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Laminar dispersed two-phase flows at low concentration III
Pseudo-turbulence

J. L. ACHARD and A.CARTELLIER

Laboratoire des Ecoulements Géophysiques et Industriels
CNRS-UJF-INPG, B.P. 53X, 38041 Grenoble Cedez, France
e-mail: Jean-Luc. Achard@hmg.inpg.fr

Two preEcEDING PAPERS (Parts I and 1) present a generalised system of equations to
describe non-turbulent flows of inclusion-fluid mixtures. The two first-order equations
for each phase correspond to equations of the standard two-fluid models. The closure
problem, consisting in the derivation of constitutive laws for unknown quantities
(mainly interaction terms between phases) is not encountered in our approach; these
quantities are provided by two infinite sequences of higher order equations controlling
more and more conditioned “disturbance fields". The difficulty is then to truncate
in a consistent way these sequences using a dilutness assumption. Agitation terms
are also unknowns, both in first and higher orders equations. These terms, which
result from varions types of micro-motions of both phases (the so-called pseudo-
turbulence phenomena), have not been related to disturbance fields at the end of the
two preceding papers; they just came out as unclosed correlation functions. This
paper gives each correlation function a specific expression; some of them must be
approximated due to dilutness in order to be effectively computed.

1. Introduction

VERY EARLY IN THE DERIVATION of averaged two-phase flows models, BUYEVICH
[3. 4] was one of a few authors to discuss agitation terms which influence the
bulk momentum transfer of both the inclusions and the continuous phase, as
soon as inertia effects are important. Even if they appear as formally similar
unknown correlations, they represent six (at least) different types of phenomena.
It is worth to start a preliminary discussion of the physical origin of these types
which renews that proposed by BuyEVICH and SHCHELCHKOVA [5]. Recall that
two-phase flows considered in our analysis must be dilute since otherwise the
collisions between inclusions become an essential and quite distinct mechanism
of agitation.

The first case to adress corresponds to turbulent motions of the carrying
phase modified by inclusions; turbulence would even exist in the absence of in-
clusions. Particle-turbulence interactions have been experimentally investigated
in a number of situations. Among these, let us quote bubbly flows in basic tur-
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bulence fields studied by LANCE and collaborators [6 — 9], and bubbly flows in
ducts [10, 11]. Interactions with solid particles have been considered notably by
TsuJt et al. [12] and by FAETH and coworkers [13, 14]. Even under turbulent
conditions, the role of the particle-induced turbulence has been emphasized, but
it is experimentally quite difficult to distinguish this contribution from that of
the shear-induced turbulence. On the other hand, DNS has thrown some light
on the turbulence modulation by small rigid inclusions of variable inertia [15, 16,
17]. To illustrate the complex coupling between phases occuring even at low con-
centrations, let us mention the occurence of a preferential accumulation of inert
particles in regions of low vorticity or high strain rate, a phenomena first iden-
tified from simulations [18, 19, 20]. The case of bubbles has also been adressed
|21]. More practical and more versatile models are also extracted from all these
fundamental studies [22].

The second possibility is that correlation functions may result from the turbu-
lent motion of the carrying phase solely induced by inclusions. The very presence
of inclusions may trigger the hydrodynamic unstability of the fluid flow which
would be otherwise laminar. This case seems to be beyond our present analysis
capabilities (cf. Sec. 3 - Part I).

Surface tension is unable to maintain spherical bubbles and drops against var-
ious forces (gravity. inertia, viscosity...) beyond some size. Then, inclusion shapes
result from interactions with the ambient fluid, causing generally highly complex
free boundary value problems. Interfaces are subjected to various instabilities
generating pulsations in both phases. Inclusion trajectories themselves can be
spiraling, pulsating, zig-zagging (CLIFT et al. [23]) due to shape oscillations or
simply modifications (i.e. sphere to ellipsoid) associated to vortex shedding. The
ensuing determination of agitation terms due to this third mechanism in the bulk
equations is still in infancy, but progress can be expected in the near future from
DNS undertaken on bubbly flows [24].

Very small suspended particles (colloidal particles) may be affected by trans-
lational (or rotational if they are non-spherical) Brownian motion (RUSSEL ef
al. [25]). To describe this constant state of random motion, a particle velocity
autocorrelation function is first calculated from the Langevin equation and then
the time change of the variance in position follows; finally, the diffusion coef-
ficients useful for a “population balance” approach (first kinetic equation) can
be estimated. An exhaustive study of the influence of Brownian motion is now
available. This mechanism of agitation (restricted here to inclusions) as well as
the three preceding ones (affecting both phases) are excluded from our analysis.
We are left with the two last ones which will be adressed now.

Any local technique for continuous phase velocity measurements in two-phase
flows, records inevitably pulsations caused by the local distortions in the fluid
flow streamlines caused by the submerged inclusions. They occur in the potential
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fields at the fore-part, possibly in the viscous boundary layers and mainly in the
wake regions. To understand the origin and to have the first estimate of the cor-
responding fluid velocity variance tensors, it is possible to refer to a deterministic
approach. Then, one considers a given dispersed two-phase flow characterized by
a configuration of particles having an idealised order: for instance, the particles
can be equal-sized spheres arranged in periodic arrays (see the pioneering work
of HASIMOTO [26]); at zero or low Reynolds numbers, the corresponding hydro-
dynamic fields can be solved exactly. The method of homogenisation, which is
basically a two-scale method, falls also into this category, when at least it is
effectively implemented (Miksis and TING, [27]). The result is a macroscopic
system of equations for the hydrodynamical variables and the coefficients in this
system are given by solving a microscopic problem for a cell to close all unknown
terms, and among them, the agitation tensor. This is in essence the approach
of NIGMATULIN [28] which proposed an expression for such a tensor based on a
potential flow cellular scheme. To our knowledge, there are very few attemps in
the literature to calculate variance tensors in various flows conditions (complete
range of volume fraction of solid spheres, spherical bubbles, high Reynolds num-
ber flows...) having a “frozen configuration”, though the corresponding models
exist.

In turns out that configurations of particles seldom (if ever) maintain a regu-
lar order (CARTELLIER et al. [29]); they are very unstable for increasing dispersed
phase concentration and decreasing continuous phase viscosity. The time evolu-
tion of any configuration of particles which interact together via the suspending
fluid, constitutes a highly nonlinear multibody process. The interparticle interac-
tion is accomplished through random pressure and velocity fields in the ambient
fluid; this induces lateral and longitudinal pulsations of the particles with respect
to a preferred direction and, second, to pulsations in the filuid itself. This so-called
“pseudo-turbulence” of both phases which is anisotropic, causes the initiation of
additional stresses at the bulk level. This is the last mechanism of agitation we
describe. The relevant literature will be evoked in Sec. 4.4.

We will see in our paper that we can pass on in a continuous way from the
fourth mechanism description to the fifth one as the concentration © increases.
To point out the whole process, we restrict our interest to the same type of
idealised dispersed two-phase flows which have been selected in the preceding
papers [1, 2| (referred to as Parts I and 1I); e.g. these flows carry spherical
inclusions having a radius a small compared to the length scale L of the averaged
flows. The concentration © or averaged dispersed phase volume fraction is defined
by © = N(a/L)3, where N is the total number (assumed to be very large) of
inclusions in the studied system, is supposed to be small. Finally, recall that at
the end of the Sec. 4 of Part 1I, all equations of the Lundgren Hierarchy and
of the B.B.G.K.Y. hierarchy and, besides, boundary conditions between these
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two sets of equations at any order but the first one, have been transformed into
equations for averaged disturbance flows. The only unclosed terms are agitation
terms of various types.

The first three sections adress the velocity variance tensors (agitation or
pseudo-turbulent tensors) involving dispersed or continuous phase fluctuations.
These tensors differ by their order since they involve fluctuations conditioned by
one, two, three inclusions. To get the clue to express any of these tensors in
terms of the disturbance fields defined in Part II, we show first in Sec. 2 that
any tensor can be expanded in a finite sequence of terms gradually bringing out
the contribution of groups of inclusions more and more numerous with respect
to the conditioning number characterizing the considered tensor. These expan-
sions open the way to an effective scheme of calculations and two approximation
procedures have been devised to simplify them. In Sec. 3, a first approximation
based on a preliminary scale analysis exploits diluteness (© < 1). This assump-
tion precisely permits to extract the leading order terms from the contribution of
each group. An extra approximation in Sec. 4 exploits a weak deviation from ho-
mogeneity by using a multipole expansion: then only the lowest order multipoles
are retained via an asymptotic expansion in terms of 8 = a/L; at the end of this
section, proposals available in the literature, concerning some velocity variance
tensors we have derived, are briefly compared. In the following two sections,
we consider cross-correlations combining properties relative to both phases. In
Sec. 5, new terms which correlate the continuous phase presence at one location
with the inclusion (s) velocity(ies) at a neighbouring point(s) are expressed in
terms of the disturbance fields, while in Sec. 6, fluid-particles velocity covariance
tensors (composite agitation tensors) are treated as the above single-phase ten-
sors are. We conclude in Sec. 7 by giving a perspective of this work which will
come in a future paper.

2. Expansions of pseudo-turbulent tensors

Pseudo-turbulent tensors appear in momentum equations relative to both
phases at any order.

2.1. The dispersed phase pseudo-turbulent tensors

To expand a variance tensor of any order in a finite sequence of contributions
relative to groups having an increasing number of test inclusions, we develop a
procedure which is based on a property of fine-grained densities introduced in
Part I. Given an arbitrary random scalar process y(s,t), introducing the spiky
field of realisations dly — y(s,t)] has offered in Part I the possibility to obtain
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the standard pdf P(y) by taking its ensemble average i.e. P(y) = E[é{y —
y(s,t)}]. But if § is a functional of the random process y(s,t), it is also, for a
given realization, a simple pdf of y having the normalization property [ d{y —
v(s,t)}dy = 1 by definition of the delta function. Extensions of this property
for a vectorial random process y(s,t) are obvious. For instance, the first order
tensor, Al (x) defined by (4.24 - Part I) can be cast in the following form:

{21) Allm Z E[tplur u;| = NE[{\olujlurl]

- NE [ / p2(x° )1 (x)u u (x)dxﬂ =N / Elpa (x°)p1 (%) (x)]dx°,

where the integration is performed, for each x, over the sole domain accessible to
the single inclusion centred at x°, knowing that another one is located at x, (non-
overlapping condition). Note that throughout this paper, the ensemble average
operator E[ | applied to integrals involving fine-grained quantities (as ¢, the
first order density) is transformed according to the rules established in Sec. 3 -
Part I which result from the definition of E[ ]. By means of the definition of
the first fluctuation field (i.e. @pju; = @' + pu}, see Sec. 4.4 — Part I), the
integrand of the r.h.s. may in turn be broken down into three parts:

(2.2) N E[pa(x°)p1 (x)ufjuf (x)] = NE[p2(x°) 1 (x) (u; — T')(u; —T')]
= NE[p2(x°)i1(x)ujuy] + N E[pa(x°)i1 (x)]u' @'

- 20 Blpa (x°) @1 (x)ui]

and further can be related to a second-order unsymmetrical (with respect to x and
x?) tensor Am,(x!x"). conditional upon the presence at x° of another inclusion, by
introducing the second fluctuation field defined by ¢1pau; = @1p20% + @1puf
(see Sec. 4.4 — Part I):

(2.3)  NE[p(x)p1 (x)uuy (x)] =

i {rjs(2)ﬁ2ﬁ2 + N(N -1)

Eip2(x°)i1 (x)ulfuf (x)] + ¢Pa'w — 26 (x, x°)ii'ﬁ2}

= ml__” {9 [@(x]x") - &' () [@2 (") — T ()] + A xlx°)}.
Inserting this result into (2.1) we get:
) 1 o 2) === o o
(24) Al,(x) = NE[pjuju}] = =D /dx {qﬁ{’”[uz(x}x ) — ' (x)]
[@(x|x°) — &' (x)] + A%, (xx) } .
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Likewise, the second order tensor, Aﬁu (x|x°) can be related to an integral
for each x and x° of E[p3(x°°)p2(x°)p:(x)ufuf(x)] over the domain accessible
to the single inclusion centred at x°° taking into account the non-overlapping

condition:

(25) uu(xix ) = N(N e I}E{ ( )‘Pl ur]furl’ x]]

— N(N-1)E [ [ o) oa ) (R (i

I

w;l_m_/dx"“{qb(:”[ﬁ%xlx",xoo) — a%(x|x")]

[ (x]x®, x°°) — W2 (x[x°)] + A, (x[x°, x*°)}
Clearly we have:

(26)  An(xlx®x) = s S 3) f x> (g [ (e, %7, )

—3 (x]x°, x°°)][@? (x[x°, x°°, x°°°) — W3 (x|x°, x°°)]

_F_&ﬁu(xlxa, xuo, xooo)}_

It is straightforward to derive a recurrent relation in which Aﬂu is related to AZ}!
where j varies from 1 to N — 1, and where the various domains of integration
must take into account a more and more stringent non-overlapping condition.
Thus, one property of the above relation is that it can provide in the same shot
A Aﬁu as well as any higher tensor in terms of a sequence involving all the
subsequent tensors.

Of course, a similar recurrent relation holds for mixed agitation tensors of
the first kind, which are conditional upon the presence around x (say x°, x°°
x%°°,...) of various inclusions; e.g. A}, (x) is expressible in terms of A2 (x|x°)
which is itself related to Al(x|x .x°?) and so on...

Equations ((4.29) and (4.30) — Part I) require also symmetrical (with respect
to x and x°) agitation tensors as AZ,.. We can give it an expression in terms of
the third order agitation tensor relative to two positions by decomposing properly
u” and u®” thanks to (Sec. 4.4 - Part I) evaluated respectively at x and at x°:

@1 Aholxx) = g [ O e, ) ~ W)
'[F&(xwx!xoo) o x |x]+Auu
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The second kind of mixed agitation tensor A2 . becomes similarly:

(2.8) A% ,o(x,x°) = -(N%z)/dx°°{(f)(3]['w'3(x|x°,x°°} - @ (x|x°)]

[ (%%, x%°)) — w02 (x°|x)] + A3 0}

We have thus shown that any kind of inclusion velocity (linear and rotational)
variance tensors could be expressed as finite sums of integrals implying higher
and higher pseudo-turbulent tensors. The physical interpretation of the various
terms comprised in, say the first order tensor A}, (x), is the following. Each
extra term in the infinite sequence gradually brings out the influence of more and
more important groups of inclusions upon the first-order agitation tensor. This
influence is expressed via increasingly complex space integrals showing definitely
its non-local character.

2.2. The continuous phase pseudo-turbulent tensors

There is no basic difference between the ways to expand the velocity variance
tensors whether they arise from velocity fluctuations in the dispersed phase or
from velocity fluctuations in the continuous phase. For instance, by introducing
the presence of an inclusion at x°, the first tensor A\‘l.‘., which involves fluctuations
in the continuous phase defined by X¢v® = Xeve! 4 xeye (see Sec. 5.4 — Part I),

can be cast, in a quite general way, in the following form:

(29) Al (x) = E[XVvv](x)=E [ / o1 (x°)x;=vf*vc’(x)dx°]

£ / Blo1(x°) XevEv€ (x)]dx?,
where the integration is performed, for each x, so that the first inclusion centred at
x? does not overlap x which must be occupied by the continuous phase; following
the same line of reasoning as that giving (2.2) and (2.3), the integrand of the

r.h.s. of (2.9) may be related to the second order unsymmetrical (with respect to
x and x%) tensor Af,\,(xlx“), conditional upon the presence at x° of an inclusion:

(210)  ElpiX{v“v’] = Elpi X{(v - V)7 = V)] + Bl X{ve'v"']

= SR () (7 ~ T 7 7)) + A (x}x°),

where the fluctuation field v¢" defined in Sec. 5.4. — Part I fulfils ¢, X{v©(x°) =
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1 Xﬁﬁg(x‘ﬂx) + @1 XEv® (x°|x). The second order tensor AZ (x|x°) in turn be-
comes:

I

(211) A% = NE[p1 X v"| =N [ Elip1 (x°)pa (x°°) X§ o v® v (x))dx°,

where the integration domain must satisfy two conditions at x and at x°. The
integrand in the r.h.s. of (2.11) can be in turn broken down into two parts as in
(2.10) and so on... We realise that a finite (up to N) recurrent relation can be
derived. The first terms of this relation are:

A0 = v [ {80a T xf) - 7 )]
- PR (xx®) = VE (x)] + A, (x1x°)},
A2, (x[x°) = Wl_—l) f dx™ {¢P o[V (x]x°, x°°) — V¥ (x[x°)]
(2.12) - [P (xx?, %) — Vo (x[x°)] + A, (x]x°, x°°)},
Ay (e, %) = _(N_"i 2) / dx*° {0 ! [V (efxc®, 7%, %)

_‘?3(xtxo‘ xoon[w-l (xlxo, XDO, xcnm) nl ‘Ffi(xlxcf: xc.O)]

+14§L‘\',‘.(x[)«:°1 e Sk

The expressions (3.5) will be used to analyse their order of magnitude as it will
be shown in the next section.

The closure problem is not solved yet for any of the above variance ten-
sors. To see this point, consider A2 (x|x°) which can be expressed in terms of
variables of the whole hierarchy as @' (x), @ (x[x°), ¢'®(x, x°), @ (x|x°,x°%),
#3) (x,%x°,x°°)... or the corresponding disturbance velocities. What would be
necessary is to account for a few terms of this sum; more precisely, these terms
must be preponderant according to some small parameter and involve variables
which appear in equations of order less or equal to two. This aim is reached in
the next section where it will be seen that the influence of each group of test
inclusions must be broken down in subclasses effects.
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3. Approximation of pseudo-turbulent tensors

3.1. Breaking down the contribution of each group

To break down the influence of each group of inclusions into subclasses effects,
it suffices to express conditional velocities differences appearing in the recurrence
relations, in terms of disturbance fields. For instance, consider the one-position
agitation tensors, relative to the dispersed phase. Our treatement is based on the
definition of disturbance fields given in Part II which are repeated for convenience:
the first disturbance is u*(x|x°) = w?(x|x°) —u'(x), the second order disturbance
is given by u**(x|x®, x°°) = @’ (x|x°, x°°) — ?(x|x°) — 0% (x|x°°) + @’ (x) and the
third order one obeys u***(x|x°, x°°, x°°°) = u?(x|x°, x°°, x°°°) — w3 (x|x°, x°°) —
@ (x]x°, x°°°) — W ((x|x°°, x°°°) + W*(x]x°) + @2 (x|x°°) + @?(x|x°°°) — @' (x).
Combining these definitions leads to the following identities:

ol (x|x°) — @' (x) = u*(x|x°),

@ (x]x°, x%°) — W (x|x°) = u™(x|x°,x°) + u*(x|x>°),
(3.1)

EE

HI(X|X°,XQO,XD°0) = ﬁS(X|X0,xDD) = u (xlxc,xoo,xccm)

. + n:t(x!xoqxooo) + u**(xleO‘xDOD) +ul(x|x009).

Inserting the above first relation into (2.4) leads to:

(3.2) AL (x) = ﬁ / dx° (¢t u* (x|x°) + A2, (x[x°)].

The second order tensor in the r.h.s. becomes, using (2.5) and the second relation
{3:1):

1 o Gy - 1 O £(2) %5 ¥ o
(3.3) m/dx Aﬁu(x|x)——(N_1]/dx (6P u*u* (x|x°)]

: x° 00 [ p(3) [13**3** 8 b
+(N—1)(N-g)./d ./dx {8 [u**u* (x]x°,x°)

+ 2u’ (x|x°°)u** (x|x°,x°°)] + Aﬁu (%)% %)}

Using (2.6) and the third relation (3.1), the third order tensor in the r.h.s. of
(3.3) can be expressed, in its turn, as:

/ 1 o oo 53 o .00
(3.4) NV =2 /dx /dx A L™ 3%
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(34) = 1 or 4(2),. %, % o
[cont.] = (N = l) /dx [(f) uu {X|X )]

1
o oo 4(3) *% ** 0. .00
+(N—1)(N—2]/dx /d.x {¢**'[2u**u** (x]x°,x°°)

+ 4u” (x]x®)u” (x|x°, x*°)]}

00 000 01} o xu © _.00 _.000
( —1)(N 2)(N —3) /dx /dx /d" (u (x|x®, %%, x°°°)

000 ]

000

# 26 (x]x®, x> )u(x|x®?, x°%°) 4 20" * (m}x®, x°° % (x|x

+ 2utxx(x|x01xOD‘xOOO)“*il(bf:L_ixD}xDOO)

*wk o 00 oco Q0 o000 4 o oo 000
4 20 (3]x2, 2% 2 )u " (x|x ™ x"°)] + A, (xlx” %™, %)}
Such a process can be continued by expanding A? (x|x°, x°°,x°°°) and so on, as
y p uu H
far as A1 is reached. Collecting in each expression identical terms, we obtain:

(3.5) Al (x) /dx [ (x°, x)u*u* (x|x°)]

fdx /dx°°{¢(3}[x|x x )™ (xix®, x°°)
+ 2u* (x}x®)u** (x|x°, x*°)|} + ...

where the 22?;'123 = (N = 1)(N — 2) has been used. Thus we have succeded
in breaking down the influence of each group of inclusions into one-inclusion,
two-inclusions, ... effects. There’s nothing surprising about that; for example,
contributions of two, three... test inclusions contain cases where a single neigh-
bouring inclusion at x° is close to the first one at x. These cases feed what will be
the leading order of an asymptotic sequence in terms of © which will be derived
from all these series in the next section.

Note that we can also deduce expressions for A2, . (x°|x) and AZe,(x°,x)
which are required in (4.16 — Part II):
(3.6) A?

2, (%°]x) = / dx° 63 (x, °, x°Yu"u* (x°|x°°)
4 /‘dxoo{{f)(:})(x: xo, xoo)[uuuu(x”x‘. xoc]

+ 2u* (x°)x°%)u™ (x°|x, x°°)]} + ...
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BT Aoyl x) = [ a0 x xu (el ()

4 /dxou{qﬁ(S)(x!xo,xocl)[uu{x[xo‘xon}u*t(xolx'xou)

i /dxoo{qb(:}) (x, xo’ x00)[uu (x|x°, xm:a)uu (x°1x, xm)

& ut{xlxoo]ut*(xc,xo")) i ua(xolxoo)uxt(xlxo,xoo)]} e e

An expression for A} (x) appearing in ((4.11) - Part II) as well as expressions
for A2. 0 (x°|x) and A2, (x°,x) in ((4.17) - Part II) are required. It is straight-
forward to derive them from (3.5), (3.6) and (3.7), respectively.

A treatment of any kind of tensor seen in Sec. 2.1 as well as agitation tensors
relative to the continuous phase parallels exactly the above analysis. We find for
example:

38)  ALG) = [ e )av'y (xlx)]
s % /dxo /dx00{¢{2} (xo, XGO)GCS[V‘*V”{XiXE, xon)

+ 2v* (x]x°)v* (x]x°, x°°)]},

(3.9) A2 o (x°[x) = fdx“qﬁ(?}(x,x°°)a'"‘3v"v‘(x°|x°°)
o /dxoo{¢(2)(x1x00)ac3[ "v“(x“’]x,x“)

+2vi(x0 |x00)vt# [xﬁ Ix. xoo)]}'

We first observe that Al,, A% ... have not the same dimension as the corre-
sponding order dispersed phase agitation tensors Al Aﬁu ... since, at a given
order, they do not involve the same p.d.f. in their integrand. On the other hand,
contrary to the disturbance interfacial force densities which only imply the next
order variables, we also observe that all higher order disturbance velocities are
requested. Now, it remains to show that all the expansions we have devised can
be considered as expansions in terms of the averaged concentration ©. Only after

that, the closure problem will be claimed to be solved.
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3.2. Expansion in terms of ©

To set an example of our procedure, we will consider the above one-point
agitation tensor (3.8), relative to the continuous phase. To put this tensor in a
dimensionless form, some scales will be specified in a very general way:

(i) The length scale of the first order averaged fields is L as it has been pointed
out in Sec. 2.1. - Part II; it is given by the specification of some boundary or initial
conditions. The length scale of all the disturbance averaged fields is expected to
be a function of a single inclusion dynamics. In the first approximation, it will
be set equal to the inclusion radius a. These two scales hold for both phases.

(i) There are representative scales for the various densities in physical space,
b1, b2, ...; they are simply 1/L3, 1/LE... The reason of this normalisation is that
$1L3, ¢oL8.... have an order of magnitude of 1 since they are probabilities.

(iii) The first order averaged disturbance field, v*, has a scale denoted V3, the
possible values of which will be given in a future paper. The same scale can be
maintained for higher-order disturbance fields. In relation to our present concern,
theses values are irrelevant. Furthermore, it will be shown that disturbance fields
of higher order have at most the same scale V5.

Takin into account all these assumptions which are not restrictive, we obtain:

(3.10) Al (x) = 6V22fdx"[ém‘%"v'[xjx")]
+ @21@2/dx"/dx°°{¢ga“3[v"v”(xix°,x°°)/2

+ v* (x]x®) v (x]x°, x°°)]} + O[©°%] + O[1/N],

where all the variables in the r.h.s. are dimensionless. Asymptotic sequences
can also be derived for any agitation tensor by using the same (or very close)
nondimensionalisation process.

However, it is expected that integrals at the r.h.s. may be not convergent
in many cases, especially when disturbance flows are creeping and have long-
range hydrodynamic interactions (CAFLISCH and LUKE [30]). This means that
the above scaling and especially, the length scale of the disturbance averaged
fields, is by far too naive and ought to be reconsidered. The role of the above
expansion which appears, to the order O(1/N), as an asymptotic sequence in
terms of ©, is to start a necessary truncation procedure based on dilutness.
In this way asymptotic expansions of any unknowns in terms of © are sought:
investigating the source of nonconverging integrals will amount to determining
the regions of nonuniformities for the above expansions. These critical problems
will be adressed in a future paper.
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4. Expansions in multipoles

Pseudo-turbulent (or agitation) tensors for both phases and interfacial force
densities for the continuous phase share common features: they involve some
hydrodynamic fields, velocity fluctuations for the former, interfacial stresses for
the latter, which result from multipole contributions at a given observation point
x, brought by inclusions placed at various positions in the neighborhood of x. To
be calculated more easily, all these quantities need to be treated by a multipole
expansion method. As explained in Sec. 5.2. — Part 11, this amounts to muster the
causes of multipole contributions at one location. However, there is a difference
between force densities and agitation tensors: hydrodynamic fields are picked
off at the interface for the former while they are selected in the bulk for the
latter. In the following, we will restrict to expand terms in tensors which involve
two-inclusions interactions.

4.1. Slow and fast independant spatial variables

Pseudo-turbulent tensors for both phases have been expressed in Sec. 3.1. in
terms of veloeity disturbance flows. These fields are solutions of problems which
explicitly depend on both fast-varying and slow-varying independent spatial vari-
ables. All consequences of this property will be envisaged in a future paper. Here,
only some elementary considerations necessary to estimate the order of magni-
tude of various terms in the obtained multipoles expansions are introduced. They
are based on the change of variable:

(4.1) x=x and r=x"—x

consider a typical first order disturbance, say u*; we will be led in the future to
let
u(r, x) = u*(x + rjx) = u*(x°%x)

be the new unknown. The entire two-inclusions problem can be expressed in
scaling the first coordinate r with a and the second coordinate x with L. All
these new small-scale functions are defined throughout an (usually) unbounded
region denoted VI . which replace V¢ ... Likewise, a similar change of variables
for the second-order disturbance fields:

(4.2) x=x, P=x"—=% and rP=a® —x’

gives rise to u” (r,r% x).
All the concerned velocity disturbance field equations of the continuous phase
can be made dimensionless in the same way as above as v®* which becomes:

v(r;x) = v** (x +rjx) = v** (x°|x).
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4.2. The pseudo-turbulent tensors in the dispersed phase

The leading term of the agitation tensor Al (x) which is defined in (3.5) can
be transformed by (4.1):

(4.3) Al (x) = / dx°[¢Pu* (x|x°)] = [ dr[¢® (x,x + r)utu’ (x|x + r].

The integrand is denoted by:
(4.4) f(r,x) = ¢¥(x,x + r)u u*(x|x + r).

Expanding f with the respect to the second argument around x — r according to
the formula ((2.5) — Part II) gives:

(45) fe = 5 E g 2 x).

m=0

The resulting expansion for the leading term of the agitation tensor can be writ-
ten:

(4.6) /dx [6Putu’ (x]x°)] = (N - 1) Z o mqb(” Ny m (),
where the m'" agitation muitlpolc of the first-order for the dispersed phase is:

(4.7) Niym (%) =5 [drr"‘xgu‘u* (x + r|x).

In this multipole r™ denotes an m-fold tensor product of r. It describes the
agitation due to the first-order disturbance flow of the dispersed phase over a
test inclusion centred at x. It is a tensor of rank m + 2, symmetric in its first m
indices.

In the first-order dispersed-phase linear momentum equation ((4.10) -
Part II), the above agitation tensor appears under a divergence term which be-
comes, using (4.6):

o
(48) P oAby = LU/ { 67 5 i + BT 5

[ ~piNL, 1} + O(ﬁz)} + O(1/N),

where all the variables of the r.h.s. have been made dimensionless; note that Uy
is the uknown representative linear velocity scale for u*. It has been shown that
the agitation tensor contribution is of O(©) compared to the classical bulk flow
convective term (see Eq. (4.10) - Part II).
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The agitation tensor Al (x) can obtain an expression similar to (4.6) in which
Us/a is chosen as the unknown representative angular velocity scale for w*. This
tensor appears in ((4.11) - Part II) under a divergence term and a formula similar
to (4.8) can be derived.

4.3. The pseudo-turbulent tensors in the continuous phase

The two leading terms of the agitation tensor A\',v{x) which is defined in (3.8)
can be transformed by the change of variables (4.1):

(4.9) Al (x) = /dr [qﬁm(x +r)a®vi vt (x|x + r]

+ % /(ixoo/dr {(p(?)(x+r‘x00)ac3[vm*vu(x|x+r,x00)

+ 2v'(x|x +r)v*" (x|x + r,x*°)]} + ...

Expanding the two integrands with respect to the variable x around x —r accot-
ding to the formula ((2.5) — Part 1) provides:

om
xm fp(l}(x)N\l.rv.m(x}

(4.10) An(x) =) >

m=0
o0 gm
+ 1/2 Z é};/dx°°q‘>{‘”(x,x°°)N3v,m(x, : s 16
m=0

where the m'™ agitation multipole of the first- and second-order for the continuous
phase have been defined by:

(4.11) N}N,m{x) = %/drrma“zv‘v"(x+r|x)
’ 1
(4.12) NS, (2% = =3 /dr{r‘“rf?‘[v“v"(x+r|x,x°°)

+ 2v* (x + r|x)v** (x + r|x,x°°)]}.

The m*" agitation multipole of order 1 and 2 describe the agitation due to the first
and the second disturbance flows of the continuous phase over a test inclusion
centred at x. It is a tensor of rank m+2, symmetric in its first m indices. Observe

2 . .
that NZ, .(x,x°°) is not symmetrical.
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In the first-order continuous-phase momentum Eq. (4.1) — Part II, the above
agitation tensor appears under a divergence term which becomes, using (4.10):

d OV?2
1 dl - 2
'3; . A\'\"(x) = Tatl

: e%7 [ o 66 o
0} + gt { 2 [ [ e ouy x|

g 0
{3 Mol + B - il 10

(413) ()" g

[ ) [ i °°)] +O(ﬁ2)} + O(1/N),

where all the variables in the r.h.s. are dimensionless and where (4.2) have been
used. Note that V5 is the uknown representative linear velocity scale for v*
and v**

The same arguments as those leading to (4.10) show that the agitation tensor
for the field with one fixed inclusion which is defined in (3.9), can be expanded
according to:

(4.14) (%) = Z @M (%, x%INL: (%)
Z [m] ¢ (x, x°)NGy i (%%, %) + ..

In the second-order continuous-phase momentum equation ((4.3) - Part II),

the above agitation tensor appears under a divergence term combined with
J : X .

(a')"' — - Alc 0. The leading order of this combination is:

ox°
0

el
=y o o/ C¥
Ox° Avere/ T 9x°

(4.15) A2, . [a?pV)

-

= - N(')fc“ cxt(x%]x) /dr°[v*v*(x° +r°|x°)].

4.4. Comparison with previous work

The first-order agitation tensors Al (x) and Al (x) are the only quantities for
which comparison with previous work can be envisaged. Other pseudo-turbulent
quantities appearing in this paper are specific to our approach. Even so restricted,
a comparison is not an easy task for several reasons. Various authors apply
different averaging techniques, e.g. they take volume average of the two phases
separately; they take volume or ensemble average of the whole mixture as well:

http://rcin.org.pl



LAMINAR DISPERSED TWO-PHASE FLOWS AT LOW CONCENTRATION ITI... 139

some of them even mix two types of averaging. Concerning our method, only
phasic ensemble averaging is used. Secondly, they consider at the outset very
specific types of carrier flows: mostly incompressible potential or creeping flows;
their way to process the equations takes advantage of the specific properties they
have selected. Moreover, in the limit of creeping flows, many studies which use
kinetic theory concepts, focus on the first-order averaged field and do not even
consider the agitation tensors [31, 32]. Our approach is marked off by being
based on general Navier-Stokes equations. Finally they provide explicit closure
relations, generally based on specified local distribution of inclusions (periodic
arrays or uniform distributions); although the above expressions of the agitation
tensors Al (x) and Al (x) are presented in the form of computable quantities,
we have up to now not furnished such explicit results. To get them, higher order
disturbance equations (e.g. v* and u* equations) have to be simplified according
to a given particular approximation of disturbance flows and then truncated due
to dilution; this will only be achieved in the next paper (Part 1V). However,
we can anticipate somehow and obtain some straightforward results concerning
Al (x) which can precisely be found in the literature.

Concerning Al (x), the available studies mentioning this quantity are fairly
recent [33, 34, 35, 36]. All these authors derived average equations for a suspen-
sion of spherical inclusions (possibly massless bubbles) carried by an incompress-
ible irrotational flow. They propose expressions of a quantity they term kinetic
(or translational) part of the dispersed-phase stress, which are mainly formal
while they compute explicitly the interaction terms (they call it “potential part”
of the stress) in both phases momentum equations. Moreover, they introduce a
new dispersed phase momentum equation controlling the apparent momentum
that can be attributed to an inclusion, i.e. including the impulse of the fluid
surrounding each inclusion. In conclusion, we were unable to compare (4.8) with
any analytical result.

Let us return to Al (x) for which there are plenty of studies. First, we will
restrict ourselves to a quasi-homogeneous (8 < 1) and dilute (© < 1) mixture
of spherical inclusions non-rotating and non-pulsating. In this case, the leading
order of the agitation tensor given in (3.10) is, rewritten in a dimensional form:

(4.16) Al (x) = ¢V (x) /d[v"v*(x +rlx)] + ...

The agitation results from the superimposition of fluctuations due to each in-
clusion. The above formula has been used by KocH [37] for moderate inclusion
Reynolds numbers, Re? ~ O(1 — 10). For very low particle Reynolds num-
ber, within the point-particle approximation, and in the dilute limit, KocH and
SHAQFEH [38] based their analysis upon a similar formula; they also included an
extra contribution which formally corresponds to the second term at the r.h.s.
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of (3.8). Albeit they did not define averaged disturbance flows as we did, the
likeness of our results is even closer if we refer to the expression they derived
in the Appendix (see their Eq. (A3)). Here, the result (3.8) has been obtained
under very general conditions granted that the scale analysis made in Sec. 3.2.
is relevant.

Consider now specific carrier phase flows. A simple way to evaluate the
integral in the r.h.s. of (4.16) is to consider the disturbance velocity v*(x + r|x)
as that of a pure fluid set in motion by the presence of a single test inclusion
moving with the relative velocity u' (ef. (4.12) — Part II), and to integrate
v*v*(x + r|x) over the fluid volume outside the test inclusion. This corresponds
to the simplest approximation of the one-inclusion problem ((4.3) and (4.7) -
Part IT). Two models of carrier phase flows can be considered: irrotational flows
and Stokes flows.

When v*(x + r|x) is assumed as irrotational, it decays as 1/r3, r being the
distance from the centre of the test inclusion. Computation of the integral in the
r.h.s. of (4.16) is straigthforward:

(4.17) Al (x) = e (x)[ky@' - @ (x)] + ko'@’ (x)]

where k; = 3/20 and k; = 1/20. BIESHEUVEL and VAN WIINGAARDEN [39]
considered the more general case of compressible bubbles; employing ensemble
averaging and introducing at certain stages volume averaging which holds for a
statistically homogeneous medium, they found the same coefficients. For ellip-
soidal bubbles, LANCE [6] obtain an expression similar to (4.17) with a multi-
plicative coefficient which, for linear trajectories, increases almost linearly with
the eccentricity. Besides, he has experimentally confirmed the validity of (4.17),
at least over a limited range of void fraction. The cell model which is used as
an ad-hoc approximation of the conditionaly-averaged micro-problem around a
given test inclusion has allowed many investigators to produce results having the
same structure. GARIPOV [40] even found the same coefficients. NIGMATULIN
[28] obtained the above formula with k; = 1/6 and ko = —1/2. ARNOLD, DREW
and LAHEY [41] extended the concept of cell averaging technique to acommodate
gradients in the phase distributions and in the discrete phase velocity. In this
limiting case, their results are the same as ours.

The Stokes limit, although extensively treated, is still much debated. Early,
CarLiscH and LUKE [30] have evaluated the integral in (4.16) for a random
structure of monodispersed particles in an infinite medium, and pointed out the
aforementioned divergent behaviour since v*(x + r|x) decays as the velocity in-
duced by a Stokeslet, i.e. as 1/r. These foundings have been corroborated by
direct simulations [42] but not by experiments (at least not in an unambiguous
way). Various arguments have been put forward to solve this issue, and it is worth
to briefly recall them in order to illustrate the difficulties encountered when using
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(4.16). The first type of arguments is associated with the existence of screening
effects which damp the 1/r behaviour at infinity. Various screening mechanisms
have been proposed. One would be due to a departure from equilibrium of the
microstructure of the suspension. For example, considering the interaction of a
pair of particles with a third one, KocH and SHAQFEH [38] predicted a deficit
of the pair probability which decreases as 1/r at long range, leading to a screen-
ing distance of order a/© and a variance v 2UZ ~ O(1), where Uy, denotes the
terminal velocity. So far, the existence of such a microstructure has not been
confirmed. On the contrary, the pair density near contact has been found to be
significantly higher than the equilibrium one, both in experiments [43, 44], and
in simulations (LADD [42]). A second screening effect which was first propounded
by Koch [37] and recently discussed by BRENNER [45], occurs if the inclusions
diffusivity becomes strong enough to hamper the momentum transfer in the car-
rier phase. This “inertial” screening leads to a scaling v'2/UZ as (©/Red)?/3
whose validity remains to be checked. The third mechanism would result from
long-range interactions, either with walls [45] or with a large ensemble of par-
ticles (SEGRE, HERBOLZHEIMER and CHAIKIN [46]). The presence of walls not
only induces a decay of the perturbation velocity faster than 1/r beyond some
distance, but modifies the concentration distribution along a direction transverse
to the sedimentation. The axial agitation v’?/Ug0 may then evolve as © for the
weak interaction regime, or as ©%? for the strong interaction regime [45]. The
latter scaling seems also to apply when correlated regions of large extent (10 to
20 times the mean interparticle distance) exist in the flow [46]. However, the
conditions under which such “blobs” occur are still not understood.

At intermediate Red, similar questions arise. Accounting for the inertia brings
additional complexity, and the only model we are aware of is due to KocH [37].
For a slightly polydispersed suspension, a buoyancy screening is proposed which is
controlled by pair interactions. The resulting microstructure exibits a pair density
deficit in the wake of the test bubble up to a distance of the order a/(ORe%),
and the velocity variance scales U’Q/UEO ~ ©1In(1/0)/Re for Re? close to unity.
Although the existence of the pair probability deficit in the near wake has been
confirmed experimentally [47], the validity of the above scaling has not been
clearly established.

This brief overview shows that at low Reynolds numbers, the sole equations
controlling the one-inclusion problem ((4.3) and (4.7) - Part II) may be insuffi-
cient to devise consistent approximations and to provide a correct estimate for
the carrier phase agitation tensor; if some of the above damping mechanisms of
v*(x + r|x) as r tends to infinity are correct, the one-inclusion problem must
be connected somehow to the next multi-inclusion (two or even three) problems.
This is probably so at intermediate particle Reynolds numbers (20 - 40) for which
recent experiments have shown that the deviation from the pure fluid problem
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can be surprisingly strong and the pair density structure is highly anisotropic
(CARTELLIER and RIVIERE, [48]).

5. Cross-correlation terms of the first type

5.1. New averaged dispersed phase velocities

New terms C} and C.* which correlate the continuous phase presence at
one location with the inclusion(s) velocity(ies) at a neighbouring point(s) ap-
pear in the conditioned continuity equations of the continuous phase ((4.7) and
(4.8) — Part II). They consist in divergence-type sources which involve spe-
cific conditionally-averaged velocities which result from E[X{piu], E[X5pouy],
BIX{ yp1p2u1] and B[X( p100u2).

E[X{piu1] = o(x°[x)¢1ue (x|x°),

E[X§pauy] = aﬂ(xlx")qm(x Jue? (x°|x),
E[X{ yp100u1] = o (x°°x,%x°) b2 (x, X N (x|x°, x°),
E[X{ yp100us] = 03 (x|, %) by (x, x°Ju® (x°[x°°, x).

To interpret these new dispersed phase velocities, some simple transforma-
tions based on ((2.6) - Part I) are used, as NE[X{puy] = ¢(Va@' — NE[X{pu,]
and further:

(52) 2T (xx") = T (x) - (N - 1) / o (X[) 6 (x[%) d

|%—x°|<a

It can be observed that when x° increases to infinity, x bemg fixed, u?(x|x)

u'(x) and using ((2.2) - Part II), we conclude that u®” ?(x[x°) — ( ). Bv
commuting x° and x, a similar expression can be obtained for u®”( |x :
Likewise, the relation N(N — 1)E[X¢pipou;] = ¢(2)ﬁ2 — N(N -

I)E[ngolnpgul] holds and gives:
(5.3) @3 (x"x,x°)ul (x[x*°,x°) = T(x|x°)

-(N -2) [ x3(X|x°, x)@ (x|%, x°)dx.

|x—x°°|<a
: 3 I i ] > —23
By commuting x° and x, a similar expression can be obtained for u® (x°|x°°, x).
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—3 b < —3 =
Of course, we also have u® (x°[x, x°°) — u?(x°|x) and u® (x|x°,x*°) = u(x|x°)
when x°° increases to infinity, x and x° being fixed.

5.2. Continuity equations for the continuous phase

The above dispersed phase velocities, as given by (5.2) and (5.3), will be
expressed in terms of disturbance flows, before calculating C; and C;* in the
conditioned continuity equations of the continuous phase. The equation (5.2)
can be written:

N-1

(G4) ) =T ) - g

/ Xa(E|x)u* (x|%)d%

|x=x°|<a

leading to the following first-order continuity (Eq. (4.7) — Part II):

EE ra o%y cl,_ ox
(5.5) P o o™ (ve 4+ v®) av]
= —w e =T [ ew (R
[x—x°|<a

The equation (5.3) can also be expressed in terms of disturbance flows:

(5.6)  uo(x|x°,x°°) = ul(x|x°)

N -2

e ] R R +

|x—x%°|<a

and a second one is obtained by commuting x° and x. The second-order conti-
nuity (Eq. (4.8) - Part II) becomes then:

80001@ a

(37) af + 8x°ﬂ _{aoﬂtt[wl (xrw) +v¢(xou|x) _+_Vt(xoolx0) +v0cmt]
cl oo Cok* a ®f 00 O # oo CO*¥
= @l (xW 4 o {at () v (1) + ]
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(5.7)

[cont.]

1 0
: a*

J =
4 a* xno x V, xoo xo +voo** - +ﬁ] . ____aot +u°
(Pl () + vy = 4 5

_ﬁ‘2 i _a_[acon 2T a*(xor::[x)] - F? ] J [Gfoo“ 1 o (xac[xo)]

ox ox°
N-18 S
et [ kxR
|x-x°|<a
N-120

e axo-ci"f / Xz (X|x%)u* (x°|%)dx
1

|x—x|<a

B Nqs; - % ‘P2 / x3 (X%, x°) [u** (x|%, x°) + u*(x|x)]dx
|%—x°°|<a
i N¢; = 6;0[0 ‘2 / xs(X|x, x°) [u** (x°|x, X) + u*(x°|x)]dx.

|[x—x%°|<a

6. Cross-correlation terms of the second type: composite pseudo-turbulent
tensors

6.1. Definitions

The second part of the program concerning cross-correlations between prop-
erties relative to each phase, deals with C} and C}*; they appear in the condi-
tioned momentum equations of the continuous phase ((4.3) and (4.5) — Part II).
They collect terms which have already been seen in Sec. 5.1 and two new types
of cross-correlations as E[X{pu;v®] and E[X{,p1p2upve]; these correlate the
continuous phase velocity at one point and the inclusions(s) velocity(ies) at a
neighbouring point(s). To break down each cross-correlation into a mean flow
convection term and an agitation term, we need to define several new fluctuation
fields. To begin with, consider:

"

(6.1) XE(x) 1 ()1 = X§(x°)1 (3)u (x]x°) + XF(x)1 (x)uf .

This first fluctuation field is different from those defined in Sec. 4.4 — Part 1. Com-
bining this new field and the standard one ¢ (x)X“v® (x°), defined in Sec. 5.4 -
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Part I, yields:
62) Y BX{(x)pi(x)ul v (x°)] = NE[X{(x®)pr (x)uf v (x°)]

= NE[X$(x")p1(x)(u; — 0)(v¢ - v¢°)]

= ¢ (3)a? (x° ) U2 (x[x°)VE° (x° )

~NE[Xtpu [ve> — NuC E[X$01v¢] + NE[X{(x°) @1 (%)u1ve]

= NE[X{(x*)er (x)uve(x°)] — ¢ () (x° x)ue” (x]x°) vE* (x°|x).

Thus it is shown that the first above cross-correlation function NE[X{¢iu;v],
which appears in C, is the sum of a mean composite convection term and of a
composite pseudo-turbulent tensor of second-order which is defined by:

(6.3) Ay (x°,%) = 3 BIXF ()i () v (x°)]

Similar cross-correlation function appear in C;*. They are broken down in
the same way and generate pseudo-turbulent tensors as AZ ..(x°°,x) and
A%, 00 (x°°, x°) whose definitions are obvious.

The next fluctuation field is defined by:

(6.4) € (%) ip1 (X)p2(x°)uy = XF5(x°°)ep1 (%) 2 (x°) U (x|%°, x°°)
+ X§o(x%°)1 (X)p2(x°)uf .

It is used to break down the cross-correlation N(N — 1)E[X{ ,¢1p2u;v¢] of the
second tvpe via the following equalities:

(6.5) ZZE{X X7)pi (%) 5 (x°Juf v (%))
KT

ftt At

= N(N - 1)E[X],(x*)p1(x)p2(x)uf v (x*°)]

= N(N - DE[X{,(x")p1(x) (w — 0)(v¢ = V)]

+ ) (3, x°) 03 (x°°) [xt, x° )V (20|, x°)UE> (x[x°, x°°)

— VEN(N - ) E[X{ y0100w1] — W N(N — 1) E[X{ y01902v°]
+ N(N = DE[X{ 5(x°°)1 ()02 (x")ur v]
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(6.5)

[cont.]

= N(N — ) E[X]5(x**)e1 ()2 (x")uy v (x*°)]

. ¢[2) (x1 th)at_'B (xoo |x, xo)‘73 (xuo |J€, x° )“uTz (X|X°, xOO),

and we are led to define the corresponding composite pseudo-turbulent tensor of
third order by:

N
(66) &ﬁvon (xoo‘ x1x0) = Z Z E[Xf'_? (xoo)‘ﬂi (x)goj{x" )ufmvr_«’n
i g3

(XOO)].

A second one, Ado,eo(x°°,x°|x), is obtained by commuting x° and x; it is used
to break down the similar cross-correlation function N(N — 1) E[X{ yp102usv©].

6.2. Expression of (] in the second-order momentum equations for the continuous phase

The calculation of the composite pseudo-turbulent tensors is based on the
procedure already used in Secs. 2.1 and 2.2, i.e. it begins by expanding them in
terms expressing the contribution of each group, and goes on to break down the
contribution of each group. This procedure will not be repeated here in detail.
Moreover, we will restrict ourselves to the second order, i.e. to A2 e(x° x). Thus,
we will not be able at the end to present an expression for C¢*. The fluctuating
part of such an expression is very complicated, much more than the corresponding
one for C* we have present above (see Eq. (5.6)). Moreover, our general strategy
of finding solutions in the diluteness limit which will be presented in the next
paper does not generally require the fluctuating part of this term: it suffices to
know that it is an O(©) contribution.

We obtain first:

(6.7)  AZ.o(x®,x) = NE[X{(x")pr (x)uf v (x°)]

1 _ , e =
= A_r:—lfdxw{ti’“)(xw x°%) a3 (%, x°°) [0 (x]x°, x°°) — U (xx°)]

[ (x°[x, x°°) — VO (x°]x)] + Ao (x°, x[x*°)}.

Note that similar computations can be used to express the next third-order
composite correlation functions i.e. A2 oo (x°°,x|x°) and Al 0o (x°°,x°|x). Us-
ing (5.4), (5.6), and the definition of the second-order disturbances, the above
expression leads to the following result valid up to O(©):

(6:8) A2(x%x)= /dx""{rf)(z)(x,x‘“’)ocg(xc|xx°°)u‘(xjx“)

v (x°]x) + v (x°|x, x*%)]} + ...
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Having at our disposal AZ2,. as well as the cross-correlation of the second type (see
Sec. 5), the source term C{ appearing in the conditioned momentum equation
((4.7) — Part II) can be completely expressed in terms of disturbance flows.

Sar 0 ;
(6.9) Gz &) = Vel (x°|x) - ;—xE[cmeul]/a"‘zqﬁl

ad € —=2 — P2
i - Ep1 X{uyve] /o ¢y = Vo . &U‘ = 2 e

+ [V — vPurr . ;—xLog[n‘"‘Q(fn) - % A2 ooV,

7. Conclusions

To describe laminar flows carrying spherical inclusions, we succeeded to ob-
tain at the end of Part I, two infinite sets of equations; the revisited BBGKY hier-
archy for the dispersed phase and the revisited Lundgren hierarchy (LUNDGREN
[49]) for the continuous phase. The first-order or bulk flow equations issued from
both hierarchies constitute the basic building blocks of our two-fluid approach.
Higher-order equations, which do not appear in usual two-fluid models, have to
be retained as a rule up to some order depending on whether the mixture is more
or less dilute. It happens that these higher-order equations are very complicated;
as matters stand, they cannot easily be simplified nor truncated. The purpose of
the second part was to transform these equations into equations controlling new
conditional disturbance fields which are much more tractable.

Whatever their number or form may be, the disturbance flow equations have
to be treated on an equal footing as the bulk flow equations in the final resulting
model. At any time and at any location, they appear as the natural frame to spec-
ify the micro-problems, the solution of which provides the missing information to
close the bulk flow equations. Among this information, the most delicate piece
concerns pseudo-turbulence. This whole article part has been devoted to show
that solution of the above micro-problems can effectively be used to estimate
various pseudo-turbulent tensors and correlation functions.

Comparison with other similar studies is difficult. First of all, having regard
to most of our correlations, it is simply impossible since usual models do not
include these quantities: they are specific of our approach and have been ignored
so far (i.e. second and higher-order pseudo-turbulent tensors, correlations and
cross-correlations of the first and of the second type). The first-order psendo-
turbulent tensor for the continuous phase is an exception to this rule since it has
given rise to many studies. Observe first that analogy with single-phase turbulent
momentum transport is not allowed and that it is difficult to model this tensor
in a standard approach since fluctuations are only generated by the flow around
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individual inclusions. As a consequence, some micro-problems corresponding to
schools of thought evoked in the introduction of Part I come inevitably to the
assistance of modellers, Among various proposals, a formula derived by KocH
and SHAQFEY [38], in a more restricted framework, has been compared to our
results; the two leading order terms of their formula correspond to the first two
terms of a multipole expansion of the expression we have found for the first-order
pseudo-turbulent tensor.

It might be pointed out that first-order pseudo-turbulent tensors we have
proposed are not expressed in terms of bulk-flow variables and cannot be di-
rectly used in ordinary two-phase models. As the other unknowns terms met in
the previous parts, they are explicitly related to the first-order disturbance flow
equations. Thus, they are awaiting a closure relationship which results in our
approach from solving specific micro-problems described by higher-order distur-
bance flow equations. The exact form of these extra equations, the way (one-way
or two-way) they are coupled with bulk-flow equations depend on each consid-
ered physical situation (e.g. low or high inclusion Reynolds number). So does
the ultimate number of equations in the final closed model which is given by
the afore-mentioned truncation procedure, based on diluteness, which will be
developped in the next Part IV.
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