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MATERIAL INSTABILITY phenomena arise in homogeneous stress states if nonlinear
stress-strain relations are considered. The stability behaviour is investigated by look-
ing at the Gateaux derivative of the first Piola-Kirchhoff stress tensor in the direction
of the deformation gradient. This requires to solve a nine-dimensional matrix eigen-
value problem. In the present contribution, it is shown that material instabilities
can be clearly differentiated from instabilities of geometrical character. The latter
aspect is especially important for the design of new materials, since unstable solution
paths under common loading conditions are not desirable. Geometrical instabilities,
however, can usually be avoided by choosing appropriate boundary conditions. The
derivation in this work leads to a simple stability criterion which allows to describe
the stability behaviour of many materials in a very general context.

1. Introduction

MANY CLASSICAL stability investigations in elasticity concern the buckling of rods,
plates and shells. A common example is an Euler column exposed to an axial
force. At a certain load value, the homogeneous stress state is no longer stable
which leads in the presence of imperfections to buckling of the structure into
a stable inhomogeneous stress state. The treatment of such stability problems
requires to consider large deformations or in other words, the geometrical non-
linearity in the system. For such so-called structural stability behaviour, the
nonlinearity of the material law (physical nonlinearity) plays usually a subordi-
nate role and is neglected in most cases. Structural instabilities occur mainly in
compressive stress states.

For stability problems in finite elasticity, this is no longer the case. Here,
large deformations and nonlinear stress-strain relations are considered. It can be
expected that this increases the variety of instability phenomena noticeably. In
particular, a new class of stability problems comes into play, even if the investi-
gation is restricted completely to homogeneous stress states. Instabilities of such
kind are usually due to the physical nonlinearity in the system. The question
arises as to whether these so-called material instabilities are of physical origin,
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or only a result of the material model. Actually, one finds both cases. A phys-
ical material stability phenomenon was observed in an experiment documented
by TRELOAR [41], where the symmetric deformation state of a biaxially equally
loaded sheet became unstable and therefore inaccessible after a certain load level.
Instead, the originally square sheet developed a rectangular form.

It is important to emphasize that the appearance of such material instabilities
in finite elasticity does not mean that fundamental constitutive requirements such
like polyconvexity (see BALL [2], CIARLET [10]) are violated. A good overview
of constitutive inequalities is given in MARSDEN and HUGHES [22]. See for more
details BAKER and ERICKSEN [1], HiLL [14, 17, 18], OGDEN [26], BALL [2] and
SiMPSON and SPECTOR |37, 38, 39]. One can show experimentally that these
constitutive restrictions are physically reasonable for elastic materials.

This is different in elastoplasticity, where the bifurcation into shear bands is
observed experimentally. The phenomenon can be explained mathematically by
the loss of ellipticity of the underlying differential equation system. Thus, if one
wishes to describe the behaviour of such materials realistically, the material model
must be sophisticated enough to include shear banding (localization). Note that
polyconvexity includes strong ellipticity such that the latter effect is excluded in
finite elasticity. Such phenomena belong to another class of material instabilities
which have to be additionally investigated in the context of elastoplasticity.

In many publications dealing with stability problems in finite elasticity, some
special examples and material models are considered but only a few general con-
clusions are derived. Very common examples are for instance a biaxially loaded
sheet (see e.g. SHIELD [35], OGDEN [26], KEARSLEY [20], CHEN [8], MULLER [24,
25), REESE [28], REESE and WRIGGERS [29]) or a triaxially loaded cube (see e.g.
RIVLIN [31], SAWYERS [34], BALL and SCHAEFFER [3|, REESE and WRIGGERS
[30]). One main goal of the present work is to develop a stability criterion which
would be general enough to reproduce the results of previous investigations in
a very simple way. This criterion is based on a common aspect of the stabil-
ity behaviour of elastic materials which has not been fully explored in earlier
works. This is partially due to the fact that most investigations are based on
the assumption of fixed principal axes which represents a major restriction and
makes the complete understanding of the material stability behaviour more dif-
ficult. Exceptions are the quite formal derivations of HiLL [16, 19], OGDEN [26],
Sec. 6.2 and CHEN [9], who also developed general criteria. The results of HiLL
and OGDEN are similar to those derived in the present paper but based on a
different derivation. The emphasis of the present work lies rather on the physical
description of non-unique solutions. A further goal is to predict unstable solution
paths and to be able to avoid them in practice. Since the present approach is not
restricted to purely elastic material behaviour, it is more general than the one of
OGDEN [26].
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In contrast to other publications, including the ones of HiLL |16, 19], OGDEN
[26] and CHEN [9], in the present contribution, the classical split of the tangent
stiffness into material and geometrical parts is exploited to obtain a useful classi-
fication of the instability phenomena into two groups. The second group is again
subdivided into three different cases. It will be shown further, that the two main
groups represent instabilities of geometrical and material character, respectively.

Although we restrict ourselves completely to homogeneous stress and defor-
mation states, we still observe instabilities of purely geometrical character. Note
that these are different from the typical structural instability phenomena (buck-
ling), since they are associated with rigid body rotations as eigenmodes and occur
usually in the natural state (undeformed configuration).

Concerning the group of material instabilities, we have to differentiate bet-
ween purely elastic and elastoplastic material behaviour. In elasticity, material
instabilities are characterized by the material tensor losing its positive definite-
ness. It is important to emphasize that these singularities represent multiple
bifurcations. Such deformation states become unstable under arbitrary linear
combinations of stretch and shear modes.

In elastoplasticity, material instabilities might arise in tension as well as in
compression which is due to the fact that they usually appear in the form of
shear bands. This aspect will be discussed in detail.

The paper is organized as follows. Based on the balance of linear momentum,
the eigenvalue problem for the Gateaux derivative of the first Piola-Kirchhoff
stress tensor in the direction of the deformation gradient is formulated. Using
frame indifference, the latter fourth order tensor can be split into material and
geometrical parts. In Sec. 3, this result is used to classify the instabilities into
two main groups. In certain cases, in particular for isotropic elasticity and asso-
ciated elastoplasticity, we can reformulate the eigenvalue problem for the tangent
tensor in such a way that a decoupled structure is obtained. The originally nine-
dimensional eigenvalue problem then reduces to one three-dimensional and three
two-dimensional sub-problems (Sec. 4). Finally (Sec. 5), the solution of these
eigenvalue problems is discussed in a very general context, i.e. neither a special
material model nor certain deformation states are specified. In this way, gener-
ally applicable stability criteria are derived. In Sec. 6, the use of these criteria is
validated by means of several examples.

2. Preliminary remarks
The derivation starts from the balance of linear momentum
(2:1) Div P = 0,
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where the absence of volumetric forces (e.g. due to gravitation or inertia) has
been exploited and P denotes the first Piola-Kirchhoff stress tensor. Using the

assumption that the strain and stress states are homogeneous, the integration of
(2.1) leads to

(2.2) g(F)=P(F)-P, =0.

Here, P, denotes the first Piola-Kirchhoff stress tensor known either from the
tractions Ty, = P, - N prescribed on the boundary 0By or from the deformation
given on dB,. The whole boundary of the reference volume By is given by 9By =
OB1 U 8B,. The tensor F represents the material deformation gradient. In the
following, a colon will stand for the scalar product of two tensors, whereas one dot
between two tensors characterizes the usual tensor multiplication. For simplicity,
we start here with the special case of finite elasticity. Thus, we need to consider
here only the dependence on F. In order to account for the inelastic material
behaviour, internal variables will be introduced. The extension of the derivation
will be discussed in Sec. 4.2.
Due to the restriction to hyperelastic material behaviour, the stress tensor

ow
2.3 P=—
\2:3) OF
can be derived from a potential W, the so-called strain energy function per unit
reference volume.

From the implicit function theorem (see HILDEBRANDT and GRAVES [13])

we obtain the result that the solution of (2.2) is regular, if the tensor B_g is

invertible, and singular otherwise. In the latter case, one can find a non-zero
tensor AF which fulfills the relation

N & 5 dg
2.4 e ; = — : =—=:AF=0.
24) Og=DE(F):AF= - (§(F +adF)| =2

The tensor Dg (F) : AF represents the so-called Gateaux derivative of g (F) in
the direction AF, where AF is identical with the eigentensor @ of the eigenvalue
problem

EIG: (A-wll):d=0,

if the eigenvalue w vanishes. See in this context also BEATTY [6, 7] and the
text-book of MARSDEN and HUGHES [22]. Note that the fourth order tensor

: _0g 0P _W(F)
251 A==~ e

http://rcin.org.pl



OM MATERIAL AND GEOMETRICAL INSTABILITIES IN FINITE ELASTICITY... 973

denotes the derivative of the first Piola-Kirchhoff stress tensor P with respect to
the deformation gradient F. It can be stated that for asymmetrical bifurcations,
symmetrical bifurcations and limit points, a singular solution always indicates the
beginning of an unstable solution path. Thus, to check the stability behaviour
on the “primary” solution path, the detection of singularities is sufficient.

Since the constitutive equations are required to be frame-indifferent (see e.g.
TRUESDELL and NoOLL [42]), the function P (F) reduces further to

oW (B)
9E

(2.6) P=F-S(E)=F

1
where E = 5 (FT . F — 1) represents the Green-Lagrange strain tensor. This fact
has not been used to derive A and is therefore not included in (EIG). Using (2.6),
we may rewrite the expression Ag as

(27) Ag=A:AF=AF-S(E)+F. (DS (E): AE) = AF -S(E)

s
(25 am)

where AE is defined by the Gateaux derivative

(2.8) AE := DE (F) : AF = ‘;—ﬁ : AF = sym (F” - AF).

The fourth order tensor &
S  O*W (E
(2.9) Li=—= ——(—)-
0E OE?
is termed a material tensor. If we replace AF by the eigentensor ® and carry out
the scalar multiplication of (2.7) with ® we obtain in case of a singular solution

(2.10) O A:®=sym(F"-®): L:sym(F-®)+8S: (‘i‘f 3) = 0.

One could derive the result (2.10) also on the basis of the relations (6.2.76)
and (6.1.22) stated in OGDEN [26]. A similar statement is found in HiLL [19]
dv;
(Eq. (3.38 a)), where one has to replace the spatial velocity gradient Jx—l by
j
®-F~'. Neither OGDEN nor HILL, however, exploited the information contained
in (2.10) any further. This is now done in the following section.

3. Classification of singular solutions

s ; . ‘ ; i
Using index notation, it can be easily shown that the term S : (@ - ®) =
S;j ®y; Py; is alternatively represented by means of
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(3.1} S;'j ‘i’k,' ‘i’kj = 653‘ 5,';; Sjg (IW’H = (i) W, (i?
where the fourth order tensor M is computed from
(3.2) M = b Sj;ei®ej®ek®eg.

The vectors e; (i = 1,2,3) represent Cartesian basis vectors and the Einstein
summation convention is assumed to hold for lower case indices. The Eq. (2.10)
then reads

AT T & p T, & N
(3.3) @.A.‘I’—?ym(F ®): L:sym(F tD)J+'I>.M.'i' 0.

v

1=ty = WM

The scalar factors we and wayq represent the eigenvalues in the eigenvalue
problems

(34) (L-we 1;‘me csym(FT-®) =0 and (M —wp1%): 3 =0,
L
=®
respectively.
Consider now a given deformation state F = F and assume that the tensor

A(F) has at least one vanishing eigenvalue. Let us further introduce the index
* for all elgentensms of A (F) which fulfill the equation A(F): & = 0. Then, for

each eigentensor ®", (only) one of the following two statements is true.

(1) The eigentensor ®" satisfies the equation

> % =3

(3.5) & :=sym(F' - &) =0.

From (3.3), we obtain the relation

= % e e ~ ~

(3.6) " AF):d =8 M([F):® =wpy =0.
Thus, M (F) has one zero eigenvalue associated with the eigentensor 3"
(2) The eigentensor ®" does not satisfy (3.5). Let E be defined by E :=

ol
=1 SV

b

(a) wm=0 = we=0
The eigenvalue of £ (B) associated with the eigentensor ®" vanishes.

(b) wm <0 = we>0
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The eigenvalue of £ (E) associated with the eigentensor 3 is positive.

(c) wm>0 = we<0
o — w =
The eigenvalue of £ (E) associated with the eigentensor @ is negative.

It remains to discuss what these cases mean physically. It is well-known that
the split of the tangent matrix

(3.7) Aijkt = Fim Lmjnt Fien + Mijki.

(M;jk = ik Sj) represents a split into a material and a geometrical part. The
latter equation is also given by HiLL [19] and OGDEN [26] (Sec. 6.1.2).

In Case 1, the term @ : £ : &, i.e. the material part of (3.3), vanishes. A
singularity of this type is not related to the choice of the material model and
can be considered therefore to be of purely geometrical character. The reversed
argument allows the following statement. If M has a zero eigenvalue and the
eigentensor accociated with the vanishing eigenvalue fulfills (3.5), the tensor A
must be singular, too. It will become clear later that this case becomes relevant
only in the natural state (S = 0).

Usually, however, Case 2 is detected, where (apart from 2a) either the first
or the second term in (3.3) has a negative sign. The first class is characterized
by L losing its positive definiteness (Case 2c). The second type arises, if M has
at least one negative eigenvalue with respect to the eigenform ® (Case 2b).

To conclude, Case I represents a geometrical instability, whereas Case 2c¢
characterizes in any case a material instability. Case 2a would be both, but it
does not appear in the context of physically reasonable models. Case 2b be-
comes relevant, if negative stresses dominate. For later use, we exploit the polar
decomposition of F = R - U to rewrite (3.7) as

(3.8) Aijk! = Riz {Uxm Lmjn! Uyn nm 59:3; Sjl) Rky

L v
v
1

E;

Jyl
leading to
(3.9) ®:4:8=RT-3):£':(RT- ).

In a similar way, the push-forwards Cizky = Fim Fzj Fim Fyt Lmjnt and 7zy =
Fy; Sji Fy (7 Kirchhoff stress tensor) are used to reformulate (3.7) as

(3.10) Aijkt = (F71)jz (Cigky + ik Tay) (=}

2
Eia:ky
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which yields
(3.11) $:A:0=(®-F):£%: (@ F).

If one of the three tensors, A, £ or £2, is singular, the same holds for the other
two. The eigentensors of £! and £? associated with these singular solutions are,
however, different. The eigentensors &' of £! are obtained from the ones of A by
multiplying @ by RT from the left. Analogously, we compute the eigentensors
®* of £2 by multiplying ® by F~! from the right. The Ly-norm ||®'|| is set equal
to [|®||. On the other hand, we require the relation

(3.12) 18%|| = V®? : 8% = \/tr (& C~1- ®)

to hold for &. Both tensors, £! and ®' live completely in the reference config-
uration, whereas A and ® are two-field tensors. £2 and ®? live in the current
configuration.

It will be shown later that it is convenient to work with &' or £2 in some
cases. The stability investigation can then be carried out in the following way:

e Solution of the eigenvalue problem
EIG:: ('-wlh):®'=0

or
EG: (£2-w1'):8% =0,

respectively.
e In case of a singular solution — case differentiation:

Case I: The symmetric part of UT-®' or ®%, respectively, is equal to the zero
tensor.

Case 2: The symmetric part of UT - @' or &, respectively, is not equal to the
zero tensor. The sign of

(313) Wap = (I);J é;ry SJ! ‘I’;{ = ¢12;r (jl'k Ty (Dﬁy

determines whether we deal with Case 2a, Case 2b or Case Zc.

4. Stability investigation

4.1. Finite elasticity

Up to this point, the derivation is general enough to include anisotropic ma-
terial behaviour. The goal of the following derivation is to show the use of the
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stability criterion derived in Sec. 2. For simplicity, we restrict ourselves here
to transverse isotropy. Transversely isotropic material behaviour is for instance
observed in fiber-reinforced materials, where the material properties in the fiber
direction are different from those in the plane perpendicular to the fiber. In this
plane the material behaviour is assumed to be isotropic. The considerations car-
ried out in the context of transverse isotropy would hold analogously for general
anisotropy.

According to the theoretical works of BOEHLER [4, 5], the strain energy func-
tion W (E) reduces to an isotropic function of E and the so-called structural
tensor M = n ® n. The normed vector n is oriented parallel to the fibers. It
is then straightforward to show that the potential W is a function of the three
invariants
|
~ 2
of E and the first invariants of E - M and E? - M, respectively:

(4.1) L:=ttB, Ip: (I} - tr (E?), IL:=detE

4.2 Ii:=tr (E-M)=E: M, I :=tr (E2-M) = E?: M.
(

In general, E and M are not coaxial such that the 6 x 6-matrix obtained from
writing £ in the Voigt notation would be a full matrix. If, however, coaxiality of S
with E or U is assumed, we may write the nine-dimensional matrix representation
of £! as

[ [gl]stretch [0] [0] [O] 1
[0] [gl]shear(li!) [0] [0]

(43)  [€']= " ;
0] 0] (et (o]

L[ 0] R i

where the sub-matrices [£1]5tth and [£1]shear(12) take the form
MLy MMLuzn MAsLns
(4.4) [P = | MM Lz A3Losme A2 A3 Laoss
A3A1Liiss A3AzLogss A3 Lasss

S1: 0 0
= 0 S 0
0 0 333

and

(4‘5) [El]shear{l‘z} =

M Liaia M A2 Liaig S22 0
M At Lotz A3 Liarg 0 S |°
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respectively. The matrices [£1]h¥"(23) and [£1]shear(31) are constructed analo-
gously. The coefficients refer to the axes defined by n; (I =1,2,3, n;-ny = 1)
with n; = n. The quantities Ay (I = 1,2, 3) are given by

(4.6) Ari=Un=v2En+1, Upy=0if I#£J,

where Uyy represent the principal values of the right stretch tensor U.

Due to the special structure of [€'], the nine-dimensional eigenvalue problem
(EIG!) can be subdivided into four smaller ones: one for the “stretch matrix”
[E1]8teth and three others for the “shear matrices” [£1]shear(12) [g1]shear(23) anq
[E1]*hear(31)  This decoupled structure makes an analytical approach possible.
Moreover, due to the fact that the latter two matrices are derived from [£!]hear(12)
by merely exchanging the indices, we have to solve the two-dimensional eigenvalue
problem only once. In isotropic elasticity, the coaxiality of 8 and E is always
fulfilled such that the decoupled form of [€'] is possible in general.

Many previous works (e.g. BALL and SCHAEFFER [3]) use the assumption
that the principal axes do not rotate and can be chosen equal to the fixed Carte-
sian coordinate axes. In this special case, the left and the right stretch tensor,
V and U, have the same principal axes, and R is equal to the identity tensor.
Then, also the matrix [A] would be sparse. Such an assumption, however, is here
not necessary, since the coaxiality of S and E is already sufficient to obtain an
analytically tractable form of £

An alternative approach has been given by OGDEN [26], who wrote the ex-
pression Ag = AP (F) = 0 (see the relation (2.4)) in the form

(47 AP(F)=A(R:-U-S(E))=AR - T(U))=AR-T+R:AT=0.

The quantity T represents the so-called Biot stress tensor. From the latter equa-
tion one obtains the statement

(4.8) AT =-RT.AR-T.

The Biot stress tensor T is symmetric, if the coaxiality of S and U holds.
Since the coaxiality of S and U implies the coaxiality of 7 and V, [€?] has
the same decoupled form. The sub-matrices then read

Cin Cuz Cuss m 0 0
(4.9) [E2teth = | Clypp Cazee Cogss | +| 0 72 0
Cnas Coss Cisas 0 0 733
and
(4.10) (E2hear(i2) [ 51212 ?212 } i l T2 0 ] .
1212 Crai2 0 ™
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4.2. Finite isotropic elastoplasticity

In the case of finite isotropic elastoplasticity with isotropic hardening, we
start from the Helmholtz free energy

(4.11) U =W (C.) + f (€) = W (ICe, I, IE¢) + f (¢)

where C, is defined by C, = F;T - C- F;l =Fl.F,andC=FT.F =
2 E+1 denotes the right Cauchy-Green tensor. Note that here the multiplicative
decomposition of the deformation gradient F = F, - F, into elastic and plastic
parts has been exploited. Since the present model is restricted to isotropy, the
function W depends only on the invariants of C, which are identical to the
invariants of C - C;l (Cp = F; - F,, “plastic” right Cauchy-Green tensor). Then,
besides the accumulated plastic strain €, the tensor C,, plays the role of an internal
variable. We further define the yield function @ (7, ¢) which is formulated in terms

of the invariants of the Kirchhoff stress tensor 7 = 2 - b, and the stress-like

db,
quantity g = 3—2}%—) Postulating the evolution equations (b, = F - C;l . FT)

(4.12) d, =3F*T G, PH=ght %‘; and €= 7"3?

and using the Kuhn-Tucker conditions ¥ <0, ® <0 and ¥ @ = 0, together with
the consistency condition ¢ yields the plastic multiplier ¥ as

od
db,
where k = k (b, £) represents an isotropic function of its two arguments, and the
partial derivative of ® with respect to b, is given via

0% 0% Or

db, o1 Bb

(4.13) =k (2

e) :d,

(4.14)

5 : . e TR e
The deformation rate tensor d is computed fromd = = F~7 . C-F~L. If we use

the fact that the material behaviour is rate-independent, the time derivative (...)’
can be replaced by the derivative with respect to some arbitrary parameter s. In
the following, we choose the notation

d 1

(4.15) ) :=A(.) and da:i==zFT.AC.F!,
ds 2
dyx = % BT NG, - FL
The evolution Eq. (4.12); can finally be reformulated in the form
0P 0P

4.1€ dya =k (b — 2—- cdp=8"1dx,
(4.16) s (be 07) ® ( b, be) da=G:da
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Note that the present model is based on a hyperelastic stress relation (see also
LUBLINER [21] and SimO and HUGHES [36]), whereas the model discussed by
HiLL [16, 19] is formulated in rate form (hypoelastic stress relation).

The purpose of the present section is to show that the considerations made
in Sec. 2 can be easily extended to a model of isotropic elastoplasticity as given
in the form discussed above. In this context, (2.6) is rewritten as

OW (ICe, ICe, IC*)

4.17 P=F: =F-.-8(C;GC,),
where S is represented by means of the function
(4.18) S(C,Cp) =1 C '+ C;' +a3C, ' -C-C,

The scalar factors a; (i = 1,2,3) are given as functions of the invariants of
(oF C;l. It is not difficult to see that the statements of the Secs. 2 and 3 concern
the more general case of elastoplasticity, if the increment AS is computed via

{8808 G .o _
(4.19) AS—(\Q—E’+2E. BC).AE—ﬁ(C,Cp,f].AE
L:EI

and the material tensor in (2.9) is replaced by the tensor £ of the latter relation.
Obviously, unlike in finite elasticity, £ does not necessarily possess the symmetry
property Lijx = Lgi;;. We will derive the fourth-order tensor C which has the
same symmetry properties as £ and is given by

(4.20) F-AS-FT =(:da.
Using (4.18), the increment F - AS - F7 is determined by
(4.21) F-AS - FT = Aaj 1+ Aas b, + Aas b?
—2a;da+2a3be-da-b,—2asb.-dya-be
—2 a3 (be-dya - b2 + b -dpa - be).

After a longer derivation, we obtain C as
(4.22) C=1®B;-1®(b.-B;):G+b.®B; —b.®(b.-B3): G
+b2®B3 —b2® (be-B3): G — 2 12, + 2 a3 X (b, be)

sym
—2 a2 X (be,be) : G — 2 a3 (X (be, b?) + X (b2,be)) : G,

where the equation

Bﬂi

b, :
=B;

(4.23) Aa; =2 be : (da —be-dpa),
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has been exploited. The coefficients of X' (Y, Z) with respect to Cartesian coor-
dinates read

1
(4.24) Xije = 5 (Yik Zij + Yi Zj)-

Since the tensors B; represent isotropic functions of b, the Voigt notation of
C with respect to the principal axes of b, takes the sparse form referred to in
Sec. 4.1. Clearly, this is not true for £, so that it suggests to carry out the
stability investigation by means of the solution of (EIG?).

The derivation in Sec. 2 was based on the assumption that £2 has the major
symmetry Efjki = E,f“j. Obviously, this holds for the second term of E‘fjh., ik T,
independently of the material model chosen. The material tensor C, however, as
well as £, possesses the major symmetry only in special cases. One of these cases
is obtained, if we use the von Mises yield function (oy yield stress)

(4.25) ® = ||dev7|| — (o — q)

and the neo-Hookean elasticity relation (g shear modulus, A Lamé constant,
J? = det b,)

(4.26) 7=p(b.—1)+ %(J§~ 1)1.

The scalar factors «; and the tensors B; (2 = 1,2, 3) take here the forms
(4.27) ap=—-p+ % (J2-1), ag=p, a3=0

and

(4.28) B; =AJ?1, B,=B;=0.

Using dev T = pdev b, the tensor G reads

(4.29) G =k (b;!-devb,) ® (devb, - b,),
where
(4.30) k=k il

dev b, : devb,

represents another isotropic function of b, and £&. We finally obtain for C the
expression

(431) C=AJ21®1-kAJ2(1®Db,): (b;!:devb,)® (devb, - b,)
+(2p— A2 = 1)1, — 24X (be,be) : G.

Due to (devb,) : 1 = 0, the right-hand term of the first line vanishes. To check
the symmetry of the right-hand term of the second line, we use index notation.
By means of (4.24) one obtains
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(4'32) Xijk! thmn =

B |

({beJik (be)jt + (be)it (be)jk)
((be_l)k:c (de"’ bc)::l (de"’ be)my (be)yn) — 'E' (be)ia: (dev be)a:‘j (de“Ir bc)my (f’e)yn

In tensor notation, this yields with b, - dev b, = dev b, - b, the equation
(4.33) X (be,be) : G = k (b - devb,) ® (b, - dev b,).

Thus, C has major as well as minor symmetries.

The “elastic” part of C, C%, is derived by carrying out the push-forward of £
by means of F. In (4.31) the terms of C® can be easily identified as those terms
which do not depend on G. Taking into account the result (4.33), it is evident that
the tensor C —C® consists of dyadic products of the form A (b,,£) ®B (b,,&). So
only C® contributes to [82]5""““2) or, in other words, Cj212 can be replaced by
Cfh,5. In finite elasticity, Li2;2 is determined by formulating the relation between
Y 7=1 511 (By1, Bz, E33) A(n;®ny) and EJ 1 Ey; A(ny®ny) (see OGDEN [26]).
C912 is given by

9 ¢
2311 — S o T]I’\Q —T22)\f

(4.34) Ci212 = A3 A3 Lisia = AT A) 5 = X

A 22 — 22
if A2 # A2. In elastoplasticity, we exploit the fact that S := F, -
S - Ff; represents an isotropic function of C,.  The relation between

3
2 - 1 E, -
Y3 811 (Cent,Cena, Cesz) A(fi; ® By) and 3 Z Ce gy A(ny; ®ny) is then de-
J=1 5
termined analogously to Ljsj2 in finite elasticity. Let us call the result L$is.
Using further the equations

(4.35) F-AS-FT=F.F;'-AS.F,7T.-FT =F,.-AS8 .F;

and

{436y FT.ac.u =0T R AC, B Fl=F T -AC, -F;'
which hold for fized Fy, it becomes clear that the coefficient C¢h,, is given by
(4.37) Claiz = M Age Lo

We then obtain

; 511 522 T11 /\2 o =720 '}*2
(4.38) Claiz =M Mo Libia = ATe A3, N A%f =% .

it A2, £,
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To conclude this section, it should be emphasized that the stability investi-
gation based on (EIG?) seems to be the most convenient, since it is analytically
tractable in both cases, finite elasticity and finite elastoplasticity. The results of
OGDEN [26] are directly recovered by investigating (EIG!). After all, it is certainly
possible to work with either one of the three eigenvalue problems (EIG), (EIG')
or (EIG?). The results are equivalent. But the goal is to derive an analytical
stability criterion which is suitably achieved with (EIG?).

5. Solution of the eigenvalue problem (EIG?)

In the following, we derive the conditions for which [£2[shear(12) anq [£2]stretch
are singular. Further, we classify these singular solutions according to the cases
listed in Sec. 2.

The analysis presented in this paper is based on the assumption dBy = 9By
which means that tractions are prescribed on the whole boundary. Displacement
boundary conditions reduce the size of the eigenvalue problem, since not all
possible eigenmodes are consistent with the boundary conditions. This usually
simplifies the stability investigations but does not lead to new results. Therefore,
it is not necessary to consider this case in the present work.

5.1. Solution of the two-dimensional sub-problem

With the shorthand notations C = Ci212, 71 = 777 and ®;; = @?j, the two-
-dimensional eigenvalue problem is rewritten as

cas: ([ §1+[3 0 ]-o[4 S {2 }- {0}

The eigenvalues are determined by

(5.1) wae=X=x \/X'z — det [£2]shear(12)

i 1
where X is a shorthand notation for the expression X = C + 3 (r1 +72). A

necessary condition for vanishing of at least one eigenvalue is
(5.2) det [EQ]She"'rm) =C(n+7)+nm=0

leading to

(5.3) w; =X +|X| and wy = X — | X]|.

Thus, if X has a positive sign, wy vanishes and w, is equal to 2 X, i.e. positive.
If X has a negative sign, w; vanishes and ws is equal to 2 X, i.e. negative. For
X =0, we have a double zero eigenvalue.
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In finite elasticity, we have to differentiate between the two situations A; # Ao
(SH-R) and A; = A9 = A (SH-S). In elastoplasticity, we have instead A1, # Age
(SH-R) and Aj ¢ = A2e = Ae (SH-S), where )2, (i = 1,2,3) denote the eigenvalues
of b,.

SH-R:
In the regular situation A; # A9, the coefficient C is determined by

T1 /\% i 2.1 )\?
(5.4) e L
A - A3

see e.g. OGDEN [26] for the case of finite elasticity. The same relation holds for
isotropic elastoplasticity, if we choose the shorthand notation A; = ;. which is
assumed to hold from now on. Inserting the expression for C into (5.2) yields

T2 TQ
C-SH-R: A #Xh = & -2 =0
)"1 ’\2
The condition (C-SH-R) is fulfilled either with P := ;—1 = % or P := {‘_ =
1 2 1

- ;—2 Taking the first possibility (C-SH-R-1) gives
2

(55} 1 P =Pl dp ) _J 0
' A+ | —Prids PR S Ry

: A ;
Thus, we obtain @, = ,\—1 f, ®21 = f, where f represents an arbitrary factor.
2

Since the symmetric part of @ is not zero, we have here Case 2.
The second choice (C-SH-R-2) leads to

(5.6) 1 PX, PX X Pl [0

; X=d | Py PX Dy f 1O S
Here, the eigenform associated with the vanishing eigenvalue is described by
Py = _Xl f, @31 = f. This would be Case I, if the principal stretches A; and
A2 were equal. Since this is not true, we detect again Case 2.

SH-S:
In the special situation A\; = A9 = A, the coefficient C' is determined by

nM-nX _onX) anr) 1
M=n " on a2

(5.7) C =limya_,,2 (Cfin — Ciiz)-
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Note that in finite elasticity, C® is identical with C. In elastoplasticity, this holds
only for the shear part. The difference has an important effect on the stability
behaviour as will be pointed out in Sec. 5.2.

From (5.2) we obtain

CSH-S: A=A = T(2C+T) =0,

where the relation 7 = 7y = 79 has been used. There are two possibilities to fulfill
(C-SH-S). The first (C-SH-S-1) is represented by the criterion

[ . __z l i fi =T (I’lz o 0
(5.8) CRIT: Gi= 2=> 2[‘_? T]{ng}_{()}.

The associated eigenform is @15 = ®9; = f (SH-12), a typical shear mode (see
Fig. 1), i.e. we have Case 2. The condition (CRIT) has an important meaning
in the context of the present stability investigation. We will come back to this
point later.

SH-12 _ RO-12

F16. 1. Shear eigenmode (SH-12) and rotational eigenmode (RO-12).

The second possibility to fulfill (C-SH-S) is 7 = 0 (C-SH-S-2) leading to

(5.9) [gg]{gﬁ}z{g}

The associated eigenform is @19 = —®9; = f (RO-12), a rotational eigenmode
(see Fig. 1). The symmetric part of the eigentensor vanishes, we obtain Case I!
See Table 1 for a summary of the latter results.

For physically reasonable material models, 7 vanishes only if the external
loading is chosen in such a way that the boundaries normal to the 1- and the
2-axis are stress-free. This can be achieved for any kind of elastic material model
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showing the purely geometrical character of singularities belonging to Case 1.
When we look at Case 2, however, it is important to specify a material model,
firstly, in order to differentiate between the possibilities a-c and, secondly, to
check whether fulfilling the conditions C-SH-R or C-SH-S is consistent with the
physical and mathematical assumptions upon which the derivation of these equa-
tions is based.

Table 1. Results of the two-dimensional sub-problem.

o Xi #'N\as
(1) ;-'1 = % —  Case 2
(2) % = “% —  Case 2
o\ = A
(1) (CRIT) : (SH-12) — Case 2
(2) =0 : (RO-12) — Case I

5.2. Solution of the three-dimensional sub-problem

Before discussing the results of Sec. 5.1 in the context of a special mate-
rial model, let us continue with the investigation of the three-dimensional sub-
problem

Cun Cuz Cuss n 0 0
EIG-ST : Chae Cagp Copaz | +| 0 7 0
Crizz Cozz Caass LA

QR Py, 0

= o0 (1)22 = 0

O IR il | ‘1)33 0

At this point, we have to differentiate between the elastic and the elastoplastic
case. Consider first the special situation that all stretches are equal (ST-SS). In
finite elasticity, this is a sufficient condition for the statements 7 = 72 = 73,
Ci111 = Cg999 = Cs33z and Ciizo = Chriaz = Caosz. In elastoplasticity, also
the loading history has to be taken into account. Thus, we have to require in
addition, that the stretches are equal at any time of the loading process. This is
tacitly assumed in the following.

We investigate the two sitations A\; = Ay = A3 = A (ST-SS) as well as
A1 = A2 = A and A3 # A (ST-S).
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ST-SS:
Elasticity. In the special situation Ay = A =X = A (= 11=7 =1 =7), the
determinant of [£2]3rth reads

(5.10) det [£2]5trch — H3 + 9 N® —3H N? =0,

where the shorthand notations

(5.11) H=Cij1+7 and N =C}12

have been introduced. One evident solution of the latter equation is
(5.12) N=H & Cun+r7=Cuxn

It is identical with (CRIT). Moreover, it is shown easily, that fulfillment of (CRIT)
leads in the context of (EIG-ST) to a two-fold zero eigenvalue. The associated
eigenforms are linear combinations of the stretch modes ‘Im — F @22 =-f,
Ba3 =0 (ST-12) and &y =0, byy = f, B33 = —f (ST-23). Thus, also the third
stretch mode @1, = —f, $gp = 0, B33 = f (ST-31) is a relevant eigenform. The
third zero eigenvalue is obtained for H = —2 N and correlated with the eigenform
®y) = f, Doy = f, B33 = f (ST-VOL). We obtain Case 2. The modes (ST- 12)
and (ST-VOL) are plotted in Fig. 2.

ST-12 ' ST-VOL
F1G. 2. Stretch modes (ST-12) and (ST-VOL).

Going back to the complete eigenvalue problem (EIG?), we can make the
following statement. If the condition (CRIT) is fulfilled and all three principal
stretches are equal, we have a five-fold zero eigenvalue corresponding to linear
combinations of the three stretch eigenmodes ST-12, ST-23 and ST-31 and the
three shear eigenmodes SH-12, SH-23 and SH-31. See Table 1 and 2.

Elastoplasticity. The conditions for [£2]3"*h becoming singular are com-
puted in the same way as shown above. But we observe the following important
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fact. Due to the fact that Cj;j; # C%j (1,7 = 1,2,3) holds, the condition (5.12)
is not identical with (CRIT). The “stretch” and the “shear” singularities do not
occur simultaneously!

ST-8S:
Elasticity. Let us investigate now the case A; = Ay = A in combination with
A3 # A. The determinant det [E2]5"®th takes the form

(5.13) det [E2]*treteh — H3 H2 + 2N N2 —2H N7 — H3 N? = 0.
In the latter equation, the letters H3 and N3 stand for the expressions
(5.14) Hj = C3333 + 73 and N3 = Chi33.

Again, one possibility to satisfy det [£2]5t"®*h = ( is to fulfill (CRIT). The associ-
ated eigenmode is (ST-12) and as such related to Case 2. The other eigenvalues
vanish, if the condition

(5.15) Hy(H+N)-2N;=0

is satisfied. Due to the fact that the form of the latter equation is crucially
dependent on the material model, the discussion of (5.15) is postponed to Sec. 5.
In analogy to (ST-SS), fulfiliment of (CRIT) leads here to a two-fold zero
eigenvalue of £2. The relevant eigenforms are linear combinations of the modes
(ST-12) and (SH-12) (see Table 1 and 2).
Elastoplasticity. We have the same situation as in the case of three principal
stretches. See the summary in Table 3.

Table 2. Results of the three-dimensional sub-problem (elasticity).

o A =2 # g
(CRIT) : (ST-12) = Case 2
o A =X = As:
(CRIT) : (ST-12), (ST-23), (ST-31) — Case 2

Table 3. Results of the two- and the three-dimensional sub-problem (elastoplasticity).

L AI = )\2 9‘-’ )L:;:
Clii—Cfiza+m=0 (CRIT) : (SH-12) — Case2
Cun —Cnz+n=0 : (ST-12) — Case 2
further (distinct stretches) :  see Table 1
L 4\| = /\g = z\g:
Ctli — Cf,l_,-J +7=0 (CRIT) : (SH-12), (SH-23), (SH-31) — Case 2
Ciiii — Ciizi + =10 : (ST-12), (ST-23), (ST-31) — Case 2
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The preceding derivation shows that the local stability investigations in finite
elasticity in finite elastoplasticity can be carried out in a very general context.
In the following, we will consider the conditions derived above in relation to
common material models like the neo-Hookean and the Mooney-Rivlin model.
Some of the results have already been achieved in earlier works and thus confirm
the correctness of the following derivation.

5.3. Loss of strong ellipticity

In the preceding sections, it is assumed that the singularity of £2 is caused
by the loss of positive definiteness of either [£2]stretch [g2]shear(12) [g2]shear(23)
[£2)shearD) " If we term the corresponding eigenmodes {@®7eth} (@shear(12)}
{@hear(@)y o {@hear(B1Y  respectively, the eigenvalues of 2 can be repre-
sented as

(516} W= {Qslret.ch }T‘ [g2]stretch {¢stretch}T
+ {Qsllear(w) }T [EZ]Shear(IZ) {Qshear(li’}}'f

+ {@shear(%]}?' [82]shear{231 {.}Sh"-ﬂr[%)}'f
3 {@5]:&3:‘(3])}7" [g?.]Sllear(Slj {@slu'ar{al)}T.

Evidently, w might vanish also, if the four terms on the right-hand side of (5.16)
cancel each other. For simplicity, let us restrict ourselves to a two-dimensional
investigation (A3 = 1), where the stretch matrix reduces to a 2 x 2-matrix and in
addition, only the shear matrix [£2]"¢3"(12) has to be considered. Then we may
write

(5_17) (= wslmlcl: s wshear(]?)'

The vanishing of w with w*™<h =£ () is possible only if either wSretch o (shearl2

becomes negative. In elasticity, this is excluded for Ay = A9 but theoretically
possible for A; # Ay. The change of sign of one of the eigenvalue parts requires
that one of the matrices, [E2]stretch or [£2]shear(12) oses its positive definiteness.
In other words, if the sub-matrices of [£?] can be shown to be positive definite
for any arbitrary deformation, singularities of the type wstreteh = —shear(12) with
witreteh - () are also excluded.

In elastoplasticity the latter type of instability might occur, even if A} = Ay
holds. This is due to the fact that in the case of two equal stretches, w™'" and
wShear(12) o not vanish simultaneously. The question arises as to which physical
meaning such instabilities could have. It is well known that strong ellipticity of
the underlying differential equation system is guaranteed if the so-called acoustic
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tensor A := N - AN (N arbitrary vector) is positive definite (see e.g. HILL
[15], PETRYK [27] for a detailed discussion). According to HADAMARD [12], the
singularity of A indicates a so-called stationary discontinuity. This means that
an acceleration wave travels with zero speed through a material continuum. If A
has at least one negative eigenvalue, one speaks of a wave with imaginary speed.
One can show further that the loss of ellipticity is sufficient for a bifurcation into
a shear band of the orientation N. It is common to use the notion “localization”
for this phenomenon, since the deformation is “localized” in some small interior
subdomain of the specimen, whereas the boundary remains unperturbed.
The positive definiteness of A can be expressed also in the form

(5.18) (p@N): A: (p®N) = (@®N-F ):£2: (p@N-F') > 0.

n

Thus, we may state the following. If £2 has a zero eigenvalue associated with
the eigentensor ®'°° = p ® n, localization takes place. The vectors ¢ and n will
have components in at least two (plane strain) or all three coordinate directions
in general. Since &M £ 0 and ®*°**('2) £ 0 holds, this is one of the cases,
where w = 0 with wstreteh — _shear(12) £ () g valid. Concerning the classification
discussed at the end of Sec. 2, the latter type of singularity belongs to Case 2,
since the symmetric part of ¢ ® n vanishes only in the physically irrelevant
situations n = 0 or ¢ = 0. For Case 2b, the scalar product n - 7 - n must be
negative (positive). This means that the stress component orthogonal to the
shear band is negative (positive). Both cases are observed experimentally.

6. Examples

6.1. Equitriaxial loading (Pr = P 1)

Elasticity. In order to remain as simple as possible, we first work with the neo-
Hookean model which has been derived by TRELOAR [41] on the basis of mi-
cromechanical considerations. Generalization the original model for compressible
material behaviour leads to a strain energy function of the form

A
(6.1) W = g()\%ugug—s)—p 1nJ+"§(J* —1-2InJ)

where J = det F = A; A» A\3 denotes a shorthand notation for the determinant
of the deformation gradient. Note that g and A represent elasticity constants, p
being the shear modulus and A the Lamé constant.

We consider first the deformation state with equal principal stretches. The
eigenvalues of [£2]steth and [£2]sh¢ar(12) can then be evaluated analytically, e.g.
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by means of Mathematica. Inserting the material constants p = 1 and A = 10,
one obtains for the “stretch” eigenvalues

(6.2) Wi =6+ A% — 500 = wi''P and Wi =6+ A2 + 255,
The “shear” eigenvalues take the form

(6.3) wz:hear(l‘l) stretch shear

= W) and wy U= —gr A2 4. 508

The condition (CRIT) is rewritten as
(6.4) 6+ =51% =0

[t is now clearly recognizable that fulfilling of (CRIT) leads simultaneously to the
vanishing of @tretch (), @gtretch (), @Shear(12) () gthear(Z3) () 4pq @fhearl) (y),
Very interesting is the fact that these functions are even identical. For the present
example, we detect the five-fold bifurcation point at Ay = 1.061.

The eigenvalue w§™" remains always positive, so that the eigenform (ST-

VOL) never becomes relevant. The eigenvalue w;hearm} is associated with the

rotational eigenmode (RO-12) and consequently changes its sign in the natural
: . : shear(23) shear(31)
state 7 = 0 (C-SH-S-2), i.e. for A = 1. Analogously, w, and w,
change their signs also for 7 = 0 but the associated eigenforms are (RO-23) and
(RO-31), respectively. To conclude, the deformation state A\; = A is stable only
for 1 < XA < At For all other stretch values, this solution branch is singular
(A =1, A= Agit) or unstable (A < 1, A > Agrin)-

It should be emphasized again that the singularity at A = 1 occurs inde-
pendently of the kind of the nonlinearly elastic material model chosen. This is
the typical character of singularities of Case 1. The singularity for A = Aerit,
however, can be clearly attributed to Case 2¢, since wpy is positive. Thus,
for this stretch value, the material tensors C or L, respectively, have lost their
positive definiteness indicating a material instability in the sense of Sec. 2. Such
an instability can be avoided by choosing a different material model, e.g. the
one characterized by a constant and positive definite material tensor.

REMARK

The fact that the natural state becomes singular, if rigid body rotations are
considered as eigenmodes, has already been discussed by BEATTY [6, 7] and
Fospick [11). For the purpose of restricting the class of eigenmodes, the first
author introduces the so-called zero moment condition and later uses Korn's in-
equality in addition. In the context of the present work, additional constraints are
not necessary any longer since singularities of Case I can be clearly differentiated
from the physically more meaningful Case 2. [
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In order to compare the results of the present work with the calculations of
BALL and SCHAEFFER (3], we derive from (CRIT) the expression

A
(65) T=p(M-1D+5(P-1)=A(J*-1)-24=-2C=Cun-Cm

leading to %(J’2 —1)=pu(%-1)+2pand

(66) Terit = 2;“'/\2-

In the limit of incompressiblity (A/u — oo, J =+ 1 = A — 1), one obtans
Terit = 2, a result which is in agreement e.g. with RIVLIN [33] and BALL ind
SCHAEFFER [3].

Due to the fact that infinitely many linear combinations of the three stresch
modes and the three shear modes become relevant for the singularity determized
by (CRIT), also an infinite number of secondary branches run through this bi-
furcation point. Among these are six branches, where the deformation state tan
be either described as being plate-like or rod-like (see BALL and SCHAEFIER
[3]). In a plate-like deformation state, two of the principal stretches are equal
and larger than the third one. The rod-like deformation state is characterized
by the opposite situation, i.e. the two equal principal stretches are smaller than
the one in the perpendicular direction. One of the rod-like secondary brancies
(A1 = A2 = A < )3) is depicted in Fig. 3.

0.6 0.8 1 1.2 l.4 1.6 1.8 2

F1G. 3. Stress-stretch curve: A\; = Ay = A < A3,

Application of the equality Pj; = P33 yields, with

5 1
(lfc \/1+(2;.¢+A)AA2 —,—,),
=
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a relation between A and A3, where the minus sign in (6.7) would apply for a
plate-like branch. The determinant of [£2]*"'! is plotted in Fig. 4.

det{2]reetch
20

15
10

5

0 —
-5

-10

0.6 0.8 T. 1.2 1.4 e 1.8 2 &

FiG. 4. det [E2]steeteb (X; = A3 ='A <€ Ag)-

At A = Acrit, we observe a double zero eigenvalue of [£2]5t'h. This point
indicates the bifurcation back to the primary branch or to a plate-like secondary
branch. Linear combinations of the stretch eigenforms would lead us to solution
branches with three distinct principal stretches. The single zero eigenvalue at
A = 1.343 = \j; 1s associated with the stress minimum in Fig. 3 and represents
a singularity of Case 2c. So we do not detect any further bifurcation, since
the condition (CRIT) cannot be fulfilled on this branch in the context of the
neo-Hookean material model. Note that only for A > Ajim, [E2]57*" is positive
definite.

The solution of the eigenvalue problem (EIG-SH(12)) yields one positive eigen-
value and one which is only positive for A > Aqit. The vanishing of the latter
eigenvalue indicates again the bifurcation described by (CRIT). The natural state
7 = (0 (C-SH-S-2) is never reached on this secondary branch. Thus, the rotational
mode (RO-12) does not become relevant and the eigenvalue associated with it re-
mains positive. The eigenvalue problems (EIG-SH(23)) and (EIG-SH(31)) lead to
one zero eigenvalue related to the solution i R QR R ¢ (C-SH-R-1),

T A A
respectively. Due to the fact that Pj; = ;-T‘ holds in this example, (C-SH-R-1) is
fulfilled on all secondary branches (even when all principal stretches are distinct).
Since (C-SH-R-2) cannot be satisfied, the second eigenvalue of these eigenvalue
problems is positive.

In order to compare the latter results with the literature, let us carry out the
same calculation for the incompressible Mooney-Rivlin material model (MOONEY
[23], RivLin |31, 32])
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2
68 w=Y [z—;{,\?ﬂﬂgu,\gﬂ—s) +p(J-1)=W+p(J-1)
R=1

where the elasticity constants
(6.9) =y po = =Yy @ =2, g = =2

with the parameter 4 have been introduced. Using P;; = Ps3, the hydrostatic
pressure p is derived from

1 oW oW
Ly P 5t (o~ )
Withuy=1, A1 =X =Aand A\3 = %, the condition (CRIT) reduces to
=2 @y=A+42%) _
(6.11) 532 =0
resulting in the so-called bifurcation condtion
(612 Y ) = 2
: TV = 331t

1 ; :
The maximum of the function 4 (A) is Ymax = 3 for A = 1. Thus, a bifurcation
: 1 g
is detected only for 0 < v < 3 The same result can be found in BALL and

1
SCHAEFFER [3]. The bifurcation for y = 3 occurs at A = 1. It then falls together

with the bifurcation from the primary path detected also by the term 1 — A* in
(6.12). As already discussed before, fulfilling (CRIT) means that [£2]5t¢'" as well
as [£2]Phear(12) are singular. The relevant eigenmodes are the stretch mode (ST-
12) and the shear mode (SH-12). In contrast to the previous investigation based
on the neo-Hookean material, (CRIT) indicates for the Mooney-Rivlin material
a second bifurcation from the secondary branch into one with distinct principal

stretches (if 0 < v < -:li) Evidently, this is a singularity of Case 2c.

Elastoplasticity. For the investigation of the elasto-plastic case, we use the
Neo-Hooke model in combination with the von Mises yield function and the
evolution equations (4.12) presented in Sec. 4.2.

Employing (4.30) and (4.32), we present the material tensor C in the form
(6.13) C=2plg +AJ2101-A(J2 1)1,

sym

— 24k (b - devb,) ® (b, - dev b,).
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Due to the fact that a purely deviatoric flow rule is assumed, there is no evolu-
tion of plastic deformation on the primary branch (all principal stretches equal,
dev b, = devb = 0), the material behaves elastically.

On the secondary branch with A; = A2 = A # A3, plastic deformation might
evolve, if the yield limit is reached. The evaluation of (CRIT) gives us the same
information as above (no further bifurcation for the neo-Hookean case). In addi-
tion, we have to investigate the criterion Cy111 — Ciy22 + 11 = 0 which is fulfilled
for

A 2 = -
=—5 (=) +pOF+1) = 5pkX (02— AZy)* =0.

(6.14) g (Ae; Aze)
If the latter function intersects with f (Ae,Ae3) = 0 derived from Pj; = Ps3, a
singular point is detected. Whether such an intersection takes place, depends
crucially on the function k which controls the influence of the elastoplastic ma-
terial behaviour on the stability of some test sample. If such a singular point
occurs, it is associated with stretch eigenmodes. One speaks of diffuse failure.

6.2. Equibiaxial loading (Pr ;i = P (i = 1,2), Praz = 0, Pri; = 0 with i # j)

FElasticity. Here, we start investigating the deformation state A\; = Ay = A #
A3. The relationship between Az and A is derived from the statement P33 = 0
leading to

A+2p
6.15 A3= | ————.
G ’ \ AN+ 24

The three eigenvalues of [£2]5"*'h are all positive. The condition (CRIT) cannot

be fulfilled with the neo-Hookean material model. As expected, one eigenvalue

of [£2]5hear(12) is equal to one of [2]%*h. The second eigenvalue is zero for

the natural state (C-SH-S-2) indicating a singularity of Case I and negative for

A < 1. The eigenvalues of [£2]?1¢ar(23) and [Sz]gh‘;?rém are positive which is due
71 73 T 73

to the fac ither — = — — = —— (C-SH-R) can be fulfilled.
o the fact that neither N T nor 35 % (C-SH-R) can be fulfilled. To

conclude, the solution path investigated above is stable for A > 1, singular for
A = 1 and unstable for A < 1. But we do not detect any bifurcation for A # 1,
a result which has already been stated in the literature (see e.g. KEARSLEY [20],
CHEN [8] and MULLER [24, 25]).

Again, in order to compare with previous results let us examine the same
example in the context of the incompressible Mooney-Rivlin material model.
The hydrostatic pressure

(6.16) Pty
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is here derived from P33 = 0. The condition (CRIT) reduces to the very simple
equation
1

(6.17) W(1+37,\2+A5—7,\8)=0.

Evidently, for v = 0 this equation can never be fulfilled, whereas for the parame-
ters v > 0, always a bifurcation into a path with Ay # Ay takes place (singularity
of Case 2¢). For y = 0.2, this is the critical stretch Ay = 2.27. This result
is in agreement with MULLER [24, 25]. The second eigenvalue of [£2]shear(12) jg
zero for A = 1 (C-SH-S-2) indicating again a singularity of Case 1. Note that

71 72

the secondary branch is singular due to P;; = i P P,y (C-SH-R-1).
1 2

To conclude, for the Mooney-Rivlin material, the primary deformation state is
stable only for 1 < A < Acrt, singular for A = 1 or A = Ay and unstable for
A < 1 or A > /\crit-

Elastoplasticity. In elastoplasticity, the investigation is carried out analogously
to the previous case. We obtain again the condition (6.14) which has to be
compared for the present loading with f (Ae, Ae3) = 0 derived from P33 = 0.

7. Conclusions

One purpose of the present paper was to show that the material stability
behaviour in finite elasticity and elastoplasticity follows a certain logic which
has not been fully investigated in previous works. Important is the fact that
the basic aspects can be described without specifying a material model. Similar
investigations have been mainly carried out in the context of finite elasticity. The
closest one is the approach of OGDEN [26] which exploits the coaxiality of the Biot
stress tensor T and the right stretch tensor U. In the present work, we investigate
the eigenvalues of the tensor £2 with the coefficients Efj“ = Cijkt + 0i Tj1. In
this way, the stability investigation leads to the more general case of isotropic
elastoplasticity, where [£?] can be still written in the suitably decoupled form.

The main results of the present work are repeated in the following.

Elasticity:

1) If all stretches are equal, one finds a five-fold zero eigenvalue associated with
arbitrary linear combinations of the three stretch modes and the three shear
T
modes. The condition to obtain the zero eigenvalue is C' = ~3 (CRIT).

2) If the stability investigation is based on the assumption that two principal
A T2
stretches are equal, one detects a double zero eigenvalue for C' = — 3 (CRIT)

associated with one stretch mode and one shear mode.
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The present examples were based on the so-called Ogden model (see OGDEN
[26]). All singularities detected by means of (CRIT) were identified as ma-
terial instabilities (Case 2c).

Independently of the material model chosen, we observe singularities of ge-
ometrical character (Case 1). Apart from the example 3.3 they occur in
the natural state and are associated with rigid body rotations as eigen-
modes. Obviously, these instabilities can be easily avoided by hindering
the rotation of the system.

It is interesting that Case 2a and Case 2b do not arise in the context
of such common material models like the neo-Hookean and the Mooney-
Rivlin material model. This fact confirms the introductory remark that
geometrical instabilities (with the exception of Case 1) have usually a global
character. As such, they do not arise, if the investigation is completely
restricted to homogeneous deformation states.

Elastoplasticity:

1) If all stretches are equal, no plastic deformation evolves in the case of a

deviatoric flow rule. We obtain elastic material behaviour.

2) In the case of two equal principal stretches, one detects a zero eigenvalue

3)

T MEw : . a
for C = —— (CRIT) which is associated with a shear eigenmode and one
for Ciiii — Ciijj + 7i = 0 (stretch eigenode). In contrast to elasticitiy, these
singularities do not occur simultaneously.
As in elasticity, one observes singularities of purely geometrical character

(Case 1).

s e : s loc
4) Localization phenomena are characterized by eigenmodes of the form ®'°° =

P n.

These results enable a very general investigation of the material stability be-
haviour. Investigations of this kind could become necessary for two reasons. The
first case is that instabilities are observed in an experiment. Then, the developed
criteria such as e.g. (CRIT) serve to verify whether the developed material model
is realistic enough to exhibit these physical effects. The second and usual case
is that one wishes to avoid material instabilities. In such a case, the stability
conditions derived in this paper are extremely useful to design a material and
could be quite easily implemented in any optimization code.
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