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SoLuTION OF THE GENERALIZED plane deformation problem of a piezoelectric material
strip with a crack is proposed. Laplace and Fourier transforms are used to reduce the
problem to the solution of singular integral equations in the Laplace transform plane.
Laplace inversion vields the results in the time domain. This analysis yields six
independent stress and three electric displacement components. The model is general
enough to account for arbitrary polarization direction, under transient or steady
state load, for any mechanical or electrical mode of cracking. Numerical solutions
for a piezoelectric material strip under electromechanical impact are illustrated. The
influences of strip thickness and crack position on time-dependent crack tip fields
are investigated. The results show that the transient electric displacement loads can
increase or reduce the stress intensity factors at different time, dependent on the
applied electric displacement load direction.
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impact load.

1. Introduction

IN DESIGNING THE PIEZOELECTRIC materials, one must take into consideration im-
perfections, such as crack, that are often preexisting or are generated by external
impact forces during the service life. The existence of a crack can significantly
change the dynamic response of piezoelectric materials and structures. A signifi-
cant amount of research has been performed in modeling the crack in piezoelectric
materials [1 - 5]. In particular, the dynamic stress intensity factor of a cracked
dielectric medium in a uniform electric field was studied by SHINDO and his col-
leagues [6]. NARITA and SHINDO [7] investigated the scattering of Love waves by
a surface-breaking cracks in a piezoelectric layer over an elastic half plane, while
the crack is normal to the interface. The anti-plane shear crack growth rate of
a piezoelectric ceramic body with finite width [8], and the dynamic bending of
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a symmetric piezoelectric laminated plate with a through crack [9] were inves-
tigated by NARITA and SHINDO. More recently, the electroelastic problem for
a piezoelectric layer with an anti-plane shear crack connected with two elastic
half-planes [10], and the central crack problem in a finite piezoelectric strip [11]
have been systematically studied.

In this paper, the Griffith crack in a piezoelectric material is considered with
the polarization direction perpendicular to crack plane or parallel to crack plane.
Dynamic loading is analyzed by using Laplace transform. The Fourier transform
is used to handle the space variable. Stress and electric displacement intensity
factors are determined for different crack length and crack position under different
fracture mode.

2. Solutions of the crack problem

Field equations for piezoelectric materials subjected to mechanical and elec-
trical fields can be written as

(2.1) Gij = CijkiUk] + €lijP L, D; = epury— €ig Py
(2.2) 0ijj = poui /ot D;; =0,

where 0y;, uj, D;, and ¢ are stresses, displacements, electric displacements, and
electric potential, respectively; cijki, eijks €it, and p are elastic constants, piezo-
electric constants, dielectric permittivities, and density, respectively; t is time
variable, and a comma indicates partial derivation. The electric field, Ej, is
related to the electric potential, ¢ : E; = —¢ ;.

Inserting (2.2) into (2.1) and applying the Laplace transform with respect to
time ¢, we have

2
(2.3) CijkiUk,1j + €l pj = PP U, eiktvk i~ €it ¢ =0,

where “p” is the Laplace transform parameter. The quantities with superscript
“*" denote the Laplace transform.

In the following, unless it is declared, the superscript will be omitted for
simplicity. Generalized plane deformation means that the field variable u; and ¢
are functions of 1 and z5 only. Assume that the piezoelectric medium is infinite
along the z; axis. We look for a solution to (2.3) of the form

(18 34

00
(2.4) s % / Ax(s)F(s)el*P=2e=51 45,
—00
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o0
(25) ¢ = 2i f A4(S)F(S)ﬁ'slxzze_imlds’
T

where i = /=1, F(s) is an unknown function to be determined. Substituting
(2.4) and (2.5) into (2.1) and then into (2.3), we obtain

O 6 || A5 | _
20 ER R
where j and k take the values 1, 2, and 3, and

O,k = —cji — sgn(s)i(cjike + Cjoki) A + cjakeA? — jkpp® /s,
©; = —eij1 — sgn(s)i(erje + e2j1)A + 62_;[2/\2,
©g = €11 + sgn (s)i(€12 + €21)A— €22 2%,

I

Equation (2.6) is an eigenvalue problem consisting of four equations, a nontrivial
set (A1, Ay, A, Ay) exists if X is a root of the determinant. The eight roots for
A, form four conjugate pairs. In terms of these eigenvalues, a general expression
for the displacements and electric potential can be written as

27) {V(:rl,:rg)}=% / (A(s2)] {F(s) )~ ds,

where

{V($l1$2)} — { ?;: }y k= 112131

|8|Aaz2
Atea)) = | 4oy |+ (P} = ()T, a=1,.8

Define a new vector, {t2}, as given by

{ta(z1,22)} = (021 022 023 D2)T.

We can obtain the following expression by using (2.1) and (2.7):
1 e o]
(2.8) {ta(z1,22)} = 5~ /[32]{F}3€_£3I‘d31
—0o0
where [Ba(z2)] is a 4 x 8 matrix.

http://rcin.org.pl



936 B. L. WANG AND N. Nopa

3. The crack problem

Consider a piezoelectric medium of height h, see Fig. 1. The body contains
a crack of length 2a lying along z; axis. Let {t20(z)} represent {ts(z,0)}, and
the superscripts (1) and (2) refer to the quantities associated with the materials
occupying the lower and upper parts, respectively. The initial displacement,
velocities and electric potential are zero. The boundary conditions are assumed
to have the following forms:

{ta(z, —h )} = {ti0(z,1)},
{t2(z,h®)} = {tao(, 1)},

{tao(z)} = {to(z,t)}, —-a <z < a.
A
(2) X2,y h(z)
s S
hV=b
o P

FiG. 1. A crack in a piezoelectric material strip: geometries and coordinates.

Suppose the Laplace transforms of {t19}, {f30}, and {#g0} are {t],}, {t3}
and {t3,}, respectively. The unknown vector {F'} can be expressed in terms of
{tlo}, {t5;} and {t3,} by applying the inverse Fourier transform to Eq. (2.8),
ie.,

o0

| o P )
(31) {F(Z)(s)} = il- [B(Z]] / %0 Ty,
f —co f;*m(ﬂ)
oo
1 15(2) _
(3.2) (F)(s)} = l‘[Bm] / s S
i o | tho@)
where i %
B;” (R B0
s el o [0
B?(0) B (~h)

Substituting (3.1) and (3.2) back into (2.7), we have
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: H(1) (e — L ml (1) 7 (1) T tEU(m) 18T —i3r
33) (VO = %l (D) D} (y)]_.i { oy e s

(34)  {VO(ry)} = - [ L 0P ) DP ()] [ { o }efsrdm—wrds.

5. (7)
5 20

where [Dg_l)], [Dé”], [Dgz)], and [Dég}] are 4 x 4 matrices:

(DM (y) DV ()] = (AN @) B,

DPP(y) DP(y)] = [A®) (y)][BX] !

Introduce the electromechanical dislocation density function {d} along the
crack faces as

(3.5) {d(z)} = 0({V?) (2,00} = {VV(z,0)})/0z.
Equations (3.3) and (3.4) can be used to give

(36)  {d)} = f ([L] [ tyeieas + 1f{t;o}e='”dm

—£0 —00

o0
+ [N] f{tgﬁ}c"“d:n) e~ ds,
—00

where
[L(s)) = [DS(0)], (M(s)] = [DV(0)] - [(D2(0)], [N(s)] = (D (0)).

Solving {t5,(z)} from Eq. (3.6), we have

(3.7) {t30(2)} = /[Kl(wﬂ‘)]{d(f)}d?‘" {to(z)},
where -
(3.8) Kz, 9] = % / (M (s)] e~ ds,
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(3.9) {tb(a:)}=-2—1; / ! | [z / {£lo)e" dr

o0
+ [N] /{t;U}ei”dr e~ %ds.
-0

Thus {d} is the only unknown vector in the problem which may be determined
from the crack faces boundary condition. The singular behavior of the kernel
[Ky(z,7)] may be obtained from the asymptotic analysis of the integral in (3.8).
Observe that as s tends to infinity, [M(s)] tends to sgn(s)[M(o0)]. It can be
deduced from (3.8) that

Kot = 2O e
(A, = g [ (M) =~ sgns)M(o0)] ) 0,

In view of the uniform convergence, the function defined by
a
(to(a)} = 1A},
-a

is bounded in the closed interval —a < = < a. Observe that (3.7) gives {t5,(z)}
outside as well as inside of the crack. For the latter, (3.7) may be expressed as

iy a v (13
1) g = M [y fia e - ),

where {t5(z)} is the Laplace transform of {to(z,t)}.

A numerical technique to solve singular integral equations of the above form
has been developed by ERDOGAN and GUPTA [12], where a weighted residual
technique is employed to reduce the singular integral equations to a set of al-
gebraic equations in unknown coefficients of Chebychev polynomials of the first
kind. This method was also used by WANG [13] for the fracture analysis of the
nonhomogeneous materials. Note that the solution for {d} has the form

M

(3.11) {dn)} = Y_{C™ T )/ V1 -7,

m=1
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where 7 = r/a, T,,(7) is the Chebychev polynomials of the first kind. Upon
evaluating {C™} from (3.10) and (3.11), the displacements and electric po-
tential differences between the crack faces can be evaluated from Eqs. (3.5) and
(3.11) as

{A(r)} = —a i{cm}w, <l

m=1 i
The stress and electric displacement intensity factors, i.e., in-plane normal
traction (Mode 1), in-plane shear (Mode II), anti-plane shear (Mode III), in-
plane electric displacement (Mode 1V), {K} = {Ky K1 Kii1 Kiv}? can be cal-
culated by

(312)  {K}=(V2[(-a)-2])

R C)

M
= [M(0)]"'Va ) (-1)™{C™},
m=1

for the left-hand side crack-tip, and

M

G13)  {(K}= (Ve -d) | {fe(e)} = ~[M()]Va 3o (O™,
m=1

for the right-hand side crack-tip.

Once the elastic and electric fields in Laplace transform plane are ob-
tained, the corresponding values in the time domain are given by the Laplace
inversion. The numerical Laplace inversion methods used here is due to
DURBIN [14], a study of Durbin's method has been made by NARAYANAN and
BEsKOS [15].

Suppose that F*(p) is the Laplace transform of the function F(t), then
;i_:,rpr*(p) = rh—:& F(t). Therefore, we can obtain the static solutions of the

field intensity factors in the physical space using (3.12) and (3.13).

4. The special cases

The polarization direction of the piezoelectric material is conventionally cho-
sen as the =3 direction. Constitutive relations for piezoelectric ceramics polarized
along z3 direction exhibiting transversely isotropic behavior (hexagonal symme-
try) can be written in the following form:
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Assume that the field variable u, v, and ¢ are functions of x and y only.
The model described above is general enough to treat the fracture problems for
piezoelectric materials with polarization axis along arbitrary direction. For the
crack configuration and the orthogonal coordinate system shown in Fig. 1, we
can obtain some special mechanical and electrical responses in any of the three
directions.

CASE 1. Polarization axis perpendicular to the z-y plane
The in-plane displacements are governed by the equations

0u iy +008) 9% £ 9*u 0*u

61 ) c aon. T b — Mg
113352 12 T+ C66 920y 66 2 Pdtg
2y e i) &%u + v %v
— c Ce6)—— t o= = P
€66 5,2 12 T C66) 5 By 22 3y? P oz

This is a plane elastic crack problem. The piezoelectric effect has no influence
on in-plane displacements and stresses.
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The electrical potential and out-of-plane displacement w are governed by

(P P (P66 o

a2 Ta2) = o
Pw  *w ¢  0%¢
(a—+§;) (aﬁ@)‘“

The electrical potential is coupled only with the out-of-plane displacement
w. This is the anti-plane electro-elastic crack problem.

CASE 2. Polarization axis along the y direction
The governing equations for in-plane displacements and electric potential are
the following

¢ 82u+ 62u+( +a )—62” + (ea1 + )82¢ S i

ng3 Cq44 3y? €13 T C44 9zdy €31 T €15 ‘m = 9852’

(c13+¢ )62 e 82”+ 32U+ 62¢+e @— 3—23

13 44 oz a C‘Hd 2 c338 9 8153 2 33 63}2 == patg )
0*u v v ¢ ¢

4+ ei15)=—— + — + 33 —5— € —— _,——=0.
(e31 Eb]axay €15 5.2 B572 153 €33 52

The electrical potential is coupled with in-plane displacements u and v.
The anti-plane displacement is governed by the equation
9w % 9w 0w
C =p—.
922 T Moy2 ~ o

This is an anti-plane elastic crack problem for orthotropic materials.

Ca6

5. Results and discussion

We consider a PZT-5H piezoelectric ceramics strip as an example. The thick-
ness of the medium i‘; h. The elastic constants are ¢;; = 12.6 x 10'® N/m?,
c13 = 8.41x10'° N/m?, ¢33 = 11.7x 1(]ID N/m?, c44 = 2.3%10'° N/m?. The piezo-
electric constants are e3; = —6.5 C/m?, e33 = 23.3 C/m?, e;s = 17.44 C/mz. The
dielectric permittivities are €;,= 150.3x 10710 C/Vmn, €33= 130.0x10~'° C/Vm.
The mass density is p = 7500 Kg/m®. We postulate the crack faces are free from
mechanical traction and are electrically insulated.

5.1. Polarization axis perpendicular to the z-y plane

This is the case of anti-plane mechanical deformation and in-plane electric
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fields. Assume a sudden mechanical loading 7y applied to the upper and lower
surfaces of the strip. It is found that the electric displacement intensity factor
is zero at the crack tip. Figure 2 shows the variation of stress intensity factor
Ky with time. The results are the same as those for homogeneous material
without the piezoelectric effect. It follows that for homogeneous materials under
mechanical loading, the piezoelectric effect has no influence on the stress intensity
factor.

Ki11/mo/a

2.5
2.0
1.5
1.0

0.5

IS (SN WY G U S TNT TSN N WS SN S

0.0
0 2 4 6 8 10

Jew/ptih

F1G. 2. Anti-plane stress intensity factor for a centrally cracked PZT-5H ceramics strip
under transient mechanical load.

Assume a transient electric displacement load Dg applied to the upper and
lower surfaces of the strip. It is found that the dynamic stress intensity factors
are not zero and they are plotted in Fig. 3. When time t approaches infinity the
steady state stress intensity factors become zero. These results show that, differ
from the static case, the transient electric displacement load can produce stress
in the crack plane ahead of the crack tip.

5.2. Polarization axis along the y direction

The in-plane electrical field is coupled with in-plane displacements u and v.
Assume that the upper and lower surfaces of the strip are loaded by a sudden
stress og and a sudden electric displacement Dg. If the crack is located in the mid-
plane of the strip, the shear stress in the plane of y = 0 is zero. Figures 4 and 5
show, respectively, the variation of normal stress intensity factor and electric
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FiG. 3. Anti-plane stress intensity factor for a centrally cracked PZT-5H ceramics strip
under transient electrical load.
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FiG. 4. Variation of normal stress intensity factor with time for different crack lengths
and electric loads (b/h = 0,5).
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displacement intensity factor with time. It is seen that as the relative thickness
of the strip decreases, the field intensity factors increase. The stress intensity
factors can increase or decrease with applied electric load, depending on the time
t. At very early times, the presence of electric displacement load will reduce the
stress intensity factors. The oppose trends are found for larger t. The presence of
transient electric displacement load will always increase the peak stress intensity
factor. Note that the applied electric displacement load is positive. Suppose a
negative electric displacement load is applied, the transient electric displacement
load will always reduce the peak stress intensity factor. This is different from
the available date for piezoelectric materials under static loads. It has been
shown that the steady-state stress intensity factor does not depend on the applied
electric displacement load.

Ky f(‘eu/cn}’oﬁ

35
30
25 |
20 f
15
1.0
05
0.0
-05

d=0.5}l, DoC;;J"Goej;:l

Dyesylopes=1

Jes /p thh

F1G. 5. Variation of electric displacement intensity factor with time for different crack
lengths and electric loads (b/h = 0.5).

Figures 6, 7 and 8 show the influence of the crack position on the stress and
electric displacement intensity factors. When the crack is located in the center
of the strip, K;; is zero. The Mode II stress intensity factor is not zero when
crack is not located in the mid-plane of the strip. As the crack approaches the
surface of the strip, the field intensity factors increase quickly and the crack will
more likely extend.
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F1G. 6. Variation of normal stress intensity factor with time for different crack positions
and electric loads (a = 0.25h).
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FiG. 7. Variation of shear intensity factor with time for different crack positions and
electric loads (a = 0.25h).
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F1G. 8. Variation of electric displacement intensity factor with time for different crack
positions and electric loads (a = 0.25h).
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F1G. 9. Variation of electric displacement intensity factor with time (pure electric load).
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Consider a pure electric displacement load Dy applied on the surfaces of
the strip. It is found that the electric displacement intensity factors are time
independent as shown in Fig. 9. The same fact was also found for anti-plane
crack problem.

6. Conclusion

Fracture is one of the properties that limit the use of piezoelectric materials as
sensors and actuators in smart materials and structures technology. The present
work focuses on the fracture mechanics analysis for finite thickness piezoelectric
medium with the polarization axis along arbitrary direction. Particularly, nu-
merical solutions for a piezoelectric material strip under in-plane and anti-plane
electromechanical impacts are analyzed. It is found that as the relative length of
the crack increases, the field intensities increase quickly. The crack position has
a pronounced influence on field intensities ahead of the crack tip. The electric
field can retard or enhance the crack tip stress intensity factors at different times,
depending on the applied field displacement load direction.
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