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Thermodynamics of orientation discontinuity surface:
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The THERMODYNAMICS of a crystal lattice reorientation process proceeding on low
angle grain boundary is presented. In material science, the influence of lattice
misorientation on the grain boundary energy is well established. On the other hand,
in thermodynamics of discontinuity surface the influence of misorientation vector on
the surface energy is usnally ignored as yet. Therefore, in the present paper, attention
is focused on this influence. To obtain the driving forces conjugate to relative grain
reorientation, the continuum theory of dislocations has been applied. Starting from
the energy balance law and assuming that the free energy of discontinuity surface
depends strongly on the jump in crystal orientation field, the mathematical relations
for the misorientation vector and the conjugated thermodynamic force are derived.
The mentioned force contributes to the total driving force governing the grain
boundary migration process. The problem of constitutive modelling of the surface
motion is considered. The main result of this analysis is the incorporation of grain
orientation jump into the thermodynamic description of driving forces of the grain
reorientation process.

Key Words: Continuum theory of dislocations, misorientation, discontinuity of crystal
surface.

1. Introduction

GRAIN REORIENTATION process plays an important role in mechanical behaviour
of metals. Unfortunately, there are many factors, which may influence reorien-
tation. To obtain a complete thermodynamic description of the reorientation
process, the mechanical properties and geometry of individual grains (orienta-
tion, existing defects etc.) and boundary (its structure, defects existing on the
boundary, possibility to move and glide, jump in respective thermodynamics pa-
rameters), interaction between defects in grains with the boundary should be
incorporated. To avoid an extremely complex description in mathematical mod-
els of the polycrystal deformation, it is often assumed that the reorientation of
grains depends only on the jump in the plastic deformation tensor. The influ-
ence of misorientation vector on the grain reorientation phenomenon is usually
ignored, see Fig. 1.
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(a) (b)

(c) (d)

Fi1G. 1. Influence of slip orientation on grain reorientation: a) initial state; b) - d) state
of deformed crystal.

The thermodynamic description of grain boundary motion considered in
terms of the discontinuity surface has been considered in many papers [1, 3,
8, 13, 15]. However, in most of the papers a major premise is that driving trac-
tion originates from the balance of energy stored outside the boundary, cf. [1,
8, 13]. Additionally, the comparison of different thermodynamic approaches is
difficult due to a variety of the used measures of crystal lattice defects, coordinate
systems, tangent vector basis in which the position of measures are described,
postulated deformation types (only elastic, elastoplastic etc.), cf. [2, 5, 6, 9, 18,
21, 24]. This is beyond our abilities to present most of them. In author’s opinion,
many of above approaches are not suitable for the considered type of disconti-
nuity surface. For instance, the disclination theory can be a useful framework
description of some of epitaxial layer interfaces [27] or defects in liquid crystals
[16], while micropolar continuum description are much more complicated than
the present framework. Therefore, we limit our references to the papers most
representative for the approach developed here. Configurational forces play an
important role in our analysis. Those forces are pivotal for the direction of the
process evolution. For this reason, we distinguish the driving forces of the reori-
entation process originated from different grounds. Similar analysis based on a
quite different axiomatic basis was presented by CERMELLI and SELLERS (2, 3].
They described the Bravais crystal with existence of the defects of lattice in the
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form of dislocations, vacancies, interstitials and, contrary to our analysis, they
did not use elastic-plastic decomposition. Additionally they discussed the widely
used Born rule, see also [30]. Many other approaches have been formulated, e.g.
[10, 11, 31], or more recently [15]. A common practice in the field of continuum
mechanics is incorporation of internal variables to describe meso- or micro- pro-
ceses, which influence the macroscopic behaviour of the material. For the case of
dislocation influence, the dislocation vector, dislocation tensor or lattice directors
are incorporated into the constitutive equation, cf. [2, 12].

On the other hand, in the material science, the effect of lattice misorientation
on the energy of low angle grain boundaries is well established, cf. [14, 28].
Moreover, the surface density of the free energy has been catalogued with respect
to lattice misorientation vectors for given crystal lattices.

In this paper starting from the energy balance law and assuming that the
free energy of discontinuity surface depends on the jump in orientation field, the
relations for the misorientation vector and conjugate thermodynamical force are
derived. This force contributes to the total driving force of the grain boundary mi-
gration process. The problem of constitutive modelling of the surface movement
is considered. Due to the assumption of dislocation model of the grain bound-
ary, the current analysis concerns only the low angle grain boundary. State of
the dislocated crystal lattice near the boundary depends strongly on the exerted
strain, cf. [28]. Thus in the first step, we have limited consideration to small
deformation approach.

In the present analysis, incorporation of dislocation density tensor enables the
description of the existence of dislocation in the bulk and on the grain boundary.
The classical balance laws with symmetric stress tensor are used and no additional
balance laws for couple stress are needed. To describe the orientation jump on the
surface, the jump in the elastic and plastic deformation tensors are considered.

In the following section the kinematics of small deformation with continuous
distribution of dislocations is presented. The notion of curvature tensor is intro-
duced and its connection with the dislocation density tensor, which is a defect
measure of the body, is considered. Particular attention is focused on the cur-
vature measure of the dislocated contimmm. The relation between the elastic,
plastic and total curvature measure are also investigated. Section 3 concerns
the compatibility conditions for deformation field on the grain boundary. The
relations of the dislocation density to the grains misorientation are formulated.
The importance of analysis in Sec. 4 consists in describing thermodynamics of
the continmumn theory of dislocations applied to the grain boundary reorientation
process. Balance laws and the forms of driving forces are described explicitly.
Proposition of a general form of the constitutive equation for grain boundary
migration is proposed in Subsec. 4.3. Finally, in Sec. 5, summary of the analysis
is presented.
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2. Crystal lattice versus kinematics of the oriented continuum

In the case of small deformations, we assume an additive decomposition of
the displacement gradient

where w, €. and g, denote the antisymmetric tensor of lattice rotation, symmet-
ric tensor of elastic deformation, and generally unsymmetrical tensor of plastic
deformation, respectively. Let us consider the conservative movement of disloca-
tions (slips). Then, the plastic deformation tensor can be expressed as

T
Ep = Z'yisi @ m;,
i=1
where 7;, 8;, m; denote the plastic slip value on the i-th slip system, vector par-
allel to the i-th slip system and vector perpendicular to the i-th slip system,
respectively. The displacement integrability condition takes the following form:

(2.2) curl(Vu) = 0.

Substituting (2.1), we obtain

(2.3) -+ & + ap =0,
where

(24) a X —curlw,
(2.5) Qe 4 curlee,
(2.6) & g curlep,.

In the above equations «, &, &, denote measures of the continuum curvature,
which originates from the total, elastic and plastic deformations, respectively.
The close relation between elastic and plastic curvature in (2.3) is explained by
the general deformation rule, i.e. elastic and plastic strains separately do not
satisfy the compatibility relation (2.2), e¢f. [19]. There exists another group of
curvature measures K, Ke, Kp. Tensors kappa are related with tensors alpha by
the linear, mutually reversible relationships, noted by NYE, cf. [25],

B = 8 b
(2.7) 1
K. = -a"'" -+ —tr ol
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This relation is a consequence of geometrical nature of current consideration. The
choice of measure depends on convenience in its application to particular cases.
Burgers vector can be determined as an integral over a Burgers circuit ¢ around

a given dislocation

i3
Using the Stokes theorem, we obtain

by = /(:urlf.pds.

8

This means that from the mathematical point of view, we can define using Eqgs.
(2.1), (2.4), (2.5), (2.6), the following vectors:

b X [«xdsg

8

b, ) /(xeds.
8

b, g / s,
&

where b, = by. By analogy to the classical Burgers vector, the above vectors
can be called the total, elastic and plastic Burgers vectors. From Eq. (2.3) we
find
b = be + bp.

Relationship between the dislocation density tensor and the curvature tensors
were first introduced by NyE, cf. [25]. However, he didn’t specify which of
curvature tensor corresponded to the dislocation density tensor. According to
the above consideration it is easy to note that the dislocation density tensor
corresponds to a measure of plastic curvature similar to p, cf. 7, 8].

In the case when in the continuum there exists a discontinuity surface of
displacement gradient, on the basis of (2.4) we can assume the following relation
for the total measure of continuum curvature

(2.8) /advz / ol + / oglds — /ad'u,_

v vt AuE Y

where [ a.ds denotes the measure of continuum curvature due to existence of

dy ) .
the discontinuity surface. The last equation may be expressed as

(2.9) - /cnr]wda: = —fcurlwd-u + / ogds + /curlwdv_:

v vt vt T
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—/wxds:—/wxds+fa,qu+/wxds,
v -

avt avt

what leads to the following integral form:

/asds=— /|'w] X ds
dvE

AuE

and

and the local form, namely

(2.10) as = —[w] x n.

Here [-] and n denote the jump in the respective quantity across the grain bound-
ary, e.g. [ep] = g — ¢;, and the unit normal to the surface. Relation (2.10)
defines a curvature measure on the discontinuity surface of the displacement
gradient. Now, we can define the curvature measure on the grain boundary cor-
responding to the jump in: the displacement gradient, the elastic deformation
tensor and the plastic deformation tensor, namely

d
(2.11) &b i —[w] x ng,
i
(212) Kghe —_{ [EB-I X Ngh,
d
(213) Kb p =f [‘5131 X Ngpy,
and
df . 1
(2.14) Kgb = —-a;, + -é-tr, ocgh = [@] ® ng,
= df 1
(2.15) Kgbe = —agbe * Etr ocgl,c,
df . TN
(2.16) Kgbp = —Oghp T -Z—tt Otgh ps
where @ = —w : e. The quantities @, e, ng, denote the vector of lattice ori-

entation, alternating symbol and the unit vector normal to the grain boundary,
respectively. It is worth emphasizing that equation (2.14) connects continuous
curvature of the grain boundary with jump in the lattice orientation, cf. critical
notes in [30]. Equations (2.11) to (2.16) visualize the correspondence between
the classical measures of structure discontinuity and oriented continuum curva-
ture measures. By analogy to the additive curvature decomposition (2.3), let
us define the jump in the orientation caused by elastic and plastic deformation,
respectively.
[‘p(‘:-l ‘__‘;_f_ Kghe * Nyt

df

[‘pp] Kgbp * Ngh-
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From the above definitions, we get additional curvature measure relations on the
grain boundary, namely

H(z? — 2d) 8(xd H(z*—a23)
x,(x) = —an () 8Ty g, SEE] g T~ T
33 g /33 33
q g g
N H{::-:3b —2°) §(z3 1) H(z3 - :n3b)
K. (x) = *K...(X]“"*gT . th...—ig i Kf.(x)—‘—‘.”—gs
g™ Vg a=
where by H(:), gb Vg%, 8(-) we denote the Heaviside function, any curvi-

linear coordmale pet pend1cula1 to the surface, its value at the intersection point
on the surface, the respective component of the metric tensor and the Dirac
function, respectively.

3. Misorientation vector on the grain boundary

From the point of view of the oriented continuum mechanics, a grain bound-
ary can be considered as a surface of jump in the orientation field. Non-zero
misorientation vector Ag (A = [@]//g33 for z* = z b) can be attributed to
all points on this surface. In such a case, the curvature tensor on grain boundary
k (Eq. (2.14)) can be restated in the form

« = 6(z% — 23,) Vi Ao @ ngy,

and, by the NYE relation (2.7), the tensor alpha is determined

& = 8 — 7y) /75 (~ngy ® A + (ngy - Ap)1).

By making use of (2.3), we define the following misorientation vectors:
1
Ag = [ +[w] x Ngp, — §tr(fw.| X ngb) Nyl

(3.1) Dep = (_{fc] X Dgh + %Lr(ch = ngh)) g,

Il

1
Aptp (—fsgﬂ X Ngp, + ‘z‘tr(hﬂ X ngh)) gy

The above relation shows that in the case of elastic-plastic crystal deformation, we
can define elastic and plastic vectors of lattice misorientation. This implies that
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representation of the dislocation density tensor in orthogonal base {n;,nj, ns}
takes the form

—by 0 O
[cxgb]ngb 0 —=by 0|,
b by 0
where
n3 = ngln
bi = —a (Ap‘p'n!‘)s
(s - 23,)im
Pgb = & .

Parameter a plays the role of the length scale, e.g. it corresponds to the length
of crystal cell. It is easy to notice that the grain boundary dislocation tensor
corresponds to a superposition of two families of dislocation lines lying on the
considered surface. As an alternative, dislocation density vector can be included,
cf. [12].

4. Thermodynamics

In order to obtain the form of driving forces of the process, we should com-
plete the thermodynamical description. In Subsec. 4.1 we derive the constitutive
relations for the body without discontinuity surface and next, in Subsec. 4.2,
the discontinuity surface in continuum is described. From the viewpoint of bal-
ance equations, our approach differs from the classical elastic-plastic continuum
thermodynamics only by the dislocation energy flux term included in the energy
balance.

4.1. Continuum theory of dislocations

For a dislocated crystal, we postulate the balance equations in the form

d
E/pdﬂ = 0,

U

o pvdv = / ods + / pjdv,
di . !
v - v
d :
7 x X pvdy = [x x ods + /x x pjdv,
:U -] v
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d ot 1 /
n’f P 2pvv dv '
5 u

% / pndv / / —hdv,

where p, o, j, v, u, qr, h, 1 denote the mass density, Cauchy stress tensor, body
force density, velocity, internal energy density, heat flux and heat source density,
respectively, while q denotes the vector of the energy flux due to the relation be-
tween free energy and the dislocation density tensor. The above integral relations
imply the following local form of balance equations:

/ s =R s [ (av & ph)de;

IV

p+pdivy = 0,
dive + pj — pv = 0,
(4.1) s
U_'U — 0!
—pi+ o : Vv — divq — divqy + ph = 0,
fire /i
(4.2) on +dw(‘,}'f) 2 ’;—* > 0.

Using the free energy function (¢ = u — nT'), the last inequality can be ex-
pressed as

(4.3) —ph—piT + 0 ée+0:ép—divg— %VT > 0.

To find the driving forces on the dislocation field, let nus assume that the spe-
cific free energy of the dislocated crystal depends not only on the elastic strain
and temperature, but also on the dislocation density tensor corresponding to
the plastic eurvature (induced by permanent rebuilding of the lattice by plastic
deformation). Thus, let the free energy take the form

(4.4) P = P(ee, &p, T).

The similar dependency were assumed by many other authors, e.g. [29]. Substi-
tuting this equation into (4.3) and making use of (2,6), we obtain

(4.5) (6 —ap) : ép — Q%VT > 0.

To hold this inequality for all processes, the Cauchy stress tensor resulting from
elastic strain, the stress resulting from existence of dislocations (tending to min-
imize the free energy due to dislocation distribution), and the energy flux as
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an effect of dislocation distribution and finally, the entropy have to satisfy the
following equations:

o
"aa,_,‘

(4.6)
L A
q pa‘xp P?
R
iy
In (4.6) symbol x denotes the double product: the scalar one over the first indices
M i
and the vector one over the second indices, i.e. aad} ) s"r,kejk;. Fundamental
pij

equation describing the plastic flow in the continuum theory of dislocations takes
the form

(4.7) Ep = &p X Vp,

where v;, denotes the dislocation velocity vector, cf. [19, 23].

4.2. Driving forces on the dislocation field

The driving force is a sum of Peach-Koehler forces and the configuration
force. Peach-Koehler force describes the influence of stress field on dislocation,
cf. [26] and more general [10], while configuration force describes the influence
of spatial configuration of all dislocation on each dislocation. The configuration
force is responsible for minimization of the stored energy due to dislocations
configuration. The favorable dislocations configurations are often called the low
energy dislocation structures [20]. This force gives direct information on the
direction of the reorientation process. Using (4.7), relations (4.5) and (4.6) can
be rewritten in the form

qr

(f —&)vp + -,i-;VT >0,
q= kpvp,
where
f =0 xap,
(4.8) fo = op x op,
d
kp = BTE:, D .
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In the above equations f denotes the elastic force acting on the dislocation field
- the Peach-Koehler force, while f,, denotes the configuration force. According
to the obtained thermodynamic restrictions, the dislocation velocity constitutive
equation (plastic low equation) can be assumed in the following form:

The configuration force f;, is responsible mainly for the self-reorganization of dis-
location field towards formation of the grain boundaries. This force is parallel
to the gradient of dislocation density field, but takes usually the opposite sign
to the above gradient. Therefore, a continuous field of unbalanced (monomial)
dislocation tends to concentrations in narrow regions, what in terms of the con-
tinuum theory of dislocations corresponds to the process of subgrain boundary
formation. Similar role on discrete dislocations plays the Peach-Koehler force.
The energy of local stress field around dislocations must be taken into account in
the energy equation assumed on the continuum dislocation field level, see (4.4).
The role of configuration force can be also considered in terms of the Baushinger
force (by analogy to the Baushinger stress) induced e.g. by the pile-up of discrete
dislocations on the existing grain boundaries.

4.3. Thermodynamics of the orientation discontinuity surface

Let us consider translational motion of the orientation discontinuity surface.
Due to dislocation models of the grain boundary, we consider only a small angle
discontinuity surface (e.g. up to 15° for germanium). For such a case we assume
the following conditions:

1. The surface possesses densities of mass, energy and entropy, but the fluxes
of the above quantities vanish on the surface.

2. The surface density of mass on the discontinuity surface is constant.

3. The displacement field is continuous with the piecewise continuous first
and second-order derivatives, i.e. the grain boundary sliding is excluded.

4. The temperature field is continuous on the orientation discontinuity sur-
face.

The attributes of such a surface allow to call it stationary discontinuity. Let
us denote the discontinuity surface velocity by wgy,. Then the local velocity vector
of the surface motion (grain boundary velocity) is vy, = wgy, — v. Additionally,
we assume convection parameterization of the surface. The velocity of a material
point lying on the discontinuity surface at a given time denoted by v can be
decomposed into normal and tangential parts

= [ +4
v = 1.F|1Ilg], + v 1(!;
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where i, denotes the local base vectors tangent to the coordinates on the surface.
This allows us to define the time derivative of arbitrarily chosen scalar density w
for points lying outside the surface and wgyp, for points inside the surface, see [17].

; Oow
W = —|x—const+ gradw- v,
at
o Jw b
- g :
Wep = ot lin —const + WgbaV":

Due to the mass balance and the assumed zero surface flux of mass, the mass
flux across the discontinuity surface satisfies the condition

— ot e
(4.10) Tgh = P Vgp * gb = P~ Vg, * N

With respect to the kinematical constraints, total velocity of the surface must
assume the same value on both sides of this surface, i.e.

(V;b + V+)ngb = gb 2p Vﬁ)ngl}s

which implies the relation of jump in local velocity of the grain boundary to the
jump in the continuum velocity, namely

(4.11) [Veb gy = —[V]ng.

Such restriction implies the following set of equations on the discontinuity surface,
cf. (4.1) - (4.2),

0,

Il

I-p\" h]nrt
(4.12) B Te
|.0- +pv® ng] Nghp = 0.

1 0
(4.13)  [puvg, + §p(v V)V, + VO — qr — kp(Vp = Vgb) g = pgbligh,

7 o
(4.14) [—pnvey + q‘?]ngb + pgvlgy 2 0,

where py1, denotes the surface mass density. Substituting (4.10) and (4.11) into
(4.13), inequality (4.14) takes the form

(4.15) Tgh ["'M + ngIJU[V] = {k[)(vp = Vg!;ﬂngh = Pgi:'*ﬂ’gh — Pgbligh T2 0,

1 g . . g
where o = -2-(cr+ +07). To determine the thermodynamical driving forces on the

surface we must postulate the state variables on surface. Our approach is based
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on the assumption that misorientation should be incorporated into constitutive
modelling of the reorientation process. To do this let us assume, that the con-
stitutive equation for the surface free energy density depends on misorientation
and temperature, i.e.

(4.16) "/"g[: = 'd"gb(Ap‘prT)-

If we take into account that in our formalism the Born rule holds, then the same
restriction for the surface free energy density is obtained as those assumed by
CeERMELLI and SELLERS in [3]. This postulate is crucial for the analysis and it
has strong consequences on the shape of driving forces. Substituting (4.16) to
(4.15) we get

(4'1?) Teh [d’] %7 nghuf'v‘l = ”‘:p(vp = ng)-| Ngh — My, Ap(p

o [ Oy
= fin T ( g,;’,h +r;gb) >0,

where
0 &e/;g;,

= Pgbax
P go dAr,tp
To satisfy (4.17) for all possible process, we find
3'&'ng

P
It is easy to realize that my, has the meaning of the misorientation vector driving
force. Traditionally ngy, in (4.19) denotes entropy density of the grain boundary.

Additionally, using (4.11) and (4.12), the jump in continuum velocity can be
expressed as

(4.20) v] = —(ihgwgb.

(4.18) m

(4.19) Tgh = —

Let us define the right and left dislocation flux vectors to the boundary, namely
e =k e
T, = Fhogy - (v, — Vab)-

It can be established, that!

: o o o
'Using (3.1) we find A,@= —ng, - [€,] x ng, + %nghtr([t:p] b nsb)
= —ng, - [&, + Ve, vgp] X ngy + ingutr([€p + VEp vgb] X ngy)
= —ngy - [Ep + Ve€ps vgh + V(Ep) Van| X ngy
+ %“gl;tr([—ap = V( Ep> Vb = V{ f-p) V,.;h] X ngh]
= —Tigh * [agx X vp + V< €p> Vb + V(Ep] Vgh] * Ngh
+ sngutr([0p X v + Ve €ps Vb + V(Ep) Vgn] X ngp)
e ' 1 3
= "'ngh'[ ap x (vp_vgh}'i‘V[ Ep') Vgh‘I Xn,;h+ ?jllghtr([ap x (Vp = vsh) + vq t[,} Vgh] * ngl)) -
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(4.21) Apo= ;-r;' angl(ar % ngy) 4 7, angl(a; X ngp)

Vig,) - ngh

B

+ Tgp angl|
where, for each tensor t. operator anglt is defined as
1
anglt g Ngp, - t X ngp, + §ngbtrt.

By the use of (4.21), the entropy inequality (4.17) in the isothermal conditions
can be rewritten in the form

(4.22) tepmgy + by my +tomy >0,
where

i ViEp - N 1
(4‘23] tgh = W»’] = Dgh ~ 0" Hgb[;] —mp - angl[————-—-—-( P) g’],
(4.24) '% = k;f: - my angl(oc§ X Dgp).

In above equations tg, and ¢, denote driving forces conjugate to: the jump in
the respective quantities on the boundary and the existing dislocation around the
boundary. In order to complete the thermodynamical formulation of the theory,
the manner in which the grain boundary migrates, should be given.

Constitutive equation for a grain boundary migration. According to known
experimental data i.e. [4], the mobility of grain boundary depends mainly on
misorientation, temperature, concentration of precipitations and driving forces
described by (4.23) and (4.24). According to the thermodynamic restrictions
obtained in the previous subsection we can assume a constitutive equation for
fluxes across the boundary. Taking into account the driving forces, misorientation
and temperature, the constitutive equations for the mass and dislocation flux
through the grain boundary can be stated in the form

(4.25) Tgh = 'ﬂ'gb(tghs Ap(P- T

(4.26) %y = malte, 8p0, 7).

Equation (4.26) does not mean that a single dislocations have to overcome a
grain boundary, but it means that the proportion between the annihilation of
dislocations on one side and production of them on the second side subject to a
limitation imposed on this process by energy of the grain boundary, according to
(4.26) and (4.24). According to the thermodynamic balance we have determined
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a thermodynamic force ¢, yielding from the change of grain misorientation energy
inherently related to the production and annihilation of dislocations on the grain
boundary. For example, it is known that some orientations of grains in polycrys-
tals are observed more often than others. Our paper is devoted to thermodynamic
reasons of this effect obtained from thermodynamics of the grain reorientation
process. It is worth emphasizing that in terms of the classical theory of crystal
plasticity, this effect cannot be described as far as the grain misorientation en-
ergy will be incorporated into thermodynamic considerations on elastic-plastic
deformations.

The constitutive equation (4.25) describes the mass flux over the grain bound-
ary, what means that this equation describes nothing more than the migration
of grain boundary. This is induced by the jump in the specific free energy on the
opposite sides of boundary, cf. (4.25) and (4.23). In real crystals another compo-
nent of the driving force often exists when the strongly dislocated structure on
one side of the grain is recovered on the second side in the form of the nucleation
and growth of new (undislocated) grain. So, the force t,, can be treated here
only as a part of the resulting driving force governing the migration of grain
boundaries in real crystals. The main part of this force results from the differ-
ence of the free energy of dislocated and recovered grains on opposite sides of the
grain boundary. Equation (4.23) describes a component induced by unbalanced
dislocations, which bend crystal lattice within grains.

5. Final remarks

In this paper. a thermodynamical solution for the grain reorientation process
and the conjugated driving forces has been derived. In the presented approach
it has been assumed that the surface density of the free energy depends on the
misorientation vector. It is worth emphasizing that in material science the influ-
ence of lattice misorientation on the energy of low angle grain boundaries is well
established, cf. [14], while from the viewpoint of continuum thermodynamics of
plastic deformation such a dependence is usually ignored.

According to the symmetry of crystal lattice, to a given boundary several
vectors of jump in orientation can be attributed. Even in the case of asymmetric
unit there exist two misorientation vectors with the lengths: Ag and Ay’ =
(2m — Agp). In real crystal lattices e.g. for fce crystal, we can assign 48 mutually
different orientation vectors for a single boundary. The choice of real vector of
jump in orientation corresponds to the choice of a certain inner grain boundary
structure. This suggests that in oreder to describe properly the single-valued
grain reorientation process, initial orientations of grains around boundary should
be included.
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The effect of grain reorientation has been described here in the spirit of the
macroscopic dislocation theory. We have shown, how the influence of the grains
misorientation on the reorientation process can be described in terms of contin-
uum theory of dislocations. As a result of the dependence of surface energy on
the misorientation vector, additional terms have been obtained in the equation
of driving force of grain boundary motion.

On the other hand, from the viewpoint of the general continuum theory of de-
fects our approach concerns only a thermodynamic solution obtained in terms of
the dislocation theory. For example, in terms of the disclination theory we should
assume that a constitutive dependence for surface energy takes into account not
only the dependence on the misorientation vector, but also on its gradient along
the boundary. This gradient corresponds to continuous distribution of disclina-
tions along grain the boundary. For a discrete wedge disclination, understood
as a line bounding the grain boundary within a crystal, the gradient will re-
duce to the delta distribution at the edge of the grain boundary identified with
disclination line. Therefore the disclination model needs the determination of
the discontinuity conditions of higher order than those considered in the present
paper. It is most probable that to balance the energy, which is dependent on
the misorientation gradient along the grain boundary, the polar elasticity could
appear to be indispensable. Then the polar elasticity could play a similar role
as the symmetric elasticity employed here to the dislocation theory. Thus, our
approach concerns thermodynamics of crystal lattice misorientation considered
in terms of a discontinuity surface analyzed in the framework of the dislocation
theory and the symmetric elasticity. It is worth emphasizing that in real crys-
tals the grain boundaries usually show a constant misorientation vector along
the boundary; moreover, boundaries do not end within a crystal by disclinations
- therefore, from the viewpoint of the authors, the dislocational model of the
grain boundary seems to be much closer to thermodynamics of low-angle grain
boundaries than the considerably more advanced disclination/dislocation model.
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