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THE DIAPHRAGM is treated as a membrane subject fo a uniform pressure. The muscle
action is modeled as a uniaxial active stress in the direction of muscle bundles. In the
present paper we look for the generalized stress distribution in the membrane. The
shape of the active diaphragm is approximated by a surface know as a cyclide. For
this simplified shape, a closed form solution of the equilibrium equations is obtained.

1. Introduction

THE DIAPHRAGM, by virtue of its curved shape, converts muscle tension to trans-
diaphragmatic pressure and muscle shortening to volume displacement. During
breathing, the displacement of the diaphragm is large (see [1, 2]); for example in
dogs, in quiet spontaneous breathing, muscle bundles shorten on average to 75%
of their original length [1].

F1G. 1.a) Typical dog diaphragm displacement during breathing.

') The paper was presented at the 32nd Solid Mechanics Conference: SolMec’98, held in
Zakopane, September 1-5, 1998.
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FIG. 1. b) Schematic view showing central tendon (CT), costal diaphragm (S') and
crural diaphragm (S?).

The diaphragm is a rather complex muscular structure. Some features of
the diaphragm common to many mammals, such as humans and dogs, can be
recognized:

a) The muscle bundles extend from the chest wall to a tendinous island known

as the central tendon.

b) The muscle bundles and the central tendon form a curved sheet that
separates the abdominal from the thoracic cavities.

¢) The muscle bundles are connected transversely by fibers of connective
tissue.

FiG. 2. b) Section of diaphragm tissue transverse to muscle fibers, showing collagen
fibers.
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STRESS DISTRIBUTION IN THE MUSCLES OF THE DIAPHRAGM 91

The complex geometry and mechanics of the diaphragm, which are crucial
to its function, have not been thoroughly described. As a result, the relations
between muscle tension and transdiaphragmatic pressure are poorly understood.

The description of the geometry and of the state of stress of the active di-
aphragm, that is of equilibrium configurations at end of inspiration, is the scope
of the research we are currently conducting in collaboration with scientists from
the Baylor College of Medicine of Houston. In this paper the more mechani-
cal results of this research, regarding the stress analysis of an active membrane
modeling the canine diaphragm, are presented.

The central tendon consists of connective tissue and is effectively inextensible
under physiological stress. The muscle layer is bounded by membranes consisting
of connective tissue and contains connective tissue. At physiological level of
stress, it is effectively inextensible in the direction transverse to muscle fibers.
Therefore we picture the stress along the muscle bundles in the active diaphragm
as being primarily the results of the active stress in the muscle and the stress
in the transverse direction as being carried by connective tissue. Considering
the small resistance to bending of the diaphragm, its structure is treated as a
membrane with no bending stiffness. Due to its curved shape, the diaphragm
converts this stress into a pressure difference across the surface, balanced by
the recoil of the lungs. Each muscle bundle, when activated, exerts a force per
unit length in the direction of the curvature vector of the surface. Such force is
proportional to the curvature.

In recent papers BORIEK et al. [5] reported data on the shape of muscle bun-
dles and the shape of the surface in the mid-costal region of the canine diaphragm.,
The data were obtained by attaching radio-opaque markers along muscle bundles
on the peritoneal surface of the diaphragm in this region, and then determining
the three-dimensional locations of the markers from biplane videofluoroscopic
images recorded during passive lung inflation and spontaneous breathing. They
found that, in this region, the surface of the diaphragm has approximately the
shape of a right circular cylinder with the muscle bundles forming circular arcs
that lie in planes orthogonal to the surface.

ANGELILLO et al. proposed a theory of the structure and shape of the di-
aphragm [6]. The theory was based on the assumptions that muscles of the di-
aphragm lie along lines that are both lines of maximum curvature and geodesics
of the surface. These assumptions were shown to be equivalent to the assump-
tion that muscle bundles lie in planes that are orthogonal to the surface. Thus
the theory was based on the hypothesis that the relations between muscle bun-
dles and surface geometry observed in the mid-costal region are in fact universal
relations that can be obtained everywhere.

If muscle lines satisfy this assumption they are, in a sense, optimal since their
energy consumption in deforming the surface is minimal: if the muscle lines are
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lines of principal, maximum curvature, the contribution of the muscle force to
create pressure difference is maximal; if the muscle lines are geodesics, no energy
is lost in deforming the surface since the curvature vectors of these lines are
orthogonal to the surface.

The class of surfaces with these properties was determined. It is a restricted
class. In a surface of this class all the muscle lines must have the same shape,
the orientation of the muscle lines is restricted. A special collection of surfaces
belonging to this class is that of surfaces spanned by circular arcs of constant
radius. Surfaces formed by circular arcs that are both principal and geodesics
are known as cyclides (see HILBERT [7]). In a recent work, [8], an example of
fitting of the costal and crural dog diaphragm by two cyclides having different
radii and meeting smoothly at an interface is presented.

Neglecting inertia effects, we are interested in the equilibrium configuration
of the diaphragm in its active state. Since the diaphragm is in contact with the
lungs and the abdominal organs through a fluid interface, as a first approximation
we consider the diaphragm acted on by a uniform pressure p normal to the
surface, representing the transdiaphragmatic pressure. Therefore we study the
equilibrium of a membrane surface having the form of a cyclide of radius p and
subject to a given uniform pressure.

Using physical stress components (011,022, 012) in the curvilinear coordinates
of principal curvature of the surface (as a result of the optimality assumptions one
family of these lines coincides with the muscle lines), the equilibrium equations
of the membrane subject to a uniform pressure can be solved, imposing sufficient
stress boundary conditions. The problem, with convenient boundary conditions,
admits a closed-form solution with the shear stress o2 = 0 everywhere, that is
with the fibers of connective tissue orthogonal to the muscle lines.

2. Diaphragm theory

2.1. Preliminaries

The geometry of the surface in its actual configuration ( Eulerian description),
is described, in the Euclidean three-space, by the position vector

(2.1) x = x(t!, %),
depending on two curvilinear coordinates ranging in an open, connected domain
2 of R? (see Fig. 3).

We assume that the surface is smooth in the sense that x(t', %) belongs to
C3(£2). The natural base vectors associated to the curvilinear coordinates £'. *
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Fic. 3. Shape of diaphragm surface used for stress analysis. In the right-hand picture
the top schematic view of the portion modeled is shown.

are denoted 5 3
¢ —_— _x p— .-_x_.
(22) g1 = 611’ g2 Bt2.

The controvariant base vectors g¥ are defined through the relation
(2.3) g” - gs = g, a:B=1:2

65 being the Kronecker delta. gs is the unit normal to the surface, defined by
the relation
9 4 B1 X g2
(2.4) g3 = ——.
g1 X g2l

Taking into account that the element of area da = Jdt'dt?* is

(2.5) da = |g; x go|dt'dt?,
we can write
B1 X 82
2.6 g = —
(2.6) 83 7
The covariant components of the second fundamental form p of S are denoted
08a dx
2.7 — O g R s

2.2. Forces and equilibrium equations

The muscle fibers are arranged in bundles that span the diaphragm surface.
In cur continuum model we model the muscle bundles as a family of curves, say
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i, on S and consider the coordinate lines t? directed as the p lines (Fig. 1b,
Fig. 3).

The material restriction on the generalized Cauchy stress T (force per unit
length)

(2.8) T = T%g, ® gs,
define § as a membrane.
Therefore the equilibrium equations of the diaphragm in its active state are

oT
Rl ==
(2.9) 578 TP8s=0,
and in component form
(2.10) THY + T*7g" - goy + Tg7 - ggy =0,
(2.11) T pes +p =0,

where a comma followed by an index denotes differentiation with respect to that
index.

2.3. Constitutive assumptions

We model the high number of discrete internal forces exerted by muscle fibers
as a uniaxial active stress. Then it is assumed that the stress can be decomposed
in the following form

(2.12) P=T% -
where T? is the passive stress, and
(2.13) T = 0%gy ® g2,

is the active stress.

Considering that both the shear stiffness of the muscle tissue, and the elastic
component of the muscle fiber itself is low, as a first approximation we can assume
that the stress T consists of a uniaxial active stress in the direction of the muscle
fibers and a uniaxial passive stress in the direction of the collagen fibers

(2.14) T = o’b; @ by + Oﬂ'g;'g ® g2,

b; being a unit vector in the direction of the collagen fibers.

Therefore, introducing these simplification, the diaphragm, in its active state.
behaves essentially as a net.

For what concerns the passive stress-strain behavior in the b; direction, as
pointed out in the Introduction, in the transverse direction muscle tissue exhibits
a sort of locking behavior at stretches of about 1.1.

http://rcin.org.pl



STRESS DISTRIBUTION IN THE MUSCLES OF THE DIAPHRAGM 95

Our idea, based on the experimental observation that the diaphragm results
pre-stressed in the rest physiological position, is that, in the functional state, the
initial strain in the by direction is large enough to come up against the stop in that
direction, that the transverse fibers displace at 1.1 of their natural length during
normal breathing, and that the muscle tissue behaves essentially as inextensible
along by. The passive stress o” becomes a reactive stress taking any value that
is required for equilibrium.

3. Diaphragm shape

In [6] ANGELILLO et al. propose a theory on the structure of the diaphragm
based on two assumptions:

1. Muscle lines are geodesics of S;

2. Muscle lines are lines of principal (maximum) curvature of S.

As a consequence of these assumptions, it is shown in [6] that the shape of
the p-lines and of the surface § itself are severely restricted.

In fact, it can be shown that

i) the p-lines are plane;

ii) the p-lines are universal curves on §;

iii) the orientation of the p-lines is restricted.

A particular simple class of surfaces satisfying all of the above implications
is represented by the so-called cyclides, that is surfaces spanned by circular arcs
of constant radius that are both principal and geodesics.

We model the diaphragm surface as a cyclide of radius p (or eventually as
a composite cyclide, see [8]) with the muscle line g directed along the circles.
Such a surface can be also described as formed by circles lying in planes that
are perpendicular to an arbitrary line I'°, with their centers on I'°. Since I'° is
arbitrary, the cyclide is a flexible surface with a variety of shapes.

To describe the surface S we identify ¢! as the arc-length along I':

(3.1) e =z =x@"), t'eD:

We assume that I'¢ is a plane curve and call R(s) the radius of curvature of
I'*. This assumption is crucial to get a simple form of the equilibrium equations.
Let us introduce the Frenet triad along I'“; tangent, normal, binormal:
k] ¥ 1(2. k;;.
Since I'“ is plane then
1 1 1

(32) kf} = —kg, 3 = ——k1 +Tk3 — _R

R R k1, {'! = '-Tkg = 0,

where (-)' denotes differentiation with respect to t!.
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On introducing the vector
42 12
(3.3) #(t?) =p (cos —k» + sin —k;) :
P p
we describe the cyclide surface S in the following way

(3.4) S=dx=3") +=(?), @F)eBcRrR?},

t? being the arc length along the muscles.

Notice that if S is a cyclide, with this choice of the curvilinear coordinates
(¢',12), whether or not I'® be plane, then the natural base vectors g, g» tangent
to the curvilinear lines ¢!, #? are orthogonal and principal.

In particular it results

& _Ox p $
(30) B1 = @ = (1 i i R cos ‘;;) k|,
ox . t? 3
(3.6) g2 = 55 =sin ;kg + cos ;J—k;;,

and g7 is a unit vector. Notice that R, representing the curvature of the line of
centers, is a function of £!.

Calling
- p
(3.7) f=(1+ﬁt:05;)‘
we have
(38) g1 = fkl

Notice that g is parallel to k;.

Observing that f > 0, since muscle lines do not intersect each other, we also
have
(3.9) g1l = £

The unit normal to the surface is now
X X . f2 $2
s S sin —kg + cos —kg =

3.10) s 2
( = lg1!lg2| 5 p p

sl

The contravariant base vectors g’ defined by the conditions (2.3) are in this
case
1

.11 1 = 2k,
( ) g fl
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9 I - E E
(&:-12) g° = g9 = sin —ks + cos —g3,
p p
Bl W (B TR T
(3.13) g° = g3=—Cos pkg + sin pk'}'

4. Stress in the mid-costal diaphragm

We can write
(4.1) Pr. ='plT), 7 € [0,7]
for the pressure at any stage of spontaneous breathing.

To simplify notations we take p = pr. Neglecting inertia effects, the Cauchy
stress must be balanced by the pressure p. Locally (recall (2.9), (2.10) and (2.11)):

JT
4.2 —g< 3 =
(4.2) 58 Tre=0,
where
(4.3) T = 0"b; ® b| + 0%g2 ® go.

By rewriting T in physical components 0,3
("1'“1) yi =Ucﬁgn ®§ﬁ, azﬁ: 1121
{&1.82.83} being the orthonormal triad directed as the natural base vectors

{g1.82,83}:

(4.5) g1 =g/lgll. B2=g2 Bi=g3=g>

the following relation between the physical component of T and the active and
passive stresses are easily found:

(4.6) o1 = oPcos’w, o3 = oP sinwcosw,
(4.7) 092 = 0% + o sin® w,

o

o11

Here w is the net angle, that is the angle between the direction b; of the
fibers of connective tissue and the base vector g;, orthogonal to the muscle
direction.

If the deformed shape is known, the equilibrium equations can be solved in
terms of stresses if sufficient boundary conditions on the stress are given. We
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consider in particular the case in which the boundary is the line t* = 0 and
restrict to the case of “determined” boundary conditions. An example of such
determined boundary conditions is

(4.9) g) - Tgd = p(t'),

where g, g9 are the natural base vectors at ¢ = 0, and (t!) is a given scalar
function of ¢'.

In the costal part of the diaphragm the surface is well approximated by a
cyclide of constant radius p whose line of centers I is a plane curve, as
the surface shown in Fig. 3. A particular approximation of the costal diaphragm
of a dog at end of inspiration obtained by ANGELILLO et al. in [8] is show in
Fig. 3.

Substituting (4.4) into equilibrium Eq. (4.2) and recalling (3.11 - 3.13) and
(4.5), we have

B, el 5 B d L2 :
(4.10) @(aaﬁgat@gﬁ)%r@{oaaga,@gs)gzwa=U.

Expanding the sums in (4.10):

d 2 .53 o, . e e
(4.11) s (61181 ®E1 + 01281 ® 82 + 02182 @ &1 + 02282 D &2) T

d ~ R N < " i i 8
+@ (01181 ® &1 + 01281 ® &2 + 02182 @ &1 + 02282 D §2) g’

+0g% = 0,
and taking the derivatives, we are left with
1 K oy 0 1 N A 1 " 1
(4.12) d?all,lgl 5 FOuBLL o 71281 (82,1 -81) + Fo2182 = FonE

1T = A . . 5
+ ?02232 (&2,1 - &1) + 012,281 + 022282 + 022822 +0gs = 0,

where an index, say %, preceded by a comma stands for differentiation witi respect
to #*.
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Recalling (3.2), (3.5), (3.6), (3.11 — 3.13) and (4.5) we have
(4.13) lor g1 + s o (sin t2g cos t2g ) 4 - o sintzg
‘ —011, = —g2 — = — 0192 8In —

7o+ gron 5 &2 75 RF! 1

st ) 5 s’nt2‘ : o sint2g + 012281 + 02298

—0721,182 — 57021 Sin —§1 — =-0228in —§2 2,2 22,282
7 21,182 RS 21 pgl Rf 2 P 12,281

k= %
——02283 +pg3 = 0.
0
In components in the local Cartesian frame {g,82, 83}

t?

=011,1 + 0122 — 550128 — =0,
£ Rf
1 1 A &
(4.14) =09211 + 0222 + =011 8I1 — — —0x sin— =0,
i Rf g Rf p
1 A | o
——01 €08 — — =092 p=0U
Rf p P
Or, since f = 1+ p/Rcos(t?/p), Rf = R+ pcos(t?/p),
2 e
: 7011,1 + 0122 — t201251ﬂ;=9,
1+ —=cos— R+ pcos —
R p p
5 1 . 2
(4.10) 7021,1 + o322+ R ] (011 - 0‘22) sin — = (),
1+ 2 cos— R+pcos£- &
R " p p
2
cos — 1
ayy 2 + =022 =p.
R+ pcos —
p

By multiplying the second equation by Rf = R + pcos(t?/p), it can be written
in the form

d & oy
(4.16) Rogi 1 + % o2 | R+ pcos ; + o1 sm; =
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The differential system (4.15) can be solved if proper conditions are given at
the boundary. To any of these boundary conditions it corresponds, through
(4.8), a particular distribution of the net angle w. We look for solitions of
(4.15) compatible with the conditions w = 0 (or, what is the same, o3 = 0),
corresponding to an orthogonal net.

Indeed, on assuming o2 = 0 at the boundary (this corresponds to corsidering
the boundary condition (4.9) with ¢(¢') = 0, the stress field

B )
pcos? —
t2
B R+ gcos =
(417) g9y = 12 2 + pp t{g 3
cos — (R+pcos—) R+pcos—)
f

o1g = 0,

solve (4.34). To avoid that the normal stress 11 blow up at t* = pmr /2, we assume
B = 0 and consider the solution:

12
i R+ gcos-

(4.18) YT 092 = pp—tg—, o1z = 0.
R+ pcos —
p

This stress field appears as the generalization of the stress distribution for a
toroidal surfaces to cyclides generated by plane, but otherwise arbitrary, line of
centers (see, for example, [9] p. 213).

In [10], EVANS and SKALAK, in dealing with cell membranes, consider the
mechanics of membranes and give the equilibrium equations for axisymmetric
surfaces. A torus is axisymmetric, but here we have shown that the carespond-
ing stress distribution can be generalized to cyclides generated by plane line of
centers, a set of surfaces that are not axisymmetric.

According to (4.8), if the net angle w vanishes, then the fibers of connective
tissue are orthogonal to the muscle lines, o) = o7, 093 = 0. The normal stress
o1y along the fibers of connective tissue is constant and the normal stress og2
along the muscle fibers depends on ¢' through R.

The graph of o9s for the particular cyclide S, depicted in Fig. 3, aporoximat-
ing the costal diaphragm of a dog and generated by a plane line of centers I',
is shown in Fig. 4. Notice that the points (¢!,0) describe the line of attachment
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of the diaphragm along the chest wall and the point (¢',¢%) = (0,0) corresponds

to point A in Fig. 3. The value taken for the pressure is p = 0.2, the radius
p =4 cm and the expression for R is

R = 8.05 — 0.67 cos (%t‘) + 0.22 cos (%t') b

On
1.2

= o

2
Ny

W

1 2 3 4 b 8 T

FI1G. 4. 3D Plot and stress profiles at: t' = 0(1), t! = 2.5(2), t! = 5(3), ¢! = 7.5(4),
t! = 10(5), of the stress component g25.

Summing up, we can draw some conclusions.

Solution (4.18) generalizes to cyclides the stress distributions for a pressurized
torus.

The solution we picked for the stress is compatible with the assumption that
the fibers of connective tissue are orthogonal to the muscle lines in the active
diaphragm configuration. As a consequence of (4.18), the active and passive
stresses are principal stresses over the surface.

The stress along the fibers of connective tissue is constant.

The variation of active stress in between the lines of attachment, from chest
wall to central tendon, suggest that the thickness of the diaphragm should be
larger close to the central tendon. This is consistent with some physiological
observations that the diaphragm is thicker at the central tendon end [11].
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