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A neEw murTisITE homogenisation technique is proposed, suitable for the description
of the effective properties of composite materials. After a short presentation of the
multi-site approach, the traditional self-consistent approximation is developed. The
limitations of such an approach are emphasised and a new alternative technique, based
on the differential scheme idea, is proposed. The great versatility of this method in
predicting the global elastic properties of various inhomogeneous materials is demon-
strated. The present examples correspond to extreme situations of composites with
voids and that of quasi-rigid (compared to the matrix) reinforcements. Very good
agreement between the predicted and measured (or calculated by FEM) equivalent
properties are found.

Notations

G

o Cauchy local (global) stress tensor
€, (E) local (global) strain tensor
A, (B) strain (stress) concentration tensor
(C) local (global) elasticity tensor

u local displacement field
G, (I Green’s (modified) tensor

T'"  interaction tensor
I fourth range unit tensor
number of steps

f, £; global volume fraction, current volume fraction at step

Af, Af;  global increment volume fraction, current volume fraction at step i (Af = T}‘;—)

1. Introduction
THE SELF-CONSISTENT SCHEME (SCS) appears to be a powerful tool for prediction

of the effective properties of polycrystalline materials, both in elasticity as well as
in elasto-plasticity [1, 2, 3]. Some attempts of its direct application to the natural
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or manufactured multi-phase composites have demonstrated the inadequacy of
such an approach [4, 5, 6]. In fact, the aberrant behaviour is predicted when
the reinforcement volume or mass fraction and/or the degree of inhomogeneity
between this reinforcement and matrix becomes considerable [5, 6]. This is due
to the inaccurate description of interactions between the reinforcement and the
surrounding material introduced by the self-consistent approximation. In fact, in
this approach to the inclusion modelling, an inhomogeneity is embedded in the
effective material, the properties of which can be very different from those of the
surrounding medium.

At least three approaches have been proposed to solve this problem. In the
MoRrI-TANAKA model (MTS) [7], the inclusion interacts directly with a uniform
matrix, which is subjected to an overall loading equal to the external loading ap-
plied to the heterogeneous material. To describe more accurately the interactions
of the heterogeneity with the surrounding material, the idea of a “composite” in-
clusion has been developed. In this approach, the reinforcement is coated with
a shell of the matrix material and the resulting composite is embedded in an
infinite body with unknown properties of the equivalent homogeneous medium.
This model was introduced by CHRISTENSEN and Lo [8] for elastic materials and
then extended to the nonlinear behaviour by HERVE and Zaoul [9]. Recently,
CHERKAOUI et al. [10] have proposed an alternative but approximate solution of
the multi-coated inclusion.

Another approximate method, called the Differential Scheme (DS), was pro-
posed by BRUGGEMAN [11] to predict the effective conductivity of inhomogeneous
media. The DS is based on a progressive construction of the composite mate-
rial. The effective properties of the composite are obtained by gradual addition
of infinitesimal quantities of reinforcements. The actual effective properties are
determined using the small concentration relations. To find the global properties
of the material, a differential tensorial equation has to be solved. The method has
been used and improved by many authors. ROSCOE [12] proposed an interpreta-
tion of the method based on the assumption that there exist the reinforcements
of different size. The construction of the composite begins with insertion of the
smallest inclusions and ends with the greatest ones. In this way, at each step,
the application of the small concentration procedure is justified. BOUCHER [13]
has used the DS to predict the behaviour of porous materials. He obtained a
good agreement of the predicted properties with experimental results!. Works
by MCLAUGHLIN [14], SALGANIK [15], Laws and DVORAK [16], HASHIN [17]
can be cited to illustrate the application of the DS in the field of viscous and
cracked media. NORRIS [18] has emphasised that the incremental construction of

"It is well known that the SCS does not work at all for such materials when the volume
fraction of voids exceeds 256%.
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the multi-phase composite is not unique. Consequently, the predicted material
properties are not exact. All the applications we have found in the literature
are limited to the case of isotropic behaviour of the constituents. The form of
these constituents is frequently limited to spherical, cylindrical or penny-shaped
inclusions.

The purpose of this paper is to establish a new scheme for prediction of the
effective elastic properties of composite materials. The general framework is that
of the kinematic integral equation that appears as the formal solution for inho-
mogeneous materials. This equation will be briefly recalled in the next section
where we will show that all existing models can be derived from this expression by
adopting appropriate simplifications. In the next section we introduce, following
Fassi-FEHRI [19], two tensors to describe the interactions between an inclusion
and the surrounding material, and between two inclusions interacting through
the matrix. These applications are used to construct one-site and multi-site ap-
proximations of the integral equation. The same approach has been applied by
FAssi-FEHRI and BERVEILLER [20] for the self-consistent modelling of anisotropic
materials with cubic symmetries. El MOUDEN [21] has used similar tensors to
generalise the Mori-Tanaka model to the multi-site situation. In his approach
the matrix has been supposed to be isotropic. ZATTARIN and LIPINSKI [22] have
developed a general multi-site self-consistent scheme (MSCS) for a cluster or pe-
riodic arrangement of inclusions. Their results show relatively rapid deviation of
the predicted properties from the experimental values for strongly inhomogeneous
cases.

The approach developed in this paper is based on the DS idea and was first
proposed by VIEVILLE [23] and VIEVILLE and LiPINSK!I [6] for one-site approxi-
mations. We call it Multi-Site Incremental Scheme (MIS). It consists in the finite
increment construction of the composite. In each increment, for which the small
concentration solution is not valid, the self-consistent procedure is used to calcu-
late the actual properties of the resulting material. The model takes into account
the anisotropy of the constituents, the morphological texture of the composite as
well as the spatial repartition of the inhomogeneities (topological texture).

The model is used to predict the effective properties of reinforced compaosites
and porous materials. In both cases the calculated properties are close to the
experimental data.

2. Preliminary remarks

Consider a representative volume (RV) of a macro-homogeneous and micro-
inhomogeneous body in the sense introduced by HiLL [1] and MANDEL [30]. We
restrict our considerations to the case of linear elastic behaviour of the constitu-
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tive phases and the small transformation approximation. The usual Hooke’s law
is supposed to be valid on the global and local levels. Let E be the global strain
tensor and X be the overall stress tensor. Our goal is to determine the overall
moduli of the body, such that

(2.1) Xij = C,;{;':Ekh
knowing the local Hooke’s law at each point r of the RV

(2.2) 0ij (1) = cijri(r)en(r),
where o(r), €(r) and c(r) are respectively the local stress, strain and elastic
stiffness tensors. All these second-order tensors are symmetric and the above
fourth-order tensors are characterised be the usual elasticity symmetries.

We suppose that all constituents are perfectly bonded together. Under this
condition, we can link the macroscopic variables with microscopic ones by the
volume averaging procedure over RV:

1
(23) %y = 3 [ autriav
Vv
(24) E,'j = %/5@-(1')0{1/.
g

Following MANDEL [30] and HiLL [1], we introduce now a fourth-order concen-
tration tensor A such that

(2.5) €ij(r) = Aijri(r) Ext.
Combining (2.2), (2.3), and (2.5) and comparing the resulting expression with
(2.1), one can determine the effective properties of the RV

(2.6) Cij!ci = %/Cs'jmﬂ (T)Amnkt'(r)dv'

v
In this paper we use a general kinematic integral equation proposed by
DEDERICHS and ZELLER [24]. This equation, what will be shown in the next
section, enables to deduce an approximation of A and to develop new models. In

the following we propose a multi-site approximation of this tensor.

3. Multi-Site Self-Consistent Scheme (MSCS)

3.1. Integral equation

Consider a heterogeneous body in equilibrium under the uniform boundary
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conditions of the type
TL{(T‘) = E,'J':'.','j, Vr e s,

where r = z;e; and S is the external surface of the body. When the body forces
are neglected, the local equilibrium equation is written as follows:
vijj = 0,

and the displacement vector of any point of the medium can be expressed from
the following integral equation proposed first by DEDERICHS and ZELLER [24]

(3.1) um(r) = Ufn(?") — /ij,i’ ('f‘, r')&cijk;(r’)ukey (T’]dV,
v

where Gp,j(r,r'") is a Green tensor corresponding to the m-th component of the
displacement vector at point r due to the j-th component of a unit force ap-
plied at »' of a fictitious homogeneous medium with elastic properties defined by
C". Uz (r) describes the displacement field, solution of a corresponding auxiliary
problem with homogeneous properties, and

decijri(r) = cijr(r) = Ciip

defines the deviation of the local properties from CY.
The strain tensor field may now be calculated by differentiation of Eq. (3.1)

(32) ern(r) = B = [ T, 1)oci o)V
v
where a new quantity, called a modified Green tensor, is introduced:
1
(33) anij (?'u :"") =ty (ij,i'n(rm "'J) + an,a"m(ra 7")) 5
2

Expressions (3.1) and (3.2) constitute the formal solution of the heterogeneous
body behaviour, and enable to deduce a form of the concentration tensor A(r).
This tensor is obtained by a recurrent procedure (see for instance [3, 19]) which
begins with the Voigt approximation of the strain field characterised by

(3.4) A(r) = A%r) =1,

(3.5) £(r) = E=E°,

where I is a fourth range unit tensor and A satisfies the equation
(3.6) e(r) = A%(r):E.
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Introducing (3.5) into (3.2) one obtains a higher-order approximation. This pro-
cedure is repeated, leading to the following expression for the concentration tensor
A°(r):

A(r)=1+ /F(r,r'):éc(r’)dV
v

—/r(r,r'):éc(r’):{r{r', r'"):e(r")dV)dV + ...
v

The averaging operation applied to the expression (3.6) gives the link between
E° and E, and consequently, the final result for the strain concentration tensor
A%(r) can be written as

3
(37) Alr)=A%): % / Aryav | .
J

In what follows we analyse the problem of a set of N ellipsoidal inclusions inter-
acting through the homogeneous matrix. The solution of this problem constitutes
a basis of the multi-site modelling of heterogeneous media, taking into account
the effects of the spatial distribution of reinforcements upon the effective macro-
scopic behaviour of the material.

3.2. Multi-site modelling

Consider an infinite medium with elastic constants C°, containing N inclu-
sions. Each inclusion I is characterised by its volume V! and the elastic constants
¢!. In this case, the field of the elastic properties of the material can be expressed
as shown below:

38) ¢(r) =C°+ (¢! - CYO(r) + ... + (¢! — CY)F'(r)
+... + (e — C%9%(r),

where 6! is the characteristic function such that:

: r I
wor={ 4 Vet

Similar expressions are available for all N inclusions.
Let us introduce new notations

Acl = - CO.
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Integral equation (3.2) can now be presented as

e(r) =E° - [ N(r,r"): (Ac'd!(r')

+oot+ AcTOI (1) + ... + AcNON (1)) :e(r')dV

which, using the properties of 8 (3.9), can be rewritten as

g(r) =E"— [ I(r,7'):Act:e(r')dV — ... — [ T(r,r'):Act:e(r")dV
! /

=y = / I(r,r'):AcN :e(r")dV.
VN

In spite of the important simplification, the above equation still remains very
difficult to solve. To simplify the considerations, let us calculate the average
strain inside each inclusion

1
I
(3.10) fie— 7 /E(?‘)dV,
Vi

and approximate the real strain field by a function
e(r) = £10(r) + .70 (r) +...eN 0N (r).

Thus, the integral equation becomes:

e(r) =E° - /r(r,r’)dv :Act:gl - ... - /r(r,r')dV :Ac!:g!
V| V,f

——— /F(r,r’)dV :AcV:eV.
Vv

Now, one can calculate the average strain tensor inside each inclusion using re-
lation (3.10). This leads to the system of N tensorial equations for N unknown
strain tensors €':
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el =BV - TWAct el — ... — T A 1 el —... = TW:AcN : €N
(3.11) e =B'—T:Acl:e! —..-TH:Ac!: el —... — TIN:AcN 1 &V
;:N =E?-—TNLAcl gl —... = TN Ae! 1 7 — .., = TNN.AcN 1 eV

T!Y are called interaction tensors. They are defined by the expression
1
(3.12) T/ = fol"(r,r"}dVdV
1
‘ F g

and have been studied, for case of two ellipsoidal inclusions embedded in an
anisotropic matrix, by BERVEILLER and FAssI-FEHRI [20]. A numerical calcula-
tion of these tensors has been performed by LIPINSKI [3], and recently improved
by ZATTARIN et al. [25].

When the reference homogeneous material C° is chosen to be an unknown
effective medium C®f, the self-consistent multi-site approximation is obtained. In
this case; E’ = E and the concentration tensors for all inclusions are expressed by:

(3.13) A:l;c - (I + T“:A(:I)“1 = (I = .Ej;e;T”:ACJ:A'S"C) :

The usual one-site self-consistent method is obtained when all tensors T/ with
I # J are neglected. Of course, the determination of the concentration tensors
has to be performed by iterations because the A/, tensor depends on all unknown
A’ operators. The one-site self-consistent approximation constitutes a very good
starting point for this iterative procedure.

3.3. Confrontation with experimental data

The self-consistent, one- or multi-site, models predict the accurate results
when they are applied to the multi-phase polycrystalline materials whose elastic
or elastic-plastic properties change slowly from one constituent to another [5, 19].
Its direct application to the artificial composites we want to illustrate below what
leads to a considerable deviation from the experimental measurements when the
relative difference between the matrix and reinforcement characteristics becomes
significant. Consider for instance a composite with isotropic epoxy matrix re-
inforced by the boron fibres, supposed also to be isotropic. Such a composite
has been experimentally studied by SABODH [26]. The elastic properties of the
constituents are respectively:

— for epoxy : Young’s modulus F = 4.14 GPa and Poisson’s ratio v = .35;

~ for boron : Young’s modulus E = 414 GPa and Poisson’s ratio v = 0.20.
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The cylindrical fibers have been reproduced numerically by ellipsoidal inclu-
sions with the aspect ratio of 1000. The regular spatial distribution of reinforce-
ments has been introduced corresponding to the periodic square arrangement of
parallel reinforcements. The MSCS has been used to predict the elastic properties
of the composite. Table 1 shows the evolution of the transversal Young’s modulus
and the axial shear modulus as functions of the volume fraction of fibres, and a
comparison between the experimental and predicted values is given. A reason-
ably good agreement is obtained for the volume fraction less than 25%. When the
concentration of fibres is greater than 40%, the interactions between the inclu-
sion and the surrounding material are strongly overestimated and the predicted
moduli become much too high compared to the experimental measurements.

Table 1. Comparison between experimental and predicted moduli for epoxy-boron
composite. Experimental data from Sabodh [26].

Volume | Young's modulus [GPa| Shear modulus [GPa)
fraction | Experimental | Predicted | Experimental | Predicted
0.25 7.67 7.67 2.93 3.42
0.3 9.15 9.15 3.06 4.03
0.35 11.18 11.18 3.18 4.63
0.40 12.74 13.82 3.79 7.54
0.50 15.36 24.87 5.72 17.89
0.60 20 53.3 8.91 41.1
0.70 33.25 119 14.4 72.36

4. Incremental Scheme (IS)

In order to avoid the divergence of the self-consistent model, VIEVILLE [23]
and VIEVILLE et al. |6] proposed to modify the SCS using the idea of progres-
sive construction of the material developed in the DS approach. Contrary to
the DS, construction of the material is made using finite increments of the vol-
ume fractions, and for each increment the self-consistent approximation of the
homogenisation process is performed instead of a small concentration solution.

4.1. Two-phase material

Let us first analyse a simple case of two-phase material considered by
VIEVILLE [23]. The resulting composite will be characterised by a volume fraction
of the second phase 0 < f < 1. Generally, the phase with the greatest volume
fraction is considered as a matrix, and the second phase as a reinforcement. The
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composite is built by the S step procedure in such a manner that at step ¢, the
volume fraction of the second phase is

(4.1) f=d e At

S
When the step number S tends to infinity, the usual DS is found. Suppose, to
clarify the idea, that at the beginning we have some volume of the matrix V™
of the reinforcement V7, and that the resulting composite should have a volume

V¢ such that
YLy ==V
After (2 — 1) steps the composite corresponds to

(4.2) (i=1DAf-V" 4+ (1 - (i - 1DAS) - V™ =VE,,

where V;® | = V is the composite volume for step 7 — 1. This volume becomes the
matrix for the next step of the building procedure (N.B. this new matrix contains
reinforcements).

At step i, to preserve the total volume, we have to cut off some volume of the
new matrix to introduce an unknown volume fraction of reinforcement A f; such
that the following equation will be verified

(4.3) Afi- VT +(1—-Af)-VE, =iAf V™ + (1—iAf) - V™

Now, introducing (4.2) into (4.3) and comparing factors of V™ or V7, one can
determine the value of Af;

Af
(4.4) Af: — m.

Expression (4.4) shows that the volume fraction of reinforcements continuously
increases as a function of the step number 7. This corresponds to the ROSCOE’S
[29] interpretation of the DS where the filling process begins with the smallest
inclusions to end up with the biggest ones. However, as it has been empha-
sised by HASHIN [17], this interpretation is contradictory to the requirement of
infinitesimality of the volume fraction increment.

It is important to point out that the overall properties of the equivalent ho-
mogeneous material depend upon the number of steps S. Figure 1 illustrates the
evolution of Young's modulus of an equivalent homogeneous material composed
of 50% of an isotropic matrix, with shear modulus Gy = 1.4 MPa and Poisson’s
ratio vpr = 0.499, and 50% of isotropic randomly distributed spheres, with shear
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modulus Gg = 30.2 GPa and Poisson’s ration vg = 0.160. It is easy to deter-
mine, for this case, the value of Young's modulus using the DS solution given by
BOUCHER [13] in case of spherical inclusions.

One can observe that the degree of heterogeneity of the studied material is
very important. Indeed we have:

Gs .,

P 21571.
On the other hand, Fig. 1 shows that the SCS predicts the value of Young’s
modulus, given for S = 1, which is much higher than that obtained by the DS.
Moreover, the One-Site Incremental Scheme (OIS) converges very rapidly to the
DS solution.

10000 1
£ b ——0IS
g ....... DS
“u'J' 1000 +
v ]
2 <
g ]
®
2 100 T
3 4
>

10 - — —r
1 10 100
Step number

Fi1G. 1. Influence of the number of steps on the value of Young’s modulus. Results
obtained using One-Site Incremental Scheme.

4.2. Multi-phase material

Consider now the case of multiphase material (more than two phases) com-
posed of a matrix with N families of reinforcements. To build this material we
start with some volume of the matrix V™, of the reinforcements V™ (J takes
the values from 1 to N) and suppose that the resulting composite should have a
volume V¢ such that

VeV =ve=v.
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If 7 is the global volume fraction for the family J and S the total number of
steps used to build the composite, the incremental fraction for the family J is

gl
4.5 Af' ==—.
(45) p=L
After (i — 1) steps, the material corresponds to

N

1-) (i-1)Af- V"J] W =VEy

J=1

N
46) Y @-vaf v+

J=1

where V¢, = V is the composite volume after step ¢ — 1. This volume becomes
a matrix for the next step of the building procedure.

At step 1, to preserve the total volume, we have to cut off some volume of
the new matrix to introduce an unknown volume fraction of reinforcements AfI-J
such that the following equation should be satisfied:

N N
(4.7) Y Af v+ [1 -y af
J=1

N
Vg =iy A
J=1 J=1

v,

J\"‘
+ [1 —iy Af!
U=

Now, introducing (4.6) into (4.7) and comparing factors of V™ or V", one can
determine the following system of equations for the unknown fractions Af;":

[ 1 A ’ 1y
AL e it o Af]
AR 1 i 1 f
\ i ke %
, e P B
h & U E-nary | A Sk
fl\
1
T
o
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The solution of this system takes a form

. AfY
(4.8) Ali = 1-(i-1)Afr

where

N
v X
U g J=1 ==
(4.9) Af —J;Af =S

and f7 is the total volume fraction of reinforcements.

It is important to emphasise that the above solution corresponds to the radial
or proportional path in the volume fraction N-dimensional space. As it has been
observed by NORRIS [18], this is not a unique possibility to fill the composite.
Figure 2 illustrates this idea in 2D fraction space for a three-phase material. The
path 1 corresponds to the Roscoe-Boucher scheme and to the actual proposi-
tion, and path II illustrates any arbitrary filling process. It is easy to show, see
for instance NORRIS [18], that the resulting equivalent material properties are
path-dependent. All the results presented in this paper have been obtained by
increasing the volume fractions along path I, expression (4.8). The influence of
the filling process corresponding to any other path is not discussed in this paper.

"
1.0 1

08 T
0.6
04 -

02 T

0 4 ! : :

0 0.2 0.4 0.6 0.8 1.0

F1G. 2. Path definition in fraction space. I - actual method, II - arbitrary path.
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5. Applications

In this section we present some numerical results in order to show the results
of the above-described method.

The first application concerns again the epoxy-boron composite of the
Sec. 3.3. We compare the transverse Young’s modulus predicted by the Multi-
Site Self-Consistent Scheme (MSCS) and by the Multi-Site Incremental Scheme
(MIS), with experimental values from SABODH [26].

In Fig. 3 we can observe that a relatively good agreement is obtained with MIS
even for concentration of fibres. MSCS model, according to Table 1, overestimates
(when f = 0.7) the Young’s modulus by a factor of almost 4.

120 * Exp
: 100 - —a— MSCS
-g, —e— MIS
3 80 -
£g
1 w
22 o
:
S 40
= ¢
20 -
0 T T T T T T T T T

0,2 0,25 0,3 035 04 045 0,5 0,55 0,6 0,65 0,7

volume fraction

F1G. 3. Comparison of the predicted transverse Young’s modulus, using MSCS and MIS
with experimental data from SABODH [26].

In the second application we consider a two-phase material consisting of a
rigid sphere embedded in an isotropic matrix. The elastic properties are

oM =% =0.3

and
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where v and v° are, respectively, Poisson’s ratio of the matrix and sphere, EM
and E¥ are their Young’s moduli. The regular spatial distribution of spheres is in-
troduced corresponding to a periodic cubic arrangement. We used the Multi-Site
Self-Consistent Scheme (MSCS) and the Multi-Site Incremental Scheme (MIS)
to predict the elastic properties of this composite. The calculated properties are
compared with the results obtained by Finite Element Method. The commercial
code ANSYS V 5.6 has been used to perform all these calculations. Figure 4
illustrates the mesh of an elementary volume from which the full composite can
be constructed by symmetries and periodicity. This mesh is composed on 4600
hexahedral eight-node elements and corresponds to the volume fraction of re-
inforcements f = 0.4. The same figure shows also the obtained axial stress
distribution. One can observe that this stress component distribution inside the
inclusion is very complex.

L]
-, DBB165 ANHEYS 5.5.2
= L00448 MAR 23 2000
= D9T125 00:44:40
=] -1897T1 NODAL SOLUTION
= .282416 STEP=1
= .375061 SUB =]
— R 467706 TIHE=1
= .560352 52 (AVG)
= -652997 REYS=0
= . T45642 PowerGraphice
= .B38288 EFACET=1
| Y309 AVRES=Mat
== 1.024 DY =1.082
] 1.116 SMN =-. 088165
1.208 SMX =1.209

Fi1G. 4. Finite Element mesh and axial stress distribution.

Figure 5 shows the evolution of the Young modulus as a function of the
volume fraction of spheres. A good agreement is obtained between the FEM
and the MIS approach, while the MSCS strongly overestimates the value of the
Young modulus for the volume fractions greater than 20%. One can observe that,
despite the complex stress field inside the inclusion (Fig. 4), the MIS approach
predicts very accurately the effective properties of the composite.
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F1G. 5. Evolution of Young's modulus, using MSCS, MIS and FEM approaches, for a
composite constituted of rigid spheres embedded in a matrix.

1.8

4' —+— SCS and MSCS
| —m— MIS and OIS
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FiG. 6. Evolution (due to the SCS and IS approach) of the Young's modulus for a
three-phase composite, and comparison with experimental results.
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In the last example, we compare the experimental results obtained by ISHAI
and COHEN [27] with the Self-Consistent Scheme (SCS) and the Incremental
Scheme (IS) predictions. The material is a three-phase composite consisting of
sand and voids in an epoxy matrix. We suppose that sand and voids are in
a random arrangement. In this case of perfect disorder, Multi-Site (MSCS or
MIS) and One-Site (SCS or OIS) give rise to similar results. HUANG et al. [28]
showed, using the Cohen data, that the volume fractions of sand fg and void fy
are interdependent and vary according to:

fs=0.173(1 - fv).

As Fig. 6 shows, the IS predicts correctly the experimental data over the entire
range of void fraction, while the SCS underestimates the results for void fractions
greater than fy = 0.2.

6. Conclusions

A new transition scale based model has been proposed for the prediction of
effective properties of composite materials. This Multi-Site Incremental Scheme
takes into account the anisotropy of the constituents as well as the morphologi-
cal and the topological textures, what enables the prediction of the effective
properties for general cases.

The model has been applied to characterise the elastic behaviour of two-
and three-phase composites. The incremental procedure used in this approach
permits to avoid the problems of Self-Consistent Scheme distortions for large
volume fraction of reinforcement or void.

The comparison of the numerical results with the experimental data known
from literature shows a very good agreement between the calculations and mea-
surements. The same conclusion concerns the comparison between the predicted
values and Finite Elements results.

The MIS scheme appears as a powerful alternative to the complex and time-
consuming Finite Element applications for prediction of the effective properties
of elastic heterogeneous materials.
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