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RECENTLY SEVERAL PAPERS were published on the subject of the CBS algorithm.
This paper presents a brief summary of the theory of the algorithm and some recent
findings on stabilization procedures and appropriate boundary conditions. Several
solutions are also presented in this paper.

1. Introduction

IN RECENT YEARS, we have published several papers concerning the basis and
applications of the CBS algorithm to a large variety of fluid dynamics problems
[1 - 9]. The present paper summarises the theory of the algorithm and demon-
strates its practical applications. It also contains some other extensions which
are important for increasing the accuracy of the CBS procedure.

The algorithm can be used in explicit, semi-implicit, nearly implicit and in-
deed in fully implicit forms. The algorithm was initially based on a series of
preliminary studies conducted between 1990 and 1995 [10 - 12| but the split was
correctly introduced only later in Refs. [1, 2].

Before the present algorithm was available, most successes of finite difference
and finite element methods in fluid dynamics were based on some variant of the
Lax-Wendroff [13] scheme which, by approximating better to the time derivative,
also introduced stabilization of the convective terms. The method, when applied
to finite elements, became known as the Taylor-Galerkin method [14]. Later it
was discovered that for scalar variables, a direct algorithm utilizing the opti-
mal approximation along the characteristics, the characteristic Galerkin method,
could be shown to be identical to the Taylor-Galerkin [15, 16] method.

The identity of the two procedures exists only in the scalar case described
by the well-known convection-diffusion equation which is often used as a model
for fluid dynamics problems. However, for problems involving several variables,
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typical of fluid dynamics, the application of characteristic Galerkin metlod is
not possible since only a single characteristic speed must be involved. Fo this
reason, the Taylor-Galerkin procedure has been widely used [17 - 19], thoug: giv-
ing a sub-optimal approximation. Motivation of the development of the pesent
algorithm came from the fact that characteristic Galerkin procedures for a icalar
variable are optimal in the sense of approximation, and that with suitablesplit-
ting, these can be applied for the first stage of the solution of the fluid dymmics
equations. The remainder of the split being self-adjoint, can then be w©lved
optimally using the Galerkin procedure.

This split follows the general process initially introduced by CuHoRrIr [20]
for incompressible flow problems. Further motivation which originated th: new
algorithm is based on an additional benefit coming from the fact, already ob-
served, that for incompressible situations, the algorithm permitted equal (and
indeed arbitrary) interpolations for all the variables used. This sidestejs the
Babuska-Brezzi requirement in finite elements and similarly, all difficultes in
standard finite difference schemes., In the present form, the solution turis out
to be fully accurate with arbitrary interpolation for velocity and pressure for full
incompressibility.

The algorithm involves time integration and in general, the time-ste» size
will be limited by the nature of the time stepping procedure adopted in eact part
of the split. If a fully explicit procedure is adopted in the first part of the split
then the time step is governed by a Courant number defined in terms of th: flow
velocity |u| and viscosity v. If an explicit scheme is also used for the second part
of the split then a Courant number depending on the compressible wave cederity
¢ is invoked and may control the time-step size. We shall thus have here s:veral
possible categories of problems.

(a) Transonic and supersonic flows; Fully explicit process. Here gererally
fully explicit computation is preferred as the time step limitations for both parts
of the split are similar.

(b) Low Mach number, incompressible flows with low viscosity, Semi-inplicit
process. Here the flow is nearly incompressible and the time step used will be
governed by the first part of the split with the Courant number not affectedmuch
by viscosity.

(¢) Low Mach number with high wscosity; Nearly implicit process. I this
range of flow, the limiting time step again is governed by the first part »f the
split but viscosity may pose here very severe limits. In such a regime, a ‘rearly’
implicit procedure is recommended in which the viscous terms are treated im-
plicitly.
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2. The scalar convection-diffusion problem and the characteristic
Galerkin explicit approximation

Before proceeding with the description of the full algorithm, we shall recall
the application of the Characteristic Galerkin method in the explicit form to
a typical convection-diffusion process with a scalar dependent variable ¢. The
governing equations can here be written always in a conservation form as

av  oF;  0G;
(2.1) _B-t_+3£1+-(_ic_-+Q 0,

with z; being the i-th coordinate (i = 1, 2, 3),

(2.2) F, = u;¢

— the convected flux, 5

¢

2. = —k—
(2.3) G; = oz,

— the diffusion flux; here & is the diffusion coefficient.
(2.4) Q = Q(z,1)

— the source term, and
(2.5) u; = ui(z,1)

is the velocity field which is assumed to be known.

The full equation can thus be alternatively written as

3 _ 9, 9 (0
Bt “Jaij’a,rz(ai) 9= %zj R(¢)

in which only the first term on the RHS is not self-adjoint. As that term cor-
responds precisely to an advection wave moving with a velocity u, a change of
coordinates to the characteristic ones given by

(2.6)

(2.7) dz! = dz; — udt

makes the offending term vanish, leaving a fully self-adjoint system.

For such a self-adjoint system it is known that the standard Galerkin approx-
imation in space is optimal but the inconvenience of a moving coordinate system
is introduced. However, this can be overcome with suitable remeshing and the
procedure has been used in many early solutions of the above equation. Here the
work of ADYE-BREBBIA [21] and Barbara Mr6z should be mentioned followed by
much later work. For a complete review the reader is directed to Ref. [23]. While
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the exact coordinate transformation introduced no error, the simplified proce-
dures using a Taylor approximation within the time step eliminated the costly
process of remeshing (or mesh interpolation), introducing however a time-step
limitation [23]. This process is fully described in [1, 2] and also in the recent text
[23], and an explicit form can be written in fixed coordinates as

At 9
(2.8) A¢ = g™t — ¢" = AtR(¢)" % — Lt R(¢ + O(A?)
where 0 < f3 < 1 and R(¢) is defined by Eq. (2.6).

This, as already mentioned, is of an identical form to that resulting from the
Taylor-Galerkin procedures and the second term adds the stabilizing diffusion in
the streamline direction. Indeed a similar form can be obtained here in a variety
of ways and recently ONATE [24, 25| introduced an interesting form of stability
control by using so-called “finite increment” calculus (FIC). However, only the
characteristic form ensures the optimal approximation as Eq. (2.8) is derived
from a self-adjoint form in which spatial discretization by the Galerkin method
can be optimally used. We can write thus the approximation

(2.9) ¢ = N¢,
where N is the shape function and ¢ is a nodal quantity. We use the weights NT
in the integrated residual expression. Thus we obtain

(210) M@ - F") = —AY(CF" + KF" + ) — ALK 7" +£2)]
if we assume 03 = 0, as is generally done in explicit form and omit higher deriva-
tives and source terms. In the above equation

/ NTNaQ,

C= /NTg(uiN)dﬂ,

(2.11)
o &
K = / i A@dﬂ

f = /NTQdQ +'b.t:

and K,, and f? come from the new term introduced by the discretization along
the characteristics. b.t. stands for the boundary terms. After integration by
parts, the expression of K, and f; is

http://rcin.org.pl



THE CHARACTERISTIC-BASED-SPLIT (CBS)... 861

175 8
K, = —5/ b_ (u;NT) 1(u,N)dQ,

(2.12)

1[0 ™)
fsh-—i/O—H.N QdQ‘i‘bt

where b.t stands for integrals extending along the region boundaries [23].
The approximation is valid for any scalar convected quantity even if that is the
velocity component u; itself, as is the case with the momentum conservation
equations. For this reason we have presented above all the details of the spatial
approximation, since the matrices will be repeatedly used.

It is of interest that the explicit form of the Eq. (2.10) is only condition-
ally stable. For one-dimensional problems, the stability condition is given as
(neglecting the effect of sources)

h
|ul
for linear elements in which h is the size of the element.
In 2D problems, the critical time step may be presented as [26]

At, + At),’

where At, is given by Eq. (2.13) and At, = h?/2k is the diffusive limit for the
critical one-dimensional time step.

Further, with At = Af. the steady-state solution results in a diffusion
change (almost) identical to that obtained by using the optimal streamline up-
winding procedures [23|. Thus if steady state solutions are the main objective of
the computation, such a value of At should be used in connection with the K
term.

(2.13) At < Aberiy =

(2.14) Aoy =

3. The CBS algorithm for the Navier-Stokes equations

3.1. The equations of flow — Navier-Stokes problem

The full conservation form of the Navier-Stokes equations for compressible
flow is traditionally written as

oV OF; é‘G
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with
(3.2) VT = (p, pur, pus, pE)
being the independent variable vector,

(3.3) FT = (pui, pusur + 8i1p, puiug + diop, ui(pE + p))
defining the convective flux vector, and

(3.4) G = (0, -7i1, —7i2, i — Tiju;)

defining the diffusion fluxes. Finally,

(3.5) QT = (0, pg1,pg2, plgitii + ¢ ))

gives the source terms.
In the above relations, stress components 7;; are related to velocity gratients

by
é’m,- du; 2 auk
(3:6) =i (aa:j dzr; 30z ”
u; are the velocity components; p is the density; E the specific energy; ¢; the heat
flux, ¢ the heat generation per unit mass, p the pressure; g; the acceleation

due to gravity.
The equations are completed by the universal gas law

(3.7) p = pRT

where R is the gas constant and T is the temperature.
The sound velocity is defined, assuming constant entropy, as

d
(3.8) A=2_0
ap p
Here « is the ratio of specific heats.
Further we can write conveniently

dp Opdp 1 0p

ot opat ot

though this expression assumes again constant entropy and is therefore orly an

approximation. In what follows we shall use Eq. (3.9) but elsewhere we discuss the

possibility of correcting any errors involved by amendment of the algorithn [4].
While in gas flow all the equations are fully coupled, for incompressible flows

in which ¢ = oo the energy equations can be solved independently after the ve-

locity field has been established. Nevertheless, a single algorithm for the sountion

of both problems is possible as we shall now show.

(3.9)
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Although the form of Eq. (3.1) is identical to that of the convection-diffusion
problem of Eq. (2.1), three wave speeds exist and the characteristic Galerkin
procedure cannot be directly applied. In the next section we show how this can
be done with a fractional step.

3.2. Characteristic-based-split (CBS) algorithm

For convenience we shall rewrite Eq. (3.2) in a more direct form, omitting
initially the energy equation. These equations can be solved completely in a time
increment At as the only coupling which exists is through the speed of sound ¢
for which we shall simply use the value at time ¢,, due to the explicit nature of the
time stepping algorithm. Equation (3.2) can be rewritten in separate equations
as (neglecting energy equation):

Continuity
1dp 0
(3.10] Eﬁgf— = -,d-;i(pug} =l
Momentum
aU; d Orij

3.11 — + —(uU;) = =2 + pgi + Q,
( ) at B:I:j (“J i) 3$j pgi +Q

dp . i
where U; = pu;, Q = g Now the temporal discretization of the above

T

equations is considered.

3.2.1 The split-temporal discretization. We can discretize Eq. (3.11) in time
using the Characteristic Galerkin process. Except for the pressure term, this
equation is similar to the convection-diffusion Eq. (2.6). This term can however
be treated as a known (source type) quantity provided we have an independent
way of evaluating the pressure. Before proceeding with the algorithm, we rewrite
Eq. (3.11) in the form given below, to which the Characteristic Galerkin process
can be applied
(')U,' o d a,

= ——(u;U;) + ==L + pgi + Q"+

(Ee) ot dr; dz;

with Q"% being a known quantity evaluated at t = t"+6,At in a time increment
At. In the above equation
a,p n-+0;
3.13 QU = — =
(3.13) ) =
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with i T
ap n i ] ap mn 8p n
2 =0 ==
(3.14) 8:5, 2 50 > +(1 ez)c?x,-
o +6
G m® OAp
3.15 S -
( ) Or; Jz; +62 Oz;
In this formula
(3.16) Ap =p"t! —p",

Using the Eq. (2.8) and replacing ¢ by U;, we can write

0 Ori;™
A7 AL P = A | == T ij n+l2 _ (0N

At .8 d %
4 (_“ka‘t (E("HU{) — Q'+ Pgi)) ] s

At this stage we have to introduce the ‘split’ in which we substitute a suit-
able approximation for Q which allows the calculation to proceed before p"+!
is evaluated. Two alternative approximations are useful and we shall describe
these as Split A and Split B, respectively. In the first we remove all the pressure

gradient terms from Eq. (3.17), in the second we retain in that equation the
n

pressure gradient corresponding to the beginning of the step, i.e. é?p . Though
i

it appears that the second split might be more accurate, there are other reasons
for the success of the first split which we shall refer to later. Indeed the ‘Split A’
is the one which we shall universally recommend.

Split A
Here we introduce an auxiliary variable U such that

d O7ij
oz, (uJU!) + 6‘—:1:_, — Pgi
At & [ 8 %
+5 Uk — (8—Ij(ujUiJ + PQ:')] :

This equation will be solved subsequently by an explicit time step applied to the
discretized form, and a complete solution is now possible. The “correction” given
below is available once the pressure increment is evaluated,

(318) AU; = U; - U:l = At [

dwi

n+ts 2
A Ip At aQ

: =pyntl _pn = AUF — S i
(3.19) AU; f i U; ar; LdIk
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From Eq. (3.10) we have

1\" aUt n+-f
(3.20) Dp= (C—Q) Ap = —At o .

Replacing U™ with the known intermediate, auxiliary variable U} and rear-
ranging (after neglecting higher order terms), we have

) out IAU;
(3.21) Ap= (25) Ap = -At [ 9z, + 6, Te;
9*p 0*Ap
. (61:,—83:,— +02 6::,—69:;)]

where the U} and pressure terms in the above equation come from Eq. (3.19).

The above equation is fully self-adjoint in the variables Ap (or Ap) which
are the unknowns. Now standard Galerkin-type procedure can be optimally used
for spatial approximation. It is clear that the governing equations can be solved
after spatial discretization in the following order:

Eq. (3.18) to obtain AU ;
Eq. (3.21) to obtain Ap or Ap ;
Eq. (3.19) to obtain AU; thus establishing the values at "1,

After completing the calculation to establish AU; and Ap (or Ap), the energy
equation is dealt with independently, and the value of (pE)"*! is obtained by
the Characteristic Galerkin process.

It is important to remark that this sequence allows us to solve the governing
Egs. (3.1),in an efficient manner and with adequate numerical damping. Note
that these equations are written in conservation form. Therefore, this algorithm
1s well suited for dealing with supersonic and hypersonic problems, in which the
conservation form ensures that shocks will be placed at right positions and unique
solution will be achieved.

Split B

In this split we also introduce an auxiliary variable U;* now retaining the
known values of Q" = —(,)p , l.e.

T
P T d dri; _ dp
(3.22) AU =U* - Ul = At [vé?j(ujﬂft] + %~ pYi
At 9 [0 :
+7‘Uk3—mk (-(EE(HJU.‘) =@+ pgi)] :
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It may appear that now U* is a better approximation of U™+l We car now
write the correction as

oA
(3.23) AU; = UM - UP = AU} - agm—a—f,

1

i.e. the correction to be applied is smaller than that assuming ‘Split A’ (Eq.3.19).
Further if we use the fully explicit form with 6, = 0, no mass velocity (U;)
correction is necessary. We proceed to calculate the pressure changes as in ‘Split
A’ as

n *% 2
(3.24) Ap= Ap = At [aU o 2o

+-@ — At 0
Jx; Jz; 27542 83:?
The solution stages follow the same steps as in ‘Split A’. The final matrix form
of the above steps and energy step are given as
Split A

Step 1. Intermediate momentum

(325) AU* = —M,"'At [(cuﬁ £ = )~ MK a+ fs)]“ :

Step 2. Pressure

(3.26) (M + At20,6,H)Ap = At[{GL,U" + 6,Gpu AU* — Ato HP — £]".

Step 3. Momentum correction

(3.27) AU = AU - M 1At [GT (P™ + 02AD) + %Pp ]

Step 4. Energy
(328)  AE=-Mg'At[CsE+Cpp+KrT + Kopili +
- n
_At(KuEE + Kupf’ + fig)] .

Split B

With the ‘Split B’, the discretization and solution procedure have to be slghtly
modified. Leaving the details of the derivation to the Reader and using ideatical
discretization processes, the final steps can be summarised as:

Step 1
(3.29) AT = —M, 1At [(CuU +K, 0+ GLp 1)

~AHKLO + 6+ 8P5)|
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here all matrices are the same as in ‘Split A’ except the forcing term f which is
(3.30) fi= /Nupng +/N'Etdf’,

Step 2

(3.31) (M + A#6,0,H)Ap = At[GT, U™ + 6,Gp, AU - £,]",

and
Step 3

(3.32) AU = AU* - M;'At [0.GL,AP) .

The ‘Step 4’ , calculation of energy, is unchanged. The Reader can notice the
minor differences in the above equations from those of ‘Split A’. For details of
the matrices involved, the Reader can consult [1, 2, 7, 23].

4. Explicit, semi-implicit and nearly implicit forms

The algorithm described will always contain an explicit portion in the first
Characteristic Galerkin step. However the second step, i.e. that of determination
of the pressure increment can be made either explicit or implicit and various
possibilities exist here, depending on the choice of f;. Now different stability
criteria will apply. We refer to schemes being fully explicit or semi-implicit,
depending on the choice of the parameter 6.

It is also possible to solve the first step in a partially implicit manner to avoid
severe time-step restriction due to the viscous term. Now the viscous term is the
one for which an implicit solution is sought. We refer to such schemes as quasi
(nearly) implicit schemes.

4.1. Fully explicit form
In fully explicit forms, 1/2 < #; < 1 and 6 = 0. In general, the time step

limitations explained for the convection diffusion equations are applicable, i.e.

h
4.1 AL —
(4.1 ~ ¢+ |ul

since viscosity effects are generally negligible here.
This particular form is very successful in compressible flow computations and
has been widely used by the authors for solving many complex problems [6].
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4.2. Semi-implicit form

In semi-implicit form the following values apply:

(4.2) <6,<1, <6, <1,

B -
| =

Again the algorithm is conditionally stable. The permissible time sep is
governed by the critical step of the Characteristic Galerkin explicit relation olved
in Step 1 of the algorithm. This is the standard convection-diffusion pmblem
and the same stability limits apply Eq. (2.14).

For slightly compressible or incompressible problems in which M is snall or
zero, the semi-implicit form is efficient and it should be noted that the matix H
of Egs. (3.26) and (3.31) does not vary during the computation process. Theefore
H can be partially inverted leading to an economical procedure.

4.3. Quasi (nearly) implicit form

To overcome the severe time step restriction made by the diffusion terms
(viscosity, thermal conductivity etc.), these terms can be treated implicitly This
involves solving separately an implicit form connecting the viscous term: with
U or U?*. Here at each step, simultaneous equations need to be solved ard this
procedure can be of great advantage in certain cases such as high viscosity flows
and low Mach number flows. Now the only time step limitation is At <h/|ul
which appears to be a very reasonable and physically meaningful restrictim.

4.4. Evaluation of time-step limit. Local and global time-steps

The time step limits, in spite of being defined in terms of element sizs, are
best calculated at nodes of the element. In the calculation we shall speify, if
the scheme is conditionally stable, the time step limit at each node by assgning
the minimum value for such nodes calculated from all the surrounding elenents.
When a problem is being solved in real time, then obviously the smallest of all
nodal values has to be adopted for the solution. In many problems trasient
calculation is adopted to find steady-state solutions, and local time stepping is
convenient as it allows more rapid convergence and fewer time-steps to b: used
throughout the problems. Local time stepping can only be applied to problms in
which (1) - the mass matrix is lumped, and (2) — the steady-state solutior does
not depend on the mass matrix. Thus with local time stepping we shall 1se at
every node simply the minimum time-step found at that node. This is, of ourse,
equivalent to assuming identical time steps for the whole problem and dmply
adjusting the lumped masses. Such a problem with lumped masses adjuted is
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still physically and mathematically meaningful and we know that the convergence
will be achieved as it invariably is.

Many of the steady-state problems were solved by means of such localized
time stepping used in the calculations.

In the context of local and global time stepping it is interesting to note that
the stabilizing terms introduced by the Characteristic Galerkin process will not
take on the optimal value for any element in which the time-step differs from the
critical one. However, on other occasions it may be useful to make sure that (a)
in all elements we have introduced optimal damping, (b) the progressive time-
step for all elements is identical. The latter of course is absolutely necessary if
for instance we deal with transient problems where all time steps are real. For
such cases it is possible to consider At as being introduced in two stages: (1)
as the Aley (external) which has of course to preserve stability and that must
be left at minimum Af calculated from any element, and (2): to use inside the
calculation of each individual element the At (internal) which is optimal for
an element as of course exceeding the stability limit does not matter there and
we are simply adding a better damping characteristics.

This internal - external subdivision is of some importance when incompress-
ibility effects are considered. As shown in the next section, the stabilizing diag-
onal term occurring in steady state depends on the size of the time-step. If the
mesh is graded and very small elements dictate the time-step over the whole do-
main, we might find that the diagonal term introduced overall is not sufficient to
preserve incompressibility. For such problems we recommend the use of internal
and external time-step which differ and we introduce them in Ref. [9].

5. Circumventing the BB restrictions

In the previous sections we have not restricted the nature of the interpolating
shape functions N, and Ny, i.e. shape functions for velocity and pressure, re-
spectively. If we chose these interpolations in a manner satisfying the patch test
conditions or BB restriction for incompressibility then, of course, completely in-
compressible problems can be dealt with without any special difficulties by both
the ‘Split A® and ‘Split B’ formulations. However, the ‘Split A’ of the formulation
described introduces an important bonus which permits us to avoid any restric-
tions on the nature of the two shape functions. Let us examine here the structure
of equations reached in steady conditions. For simplicity we shall consider here
only the Stokes form of governing equations in which the convective terms disap-
pear. Further we shall take the fluid as incompressible and thus uncoupled from
the energy equations. Now the three steps of Eqgs. (3.18), (3.21) and (3.19) are
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written as

AU* = —AtM YK, u® -],
- 1 - = * ~n
(5.1) Ap = At:‘}ngH G, U™ + 6,Gpu AU — At6 Hp" — f,),

AU = AT* - AIM7IGT, (" + 6:4p).

In steady state we have Ap = AU = 0 and eliminating AU* we can write
(dropping now the superscript n)

(5.2) K i+Gpp="f

from the first and third of Egs. (5.1), and
(5.3) G, U + 01 AtGp MG p — At6 Hp — f, = 0

from the second and third of Egs. (5.1)
We finally have a system which can be written in the form

(o) K. /p G {f;}_ f1 ]
' -GT, At [H-GpuM'GT)) p B

here f; and f; follow from the forcing terms.

The system is now always positive definite and therefore leads to non-sirgular
solution for any interpolation functions N, Ny chosen. In all of the exanples
discussed in this paper and elsewhere, equal interpolation is chosen for both the
U; and p variables, i.e. Ny, = Np. We must however stress that any other
interpolation can be used without violating the stability. This is an impatant
reason for the preferred use of ‘Split A’ form.

It can be easily verified that if the pressure gradient term is retain:d as
in Eq. (3.22), i.e. if we use ‘Split B, the lower diagonal term of Eq. (54) is
identically zero and the BB conditions in the full scheme cannot be avoided.

6. Boundary conditions

6.1. Fictitious boundaries

In a large number of fluid mechanics problems the flow in open domans is
considered. In such problems, the boundaries are simply limits of computation
and therefore they are fictitious. With suitable values specified at such boundaries
however, accurate solution for the flow inside the isolated domain can be acheved.

1. If the flow is subsonic, the specification of all quantities except the desity
can be made on both the sides and entry boundaries.
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2. For supersonic flows, all the variables can be prescribed at the inlet. At the
exit however, no boundary conditions are imposed simply because by definition,
the disturbances caused by the boundary conditions cannot travel faster than at
the speed of sound.

With subsonic exit conditions the situation is somewhat more complex, and
here various possibilities exist.

Condition A : Denoting the most obvious assumptions with regard to the traction
and velocities.

Condition B : A more sophisticated condition of zero gradient of traction and
stresses existing there. Such conditions will of course apply always to the exit
domains for incompressible flow. The condition ‘B’ was first introduced by
ZIENKIEWICZ et al. [10].

Of considerable importance especially in view of the new schemes, are the
conditions which will be encountered on real boundaries.

6.2. Real boundaries

By real boundaries we mean limits of fluid domains which are physically
defined; here three different possibilities exist.

1. Solid boundaries with no slip conditions: On such boundaries the fluid is
assumed to stick or attach itself to the boundary and thus all velocity components
become zero. Obviously, this boundary is only possible for viscous flows.

2. Solid boundaries in inviscid, flow (slip conditions): When the flow is in-
viscid, we will always encounter slipping boundary conditions where only normal
velocity component is specified and is in general equal to zero in steady-state
motion. Such boundary conditions will invariably be imposed for problems of
Euler flow, whether it is compressible or incompressible.

3. Prescribed traction boundary conditions: The last category is that on which
tractions are prescribed. This includes zero traction in case of free surfaces of
fluid or any prescribed tractions such as those caused by wind being imposed on
the surface.

These three basic kinds of boundary conditions have to be imposed on the
fluid and special consideration has to be given to these when split operator
schemes are used.

7. Some solution of typical examples

In this section we illustrate the applications and show the advantages gained
by the use of the CBS algorithm in various classes of problems. In all of the prob-
lems discussed, the same computer coding was used and only linear, triangular
and quadrilateral elements are used in all examples.
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The application of higher order elements and elements of different naure is

of course possible under certain circumstances but we shall not make detailed
comments on those here.

7.1. Fully explicit procedure, subsonic, transonic and supersonic flows

The use of fully explicit procedure is of course most preferred in aeronautical
computations and the present CBS algorithm is well suited for this purpcse.

Example 1. NACA 0012 aerofoil with zero angle of attack, M = 0.5,1.2.

In Fig. 1, we show the density distribution along the centerline upto sagna-
tion (see [3] for full details) for Mach number 0.5 with the fully explicit form of
the algorithm. Here the performance of the CBS algorithm is compared with the
performance of the previously used Taylor-Galerkin scheme.

1.250
1.000 pe==== T el 1‘;
!
Iy 1]
3 :
8 780 f——-: - = mm—— }
3 ]
a ]
]
A
;
9,564 -=-TG SchemelCs=00) [~ |
weeee TG scheme(Cs=05) | :
¥ — Present scheme(Cs=0.0) | i
0250 L ! ] )
-50.00 -a,00 -10.00 -20.00 -10.00 0.00
Distanca X

F1G. 1. Subsonic aerofoil inviscid flow past a NACA0012 aerofoil. Comparison of density
along mid height. Analytical value at stagnation point 1.13. CBS scheme gives highly
accurate solution.

It is interesting that the CBS algorithm improves the results dramaticaly near
the stagnation point without the use of any additional artificial diffusion (which
is essential to get any reasonable result using the Taylor-Galerkin scheme).

In Figs. 2, 3 and 4, the domain, mesh and results obtained are given for a
supersonic case with Mach number equal to 1.2 of flow around the same acrofoil.
The domain size taken is big enough to specify the free-stream conditions at the
inlet. As can be seen, the results obtained are very smooth (Fig. 3) and cempare
excellently with the benchmark AGARD results [27] (Fig. 4).
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Fi1G. 2. Supersonic inviscid flow past NACA0012 aerofoil, M = 1.2, a = 0°. (a) Domain
(b) Linear traingular finite element mesh, Nodes: 3753, Elements: 7351 (c) Element
distribution near aerofoil surface.
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(c) (d)

F1G. 3. Supersonic inviscid flow past NACA0012 aerofoil, M = 1.2, a = 0°, contcurs of
different variables. (a) Density (b) Pressure (¢) Temperature (d) Mach number.

Example 2. Hypersonic flow past a cylinder.

Figure 5 shows the domain and quadrilateral mesh generated to study byper-
sonic flow past a quarter-cylinder. The inlet Mach number is taken as 6. At the
inlet, velocity and density are prescribed.
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F16G. 4. Supersonic inviscid flow past NACA0012 aerofoil, M = 1.2, a = 0°. Comparison
of coefficient of pressure distribution on the surface of aerofoil.

FiG. 5. Hypersonic inviscid flow past a quarter-cylinder, M = 6. Linear quadrilateral
finite element mesh, Nodes: 4421, Elements: 4286.
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In Fig. 6, the contours of all important variables are given. Even & a high
Mach number of 6, we have found no oscillations. To smooth out the shicks, we
have used some appropriate shock capturing viscosity [28]. Figure 7 slows the
Mach number distribution along the bottom line of the domain. As s:en, the
shock is reasonably sharp even though adaptivity in any form is not applied.

FiG. 6. Hypersonic inviscid flow past a quarter-cylinder, M = 6, contours of different
variables. (a) Density (b) Pressure (¢) Temperature (d) Mach numbe.
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Fi1G. 7. Hypersonic inviscid flow past a quarter-cylinder, M = 6. Mach number distri-
bution along bottom line.

Example 3. Viscous compressible flow past a plate (M = 3.0, Re = 1000)
(Carter).

In this example, a fully explicit scheme is used. Here, the Mach number at
the inflow is 3.0 and the inlet Reynolds number based on the length of the plate
is 1000. This problem is also known as the Carter problem. The temperature
of the plate is assumed to be constant and equal to the stagnation temperature
given by

(7.1) T, =T, (1 = %IM;) ;

The temperature dependence of viscosity is accounted for through the Suther-
land’s law

7 1.5
(7.2) A
s TH5; \ I

where S, is Sutherland’s constant and is equal to 198.6° Rankine.

A uniform rectangular mesh with 8281 nodes and 8100 elements is used in
this computation. The results obtained are shown in Figs. 8 and 9. It is seen that
the contours are smooth and shocks are in the proper locations. The pressure
distribution along the plate and density distribution at the outlet agree excellently
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(Fig. 9) with the Carter [29] results (though the latter show some wnatural
oscillations near the leading edge).

F1G. 8. Supersonic viscous flow past a flat plate, M = 3, Re = 1000, contours of different,
variables. (a) Density (b) Pressure (¢) Temperature (d) Mach number

7.2. Semi-implicit procedure

Example 1. High Reynolds number flow in a lid-driven cavity, M = 0.

The first example is a fully viscous incompressible flow (M = 0) in a lid-
driven cavity. This is a well known test case used by many authors. A high
Reynolds number of 5000 is used in this study. Figure 10 shows the details of
rectangular mesh used and comparison with the benchmark solution [3)]. The
agreement is excellent.
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F1G. 9. Supersonic viscous flow past a flat plate, M = 3, Re = 1000; (a) Comparison
of pressure distribution on the plate surface with CARTER [29]; (b) Comparison density
distribution at exit with CARTER [29].

In Fig. 11, we give two adapted meshes using two different forms of adaptive

procedure [31, 32] to solve the cavity problem for the same Reynolds number of
5000. It is seen that the results agree excellently with the benchmark.
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7.3. Tests on incompressible stabilization

In Sec. 4.4, we mentioned two different time steps, the so-called inernal
and external time steps. The external time step is the one which needs to be
calculated from the explicit step of the algorithm and sometimes it is nectssary
to use a safety factor to reduce it. In incompressible problems, this time sep is
taken as the minimum among the values calculated from the domain. Hovever,
the internal time step need not be equal to the external one and can improre the
incompressible solution.
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FiG. 10. Incompressible viscous flow in a lid-driven cavity, Re = 1000. (a) _inear
quadrilateral mesh, Nodes: 1681, elements: 1600 (b) Pressure contours (¢) Comjarison
of u; velocity distribution at mid-height with Guia et al. [30].
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FiG. 11. Incompressible viscous flow in a lid-driven cavity, Re = 5000, (a) Curvature
based adaptive procedure (b) Gradient based adaptive procedure (¢) Comparison of uy
velocity distribution at mid-height with GHIA et al. [30].
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F1G. 12. Exercise on the incompressible stability of the CBS procedure on a Stokes flow

problem. (a) Non-uniform triangular mesh (b) Pressure contours, Ateyy = Aderiy = Ating

(c) Pressure contours, Atext = Aferit; Atine = Afmax. (d) Comparison of pressure
distribution across the cavity at mid-height.
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In Fig. 12, we show an example of the Stokes problem in a lid-driven cavity.
The mesh used is non-uniform as shown in Fig. 12(a). Figures 12(b) and (c) show
two different solutions obtained for the same problem with the same external time
step and different internal time steps. In the first case (Fig. 12(b)), the internal
time step is identically equal to the external time step, i.e. both the time steps
are equal to the minimum value calculated from the problem domain. However,
in the second case (Fig. 12(c)), the external time step is same as in case one but
the internal time step is the maximum time step value calculated from the whole
domain. As it may be seen, the solutions are different and higher internal time
steps act as stabilizing factors. Figure 12(d) compares the pressure distribution
along the mid-height of the cavity. It is seen that higher internal time step gives
an improved solution and here the values are almost equal to the one given by
the Galerkin Least Squares approach (GLS) with an optimum GLS factor [23].

A full derivation on the matter of internal and external time steps can be found
in Ref. [9].
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=
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(a) Geometry

J,

(b) Streamlines

_—

(c) Pressure contours

Fi1G. 13. Exercise on exit boundary conditions. Incompressible, viscous flow pas a
backward facing step, Re = 100 (a) Geometry and boundary conditions (b) Stream
lines (c¢) Pressure contours.
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7.4. Boundary conditions

The problem considered here is the standard backward facing step. The
domain and various boundary conditions are shown in Fig. 13(a). The inlet
velocity profile is parabolic and the Reynolds number is 100.

Figures 13(b) and 13(c) show the results on exit boundary conditions men-
tioned earlier. As seen, the results are excellent and agree well with a longer
domain results [8].

7.5. Buoyancy driven flows

The domain considered here is a two-dimensional square shape. The buoy-
ancy flow is initiated in the cavity by differentially heating the vertical walls.
Both the vertical walls are kept at two different temperatures; the left wall tem-
perature is higher than that on the right one. Bottom and top walls are insulated.
Non-slip boundary conditions are assumed on all four sides of the cavity.

An example on buoyancy-driven convection is given in Fig. 14. The adopted
meshes are generated by the procedure explained in Ref. [31]. The solution given
in this figure are extraordinarily smooth and symmetric for a Rayleigh number
of 10°. The quantitative solutions obtained (Nusselt number = 4.519) agree
excellently with the available bench-mark solutions [33]. The difference is less
than 0.5%.

8. Concluding remarks

We hope that in the present paper we have fully explained the logical back-
ground and the excellent performance of the CBS algorithm. The development of
the algorithm has taken some time and the present authors would like to acknowl-
edge the earlier works which pointed the way to the final algorithm. In this paper
we addressed several new aspects of the algorithm including the incompressible
stabilization procedures. However, further tests are needed to fully understand
the nature in which the stabilization introduced affects the compressible and
incompressible flow problems.
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