[J(F* + Vv) — J(F*)]dD = 0, VvevV.
D
The condition (3.9) therefore follows from (3.7) and (3.18).

4. An existence result

In this section we consider the plane-strain bending of a rectangular block
into an annular cylindrical sector. This deformation may be given in the form
(4.1) r={{X), 8 = aY, o = const, a>0,
where (r,0) are polar coordinates in D and (X,Y) are Cartesian coordinates in
D, and the equilibrium condition is (see [12], Sec. 5.2)

d .z -
S WAlF(X),af (X)] = aWalf'(X), af (X)),

(4.2)
X € (—A4A,A), A= const, A>0.

In order to satisfy the boundary conditions of place we prescribe e and require

(4.3) f(-4)=hH, fA=f, f2>H>0.
We seek solutions to the boundary-value problem described above, which satisfy
(4.4) HLff>0 on Xe€[-AA],

and to this end we assume that W is of class C® and satisfies the tension-extension
condition (3.15).
The region of physical interest (see (4.3) and (4.4)) is given by

(4.5) Q={(f,9): L <f < fag>0}
where g represents the possible values of f’, and we define
(4.6) o(f.9) = gWi(g,af) - W(g,af),  (f,9) €.
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Clearly any C? solution of (4.2) satisfies

(4.7) o(f,9) = (£(X), f'(X)) = ¢,

for some constant ¢, and conversely, by the condition (see (3.15))
dyp

4. s

(438) >0 (hoen,

and the implicit function theorem, any solution of (4.7) which is in 2 must be of
class C? and satisfy (4.2).
Solutions of (4.2) also correspond to solutions of the two-dimensional system

d o (W'Z(gs Ct'f) s gw}2(91 Q‘f))

ax’ Wi (g, af)

and thus we may regard X as a time parameter of an autonomous planar system
defined in §2. The level curves ¢ = ¢ therefore give the trajectories of (4.9). Since
the vector field (4.9) is C!, it is locally Lipshitz and, given any point (fo,go)
in ©Q and some value X of X, by standard results (see e.g. [13]) there exists
a unique maximal solution (f(X),g(X)) of (4.9) with f(Xo) = fo, 9(X0) = go,
which must be at least C%. We can choose such a solution to start at f = fi, at
time X = —A, as required.

The condition (4.8) implies that each level curve intersects each line f =
constant at most once. Thus a trajectory can pass from f = f; to f = f; if and
only if there is a value of ¢ for which the level curve ¢ = c intersects each line
f = constant between f = f; and f = f. Introducing the definitions

(49) L i=q

‘?min(f) = g%lp(fag) E["O0,00),

(4.10)
gmax(f) = lim ¢(f,g) € (—o0,00],
g—o0
and
- !erﬂ?ﬁzlqmm(f)e[—m&%
(4.11)
q = fEI;}l;?:fz] gmax(f) € [—00, 0],

we find that ¢ must belong to the interval (go,q;) and thus we must certainly
have g < q; for a solution of (4.2) that satisfies (4.3).

Let ¢ € (go,q1) and denote the solution curve (f,g.(f)), where g. > 0, the
curve which satisfies ¢ = ¢. As discussed above, each curve defines a unique
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trajectory (f(X),g(X)) such that f(—A) = f;. It will also satisfy f(A4) = f if
and only if the time taken to cross from f = f; to f = fo is 24, that is

f2 1 f2 ;
4.12 /——d =/—d = 2A.
e FEa = Y

h fi
Since @(f, gc(f)) = ¢ we have (by (4.8)) that, for fixed f,

d f2 4 g f2 g
g
4.13 — —dz—/—cd=—/ df <0,
) il a¥ 02
hi h h

which shows that there is at most one solution which satisfies the boundary
conditions.
The maximum and minimum values of the integral in (4.12) are given when
¢ approaches gp and ¢; respectively. Defining
f2 i
(4.14) I = lim | —df, k=01,
c—qk | ge

h
we have demonstrated the following proposition.

PROPOSITION 3. If the T' — F condition (3.15) is satisfied, then there is a
unique solution of class C? to Eq. (4.2), which satisfies Eqs. (4.3) and (4.4), if
and only if go < ¢ and

(4.15) L <2A< Iy.

REMARK. Interpreting the following integrals in the obvious sense when the
integrand is infinite (see [2]), we have

I2

(4.16) Iy =fidf, k=0,1.
7 Yy
1

Thus if gmax(f) is constant, then the level curves tend uniformly to infinity as
¢ increases, and so I; = 0. Similarly, if gmin(f) is constant, then Iy = oo. It
then follows that if condition (3.15) is satisfied, and if gmax(f) and gmin(f) are
both constant, for each given value A, there is a unique solution to the bending
problem for all possible boundary conditions of place.

An example of material which satisfies the condition (3.15) and for which
gmax(f) and gmin(f) are both constant is provided by

(417) W=u [%,\?,\2 + %Al,\% — 2212+ 1], p = const, p > 0.
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From (4.7) we find in this case that
(4.18) f(X) = (C1X + Cp)*/*

where C, Cy are constants of integration. It is easily seen in this instance that,
from the boundary conditions (4.3), the arbitrary constants can be determined
uniquely for any choice of f; and fy (with fo > fi > 0).

For materials (3.10) (where we now allow v > 1 and assume that (3.14) holds)
however, we find that (see (4.10))

(4.19) G () = —%H(a‘ff*),

which shows that, for a prescribed value of A, the condition (4.15) restricts the
choice of the boundary conditions available. As discussed in the previous section,
this choice may be further restricted by the stability requirement (3.2). For a
harmonic material of a special kind both these types of restrictions are considered
in [14].
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