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Thermoelastic plane problem for material with circular
inclusions
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WE consiDER TWO-DIMENSIONAL thermoelastic composite materials in the case when
the temperature is constant. Using complex potentials and applying a method of
functional equations, we construct a simple algorithm to solve the corresponding
boundary value problem. The stress tensor is written with the accuracy of up to the
term O (R?), where R = maxy,m rkdj, Tk is the radius of the k-th inclusion, dim is
the distance between centers of the k-th and m-th inclusion (k # m). The effective
elastic constants and the coefficient of thermal expansion are written in analytic form
up to O (R*).

1. Introduction

WE STUDY TWO-DIMENSIONAL problems of thermoelastic composite materials. A
modern review devoted to homogenization and constructive formulae for such
materials is due to WOJINAR et al. [1] and [2]. We consider the case of the
plane strain. Such problems are extensively studied by the method of complex
potentials. MUSKHELISHVILI [9], MIKHLIN [6] and others reduced the boundary
value problem for materials with finite number of inclusions or holes to a system
of singular integral equations or to an infinite set of linear algebraic equations.
Integral equations and infinite sets of equations can be numerically solved, and
the stress and displacement fields can be calculated. The method of complex
potentials was extended to periodic problems by VAN Fo Fy [10] and GRIGILYUK
and FIL'SHTINSKIJ [3]. In particular, integral equations and infinite systems were
constructed and solved numerically for periodic problems.

The closed-form solution is preferable to numerical solution in mechanics of
composite materials, since it allows us to obtain analytical formulae for the tensor
of effective properties. There are special cases in the books cited above, when the
stress and displacement fields were found in analytical form. In the present paper
we study a new special case of such problems, the two-dimensional thermoelastic
materials with circular inclusions. Each inclusion is modelled by a disk; the
position of the center and the radius are arbitrary. Only one essential restriction is
imposed, namely, these disks are mutually disjoint. Following [7, 8] we reduce the
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916 V. MITYUSHEV

thermoelastic problem to a system of functional equations, which can be solved
by the method of successive approximations. Let us note that the functional
equations do not contain integral terms which are hard to calculate analytically.
The right-hand sides of the equations involve combinations of functions and their
derivatives. This allows us to express the first approximations of the stress and
displacement fields in analytic forms.

Using the analytical formulae for the stress field, we can calculate the effec-
tive properties of the thermoelastic composite materials. As it is assumed in the
homogenization theory (see [1] and [4]), the distribution of the inclusions on the
plane is statistically uniform and ergodic. Hence, we can evaluate the effective
properties using spatial averaging. Constructive formulae are obtained under the
following additional assumptions. Composite material is divided into the same
groups of the inclusions. All groups consists of a finite number of inclusions. A
group is displayed in Fig. 1. Each group does not interact with others. Moreover,
to simplify the calculations we assume that the considered material is isotropic in
macroscale as a two-dimensional material. If the group contains only one inclu-
sion, we arrive at the case of the dilute composite materials. In order to obtain
a formula for the effective properties in the dilute case, it is sufficient to solve
a boundary value problem (conjugate problem) for a single inclusion. This ap-
proach is called Maxwell’s formalism in the literature. Our case (many inclusions
in a group as displayed in Fig. 2) can be called the generalized dilute concen-
tration of inclusions, because we take into account influence of each inclusion on
the other ones in any fixed group, and inclusions in different groups do not strike
each other. According to Maxwell’s formalism, the area fraction of inclusions is
a prescribed parameter. In the generalized dilute case we also assume the area
concentration vy of the k—th material (k = 1,2, ...,n) as given parameters. Here
n is the number of inclusions in each group. We cannot add all vy since the
inclusions have in general various sizes and thermoelastic properties.

DO
g

FiG. 1. Representative group of inclusions.

The paper is organized as follows. In Sec. 2 we reduce the problem to a
system of functional equations. Section 3 is devoted to solution to this system.
The local stress and displacement thermoelastic fields are given in Sec. 4. The
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FiG. 2. Composite material with diluted groups of inclusions.
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local fields presented in Sec. 5 concern the case of the pure elastic problem. In
Sec. 6 the formulae of Sec. 5 are applied to deduce formulae for the effective
elastic constants. Then the effective coefficient of thermal expansion is written
in analytic form.

2. Complex potentials and conjugation problem

Let us consider a spatial variable (z,y, z). The (z,y)-plane thermoelasticity
stress-strain relations for a linear isotropic material are given by the equations (9]

du
Ozx — U(ny + 0;2) =} EOTT — Eg‘
d
o?i'y = U(oz:.-: + oz:) -+ EO"TT = Ea_v,
2.1) Y
925 = 0 (02a + 0yy) = 0,
31:. 81:
s Bl t5z)
where
Ozx Ogy 0
(2.2) Gy g0

0 0 o,
is the stress tensor, (u,v,0) is the displacement vector, v is the Poisson ratio, F

is the Young modulus, g = — (1 + ») is the shear modulus, o’ is the coefficient
of thermal expansion, T is the temperature distribution. Here all coefficients
depend on the coordinates (z,y). The form of the third Eq. (2.1) is obtained
from equation 0., — v (04z + 0yy) + EaIT = f, where the external pressure

f = Ea™'T is applied along the z—direction in such a way that the plane strain
holds [9].
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918 V. MITYUSHEV

For the sake of simplicity we assume that T is constant. Then the equations
of the steady heat conduction and the conditions of perfect thermal contact
between materials are fulfilled. Moreover, we can take T = 1 because of the
linear character of Eq. (2.1).

Let us consider mutually disjoint disks Dy := {( € C: | —ax| < rx} (k =
1,2,..,n > 1) in the complex plane C of the variable { = z + iy. Let
D := QU {oo}\ (Uf_;Dx UT}), where T := {t € C: [t —ax| =rr}. We as-
sume that T} are orientated in clockwise sense. Here and in the sequel we use
the letter ¢ for a complex variable in a domain, £ — on the boundary of a domain.
We study the thermoelasticity of the composite material, when the domains D
and Dy are occupied by materials with the coefficients p, of, & = 3 — 4v and
Mk a?c‘, kr = 3 — 4uy, respectively. We shall also use the constants E, v
and FEj, v, respectively, to denote the elastic properties of the matrix and in-
clusions.

The component of the stress tensor can be determined by the Kolosov-
Muskhelishvili formulae [9]

4Re ¢} (C), (€ Dy,

O'J:;;‘l'o'yy -
4Rey'(¢), (€D,

-2 [CH0) +%C)] . ¢ €D,
-2 [¢ )+ 9], ¢eD,

where Re denotes the real part. The functions ¢(¢) and ¥x(¢), (¢) and %(¢)
are analytical in D, and D, respectively, and twice differentiable in the clo-
sures of the considered domains. The normal forces on T} are given by the
expression

(24) T, = ¢x(t) +tei(t) + ¥x(t), Ty = () + ' (t) + (1)
The plane displacements U = (u,v) are expressed by the complex potentials
1 ——= Tl ———%
3 Fe8k(Q) = GO ~ B0 + 20 mec] . C € D
2e) U=
1 e P
2 [0~ P -0 +20"uc|,  CeD,

We assume that the contact between different materials is perfect, i.e.,

http://rcin.org.pl



THERMOELASTIC PLANE PROBLEM FOR MATERIAL... 919

(2.6) TH=T;, Ut =U" on 8D,

where 9D is the boundary of D, U*(t) := limeyy cepU((), U () =
lime ¢, cep, U(C). Using the relation (2.4) - (2.5) we write the boundary condi-
tion (2.6) in the form

Br(t) + td () + Ui(t) = @(t) + () + %(1)
@) o [men(t) ~ F D - B0 =  [welt) - 70 - V0] + 20
[t_akl =Tk k=1,2,..,n,

Az

where gy = @ — ak Introduce the new unknown functions

.2
Bi(¢) = (C? +a—k) RO B =<5
ap

Then condition (2.7) becomes

B (t) + i) = (t) + te'(t) + (1),

Tl [mdi)k(i) - W} = kip(t) — t/(t) — P(t) + 2mept, |t — ag| =1y
m

These relations can be written as follows:

(28) (1+;»ek)¢k() (1-;—)@() (1+ ) (t) + 25t

(2.9) (.& s ink) Ped) + (n‘ s i) O(t) = (1+ &) (F'(2)

+ $(t)) — 2umit.

The form of Egs. (2.8) and (2.9) is similar to the R-linear condition [7], since
w and ¢ are analytic in D; ¢ is analytic in Dy, @ is analytic in Dy except
¢ = ag, where its principal part has the form r (¢ — ax) ™" ¢}.(ax). Following 7],
we reduce the problem (2.8), (2.9) to a system of functional equations.

Let () = ri (¢ - ax)”! + @ denote the inversion of ¢ with respect to the

circle Ty. If a function f(() is analytic in | — ax| < 7k, then f(C{'H) is analytic

in |( — ax| > 7. Basing on (2.8), we introduce the function analytic in D and
all Dy:
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(1 + #_M) ACEDY (1 = i) [m

m#k

(

(¢ = am) o] = 2mg + (1= 22 (¢ = 00) T

Q(¢) = < € =a]l <85, B=1,2.40

(14 &) p(¢) - ; (1 & ﬁ“) [‘I’m(cfm))

o Hom

~ (¢~ am) Fulam)], Ce€D.

“

Let us calculate the jump of §2(¢) across T},

Q%) - 070 = (14 ) o0~ (1- L) [0 - (¢ - o) Flan

- (l + —rik) dr(t) +2p (o —af)t - (1 - L) (t — ay) q’:’ (ae)
Hk ek
It follows from Eq. (2.8) that this jump is zero. Hence, Q({) is analytic in
C U {oo} by the principle of analytic continuation. Then the Liouville theorem
implies that the function () = pg, where pg is a constant. It follows from the
definition of 2({) in Dy that

{2-10) (1 = “_H'k) QSA (() Z (l = i) [‘I’m(C(,,,)) (C ‘Im) m (“m)
Hk e Hy

45
I —ax|l £y k=1,2,..,n.

+ po + 2punkC — (1 = *‘u?) (¢ — ax) ¢ (ax),

This is the first set of functional equations relating the unknown functions ¢ (()
and ®4(¢). The definition of ©(¢) in D yields

@) 0+0el) =3 (1= ) [FalG) - € - o) Fled] +

e Hm
¢ e DUID.

Hence, if ¢4 (¢) and ®(¢) are determined, ¢ can be calculated by (2.11).
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We now proceed to deduce the second set of functional equations. First we
differentiate (2.11) and substitute it in (2.9)

(2.12) (m— ﬁ«nk)qﬁk—(t)+ (n+ﬁ) By (t)
bk ik

- (o) (- ) [ -]

m=1

2
T -
#4000 = 2ume (T aw) el =

Introduce the function analytic in D and meromorphic in Dy

(om0 5 (- 2) (o

2 m#k
i i”;m - a_m) [((Dm(C(m))) = (f?;n(ﬂm]]
= Z (h s “—Rm) ¢m(C(m)) SI= 2ﬂ ( —_ QE)

m#k

o — ‘2
M(C) = S % (C 5 +ﬁ)1 K—akl < Tk, b=l om

S > )

m=1
n

X [((I‘”‘{C(m})) = (f);n((lm)] = z (h". = ﬁﬁm) ¢m(C€n;))!

m=1
(eD.

“

Let us calculate the jump of w(({) across T}

wh(t) —w (1) = (L + ) $(t) + (% “‘_*) Z (1 R f;)

m=1

X [((‘D (t’('m)))} - ¢’k{ak)] - (H. + i) By (t) — 2u (o’ — af)

T2
X (t —kak + ak) - (n - ;—M) Pr(t).

It follows from Eq. (2.12) that w'(¢) — w™(t) = 0. Hence, by the principle of
analytic continuation, w(() is analytic in D and Dy (k =1,2,...,n) except the
points { = ay. The generalized Liouville theorem implies that
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ey = S TR
(213) (©) § tog, T

where g is a constant,

@14) =+ o) (s 2 —1 - L) - Gy (1- £,

I ik
=il o m
It follows from the definition of w(({) that
(2.15) (K’ B '&) q’k(C) = Z {(’” — Lﬁm) ¢m((;m))
Hi ikl Hm
O ST SR (tb & ))’ i (am)
T T i e i
2
— 2uny ( Tk -i-ﬁ) +w(C), |C -~ le St =12y M
¢ —ay

This is the second set of functional equations. 2n relations (2.10), (2.15) consti-
tute a system of functional equations with respect to ¢ and @4 (k = 1,2,...,n),
where ¢ (¢), ®x(C) — 72 (¢ —ax) ™" #i.(ax) are analytic in Dy and continuously
differentiable in D U T}. The definition of w(¢) in D yields the relation

(216)  (14#K)$(C) = w(C) - i( o +m) (ui)

C_am

m=1

< [(@m{g;m)})' % 4"5“(““1}} o (,; = ﬁ"‘m) Im(fmy)> € €D.

m=1

3. Solution to the functional equations

It is possible to solve (2.10), (2.15) by the method of successive approxima-

tions. Here we only note that this method is applied at least when 1 — £ and
Hm

K— -ﬁ—.«;m are sufficiently small. This case corresponds to weakly inhomogeneous

m
materials, when g = g, and & = K.
Now we would like to present another method, the method of undetermined
coefficients, based on the addition theorems [7]. Put
2
Tk

(31) ()= aw(C-ar), B(0) = K+ 3 B (¢ —ap)',
1=0 {-a 3

k= Ay 20 my
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where aqi, B are unknown constants. Then

(32 Il = Zamr = am) ™ By — (¢ = am) B lam)

(@G| ~ Fnlam) = Ztﬁ;mr (i R el

Re-expand the functions (3.2) in the powers of ({ — ax) with m # k, using the

relation ,
o e 1 i ( ¢ —ag )J
(—an = QA — A ;

a
ko

which can be considered as an addition theorem. Then

m=it i( —ak)j

!:D a; =; a.h =0 am — a
' st T ( 1)!'1 21
d * ] I (o o E
{ m(C(m)) m( m) “ mk{am ak)H.l
2 141
> ( = )J
=l Om —

Substitute these expansions in (2.10) and (2.15), select and equate the coefficients
of the same powers of ( — ax. As a result, we obtain a system of linear algebraic
equations with respect to ey, and Bin,.

This system can be solved by the method of reduction [5] which consists in
replacing the infinite sum ) >°_, in Eqgs. (3.1) — (3.3) by the finite one Egzg-
The number N is determined according to the desired accuracy. Here we consider
the simple case N = 1. Then Eq. (3.1) becomes

B4 B~ ookt ek (€~ ax)s BoQ) ™ FEE + o+ B~ an).

¢
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Substituting (3.4) in (2.10) and (2.15) and selecting the coefficients on
(¢ —ax)’,(s = 0,1), we obtain a system of R—linear algebraic equations with
respect to po, qo, Qok, ax = ik, Pok, Bk = Pik. It is easy to check that the
coefficient with (¢ — ax)™" in (2.15) gives an identity. Further we consider the
case when the inclusions are sufficiently far away from each other, i.e., the value
R = maxg m, T |ak —amI_] for m # k is sufficiently small. The remaining
equations up to O(R?) are

2
i M Tmﬁm t L Yo
3.5 1+—n)a =—E (1——)———-—+2 —(1——)x~,
( ) ( P, k k P ( m}g KTk Lk (873

aE — a

(3.6) (n + ﬁ) Br

Ik

2t

m#k Qap — am)

= Z ( ) _E"_?B__s,ﬁma—k,

m#k [a-‘- e, Gm]

The coefficients corresponding to the constant terms give equations for the values
ok, Boks Po, qo- The values agk, Bok, Po, go do no affect the stress distribution.
In accordance with the general theory [9], some of them remain undetermined.
Thus we concentrate our attention on the system (3.5), (3.6) and do not determine

@0k, Boks Pos qo-
The zero order approximation of R? for Egs. (3.5), (3.6) yields

(0) 2pmy, (©0) _
(3.7) o) = —fg——m0mr, B
S Boas
Hi Hi

Then Eq. (2.14) implies that

¢\ = dum + pXi (n Fol Z5_ ﬁmf) .
m ik

Substituting a ,8[0) and qfto) in the right-hand part of Egs. (3.5), (3.6), we
obtain the ﬁrst order approximation

2
1) _ (0) 4(1 * fi ) 1
(38) ak GL 1 B Z ab = 7}']’?12 + i B _&_1

k Km
ia Hm Han
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since = 0 up to O(R"). This process of the successive approximations can be
extended and one can get the arbitrary approximation O(R?*") for ay, Br. We
stop at the formulae (3.8) which are valid up to O(R?).

It follows from (2.11) that

u+Mﬂo=fj@—ﬁJ( In YE;

Hence,

(3.9) ¢'(¢)=0 upto O(R?),

since Bm = 0 up to O(R®). The function 9'(¢) is determined from the definition
of w(()

2
0
(3.10) 271 ( —am) ,

where
Anm unm
(3.11) A = ;
Him Hm

4. Local thermoelastic fields in the composite material

In the present section we gather the formulae concerning the local fields in the
material discussed. Applying (2.3), (2.5) and the results of the previous section,
we determine the local fields. The local stresses have the form

2055:1) Reﬂ(l) ¢ € Dy,
(4-1) Ozz = iReTl ( T'm )2 ¢eD
m:] m C—am 3 ?
201‘} +Repl", ¢ € Dy,
2
(42) Iyy = s Z R(")’(l] ( ) E C c D,
m=1
g, ¢ € Dy,
(4.3) Ozy = Z ( )2
) g Im'y, ] QE De
m=1
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(1) H#
4 -, € Dy,
(44) Ogz = % Mk C x
0, ¢ €D,

where ail) and ﬁ,{:) are expressed by Egs. (3.7), (3.8).
The local displacement U = u + 1w is calculated with (2.5) up to an additive
constant

s 1 _—
ﬂ[ai” (s~ 1) a4}~ BOTE =) | + oF (¢ = ax),
L
o ) + o C: CED
4 2“!::1 : ¢ —ak

This formula yields the following relations for the deformations:

1
9 f "2? [ail) (ke — 1) — Reﬁil)} +ar, ¢ € Dy,
U k
(45) —_— e 1 n 9
oz £ N Reaid ( Tk ) r
Yk +a®, ¢ eD.
4 2,(52:;' C —ag
. 1 A
By 2k [0‘5:1] (ﬁk—l)+Reﬁ,(€l)] +af, (€D,
) 2;.‘. st k C — ax 1 £
1
-_—Imﬁ“), Ce Dk,
(4.7) du _ ) e !
: B | N ™ (r_;)
Tk , (€D
[ 2 ; ¢ —ai
8 ' ilmﬁ('l}’ ¢ € Dy,
v Q{Lk
{ 2}'_1‘, P k C—ak 3 .

5. Local elastic fields in the composite material

It is convenient to determine the effective constants of the composite materials
in two steps. First we calculate the pure elastic effective constants. Second we

http://rcin.org.pl



THERMOELASTIC PLANE PROBLEM FOR MATERIAL... 927

find the effective coefficient of thermal expansion. Let us recall that we discuss
the isotropic material in macroscale.
Let us fix the external forces

ol®) =1, cr!(.,":;f’} = ai%") =0.

Then the complex potentials become [9]

() ey = & () (¢} = &
AN =25, ) =2,
and the disturbed potentials ¢ and 1:!: in the domain D take the form
FO=0l)+5 D=9 -3,

where ©(C) and ¥(() are bounded at infinity.
The contact condition (2.6) becomes

4
=]

— r—— —_ ——

bk (t) + 1 (1) + Pr(t) = o(t) + ' (2) + ¥(t) +

3
-1
4

E )

(1) [ogult) - B0 - )| = wolt) - 60 - B0 +
Jk

t+

1

o | =+

it——ﬂ.kl =¥k k= 1,2,..,n.

Equation (5.1) corresponds to Eq. (2.7). The difference between Eqs. (5.1) and
(2.7) appears in the known terms. We repeat all arguments of Secs. 2 and 3 to
solve Eq. (5.1). If we are looking for ¢y and ®; in the form (3.4), we obtain, with
the accuracy of up to O(R?),

” l+kK
(5.2) o = —
k
14+& T 2 1+k
(5.3) 5!::“—2%1(& :na) = s
iy T mk T 2(£+n)
Hi
where ;
lﬁ—l—Jl——r-:.k+f—
I L
(54) 'Yk=§ 2+iﬂk_i . k=1.2. . n.
1k i

Here the coefficients ay, Bk, v are written for the pure elastic statement. They
correspond to the coefficients ai”, 6};}, 'y}tl) for the thermoelastic statement (see
Sec. 4). In this case, the complex potentials (up to additive constants) become

(5.5) r(C) = ag (€ — ak) , ¥i({) = B (€ — ax) .
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Moreover, we have

(5.6) P(0) =0, ¥(0) = 3% i’
k=1

within the accuracy of an additive constant and O(R?).
Applying the second Kolosov-Muskhelishvili formula (2.3), we obtain

—~2Re B, ¢ € Dy,
" s n i N2
(5.7) Ozz = Oyy = 2Rez'yk( d. ) L1 CED.
k=1 C — O
It follows also from Eq. (2.3) that
2ay + Re By, { € Dy,
(5.8) T e re \?
! vy — —ReZ'nc( ) , Ce€D.
(= e =8
The displacement vector U = u+1v is calculated (up to an additive constant) by
1
— [ste(Q) - (FO - B@)], e Dy,
ik

—_—— — K

: [w(C) (PO - PO +

I
C+‘2’], (e D.

Substituting Eqs. (5.4) and (5.6) in (5.9) we calculate

_Rebr ¢eD
(5.10) 2 n pe 2 :
. oz 81)‘ 0 }'Rf‘ ( Tk ) -+ _1_ SN B,
P ;'nc C_ak 2;111 5 3
1 .
— [k (8k — 1) + Re ], ¢ € Dy,
o) - 2, 2
Rt a_y i) —iR Tk _l_K.—3 D
24 e;“(C—ak +2U g
K — 1
ouw  Ov i %, € € D,
(5.12) =‘8—+5‘= iy
=R = " P
44
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6. Effective constants

We apply Maxwell’s formalism discussed in Sec. 1 to calculate the effective
constants in the generalized dilute case. We assume that the composite material
contains groups of circular inclusions and all the groups are the same, one of
them is displayed in Fig. 1. The composite material is shown in Fig. 2.

Using the formulae from the previous section concerning the purely elastic
field, we first calculate the effective elastic constants. We shall use the following
equations of elasticity:

(6.1) Ooe = A0 + 2”?,
(6.2) Tyy = A0 + 2”2”

Here we use the Lamé coefficients

Ev E

A= e

in Eqgs. (6.1) and (6.2) which are understood as piece-wise constant functions.
Let us subtract (6.2) from (6.1)

and average the expression in the latter equation applying (5.7) and (5.10),

(6.3) (0zz —0yy) = =2 ReByv + 2Re ¥y + v,
k=1
du v oy 1 1
6.4 e N N =
(6.4) <r’).’c 8y> kzﬂ P Re Brvy + uRe Vo + 2“1.:,

where v =1 — Y}, vy is the area fraction of the matrix,

1 = Tk &
6.5 v =—[/ ( )dmdt—- ( )vk.
65) o= Dg% By y ZZ% ST

=1 m#k
We calculate the average (-) |U| / / -dzdy, where U is a “representative cell”

in Maxwell’s formalism, i.e., U is a domain which has area |U| = —k for each
Ve

k =1,2,...,n and which contains only one group of the inclusions. Here v} is the
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area fraction of the k—th inclusions. In particular, U can be a rectangular cell,
doubly periodically continued onto the whole plane.
Use of the averaged equations

ou v
(022 — ayy) = 2, <EE E *(.g>

yields the formula for the effective shear modulus

n
% ~ Y Refiui + Relg
(6.6) e = p—p= :

- EReprvi + Re T
k=1 ,Uk

where [ is calculated by (5.3), ¥y is calculated by (6.5) in which v is calculated
according to (5.4).
The effective modulus A, is found from the averaged Eq. (6.2)

(6.7) (%y) = Xe (0) + 21 <g;>

It follows from Eq. (5.8) that

=
2

(oyy) Z (2ax + Re Bi) vx — Re .
k=1

Use of Eq. (5.11) yields

v > Vg Re ¥y K—3
<—> = (ak (ki — 1) + Re Bx) T 5 + P v,

Then Eq. (6.7) implies
(2ax + Re Bx) vp — Re ¥y

(6.8) A=

k—1 |
i} Vg
dp ; Pk

n ‘
_Re v k—3
Z a (K — 1) +R€ﬁk} [I+ v
= Jek Iz 4p
e 1 T 1
K— 3=
v+ Uk
4y g Hk
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In order to calculate the effective coefficients of the thermal expansion, we
come back to Eq. (2.1) and local field derived in Sec. 5. First, we calculate

Ae L e (3Ae + 2p¢) .

6.9) Ve = ——r,
( ' : 2(/\8 +ﬂe) Ae + pe

The second homogenized Eq. (2.1) yields the formula

n

1
10 T — (EaT b 4 - ¥
(6.10)  Eeal = (BaT) + ; o @k (ke = 1) + Refy) — -~ Rel,
where
n
(6.11) (Ba™) =" Exafvg +vEa”
k=1
is the mean value of the piece-wise constant function Ea”,
2
(6.12) Z Z ( _ak) V.
k=1m#k
Here we also use the relation E = : ;
2 14w
Applying (4.1) - (4.4) we calculate
n
(v (02z + 0yy) — o) = > (1+ v [2ak (20 — 1) + Re B vi
k=1
+(1+v)Re V.

Therefore, Eqs. (6.10) — (6.13) yield the formula

(6.13) Eal Ea7)+zl+y [ (I (2 — 203) + (02 + 201+ 2) Reﬁf;”]

2
14+v

Re W,

where a ) and ﬁ(l) are calculated from the formulae (3.7) and (3.8), ¥ has the
form Eq (6.12), E, is given by Eq. (6.9).

7. Conclusion

We study two-dimensional thermoelastic composite materials with circular
inclusions, when the temperature is constant everywhere in the material. Using
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the complex potentials of Kolosov-Muskhelishvili, we deduce the problem to a
system of functional equations which can be solved by the method of successive
approximations. This allows us to construct a simple algorithm to determine the
local stress and displacement fields in analytic form with the accuracy of up to
the term O (R2], where R = max *rkd;,}l, i is the radius of the k-th inclusion,
dim is the distance between centers of the k-th and m-th inclusion (k # m) (see
formulae in Secs. 4 and 5). The effective elastic constants are written also in
analytic form (6.6) and (6.8) up to O(R*). The effective coefficient of thermal

expansion is expressed by Eq. (6.13).
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