Arch. Mech., 52, 4-5, pp. 839-855, Warszawa 2000

Material instability in the tensile response
of short-fibre-reinforced quasi-brittle composites

Dedicated to Professor Zenon Mroz
on the occasion of his 70" birthday

J. WANG (1) and B.L.KARIHALOO (2)

(") Department of Mechanics and Engineering Science
Peking University, Beijing 100871, PRC

(*) Cardiff School of Engineering, University of Wales Cardiff
Queen’s Buildings, P. O. Boz 686, Cardiff CF2 3TB, UK

THis PAPER GIVES THE coNDITIONS for the onset of instability in the tensile response
of short-fibre-reinforced quasi-brittle composites whose deformation is characterised
by multiple cracking and localisation. First, the tensile stress-strain relation is estab-
lished analytically for a body containing multiple bridged microcracks. The material
instability is examined using the classical bifurcation criterion, with an emphasis on
the role played by fibre bridging in the macroscopic instability. It is found that
while the microscopic instability in the bridging traction plays a major role in the
macroscopic instability of the composite, it is the level of damage in the matrix that
determines when the macroscopic instability is induced by the bridging instability.
The satisfaction of the classical bifurcation criterion is identified with several failure
modes, depending on the degree of damage in the matrix.

1. Introduction

THE FIRST SIGNS OF TENSILE DAMAGE in short-fibre-reinforced quasi-brittle matri-
ces, such as cements, are the appearance of multiple parallel microcracks. They
cause the stress-strain curve to deviate from linearity, i.e. give the composite a
strain-hardening response. Bridging of the multiple microcracks by short fibres
1s an important mechanism for increasing the strength and toughness of these
composites and for preventing a sudden loss of their overall stiffness when the
microcracks coalesce and localise into large bands. The response of the material
after the attainment of ultimate tensile strength is characterised by the localisa-
tion of deformation, i.e. by the continuous opening of cracks and stretching of
unbroken material ligaments in a narrow localisation band.

On the micromechanical level, a lot of studies have been devoted to the
bridging effect of fibres on the crack propagation and the toughening of the
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composite in the context of fracture mechanics. On the other hand, there have
been relatively few studies on the macroscopic constitutive behaviour of short-
fibre-reinforced quasi-brittle composites, such as cementitious composites The
studies at the microlevel benefit the material technologists, whereas those at the
macrolevel benefit the structural engineers. The relation between the nacro-
scopic constitutive response and the micomechanical parameters is also vtal in
the material design. For quasi-brittle monolithic or fibre-reinforced composites,
in which the deformation process leading to complete rupture usually involves
multiple cracking, the complete constitutive behaviour is important to the anal-
ysis of propagation of a macroscopic crack, as was demonstrated by Ornz [1].
Multiple cracking also characterises the compressive response of concrete 2|.

KARIHALOO et al. [3] have previously studied the complete constiutive
behaviour of short-fibre-reinforced cementitious composites under unidirectional
tension. In their work, the pre-peak strain-hardening is simulated by a coubly
periodic array of bridged cracks whose density increases with increasing iensile
load. The peak stress, i.e., the ultimate failure stress of the composite mate-
rial is calcnlated using the law of mixtures. The post-peak tension-sofiening
response is simulated using a single row of periodic discrete bridged cracks. The
model of KARIHALOO et al. [3] cannot predict the transition from the strain-
hardening to tension-softening. This leads to a discontinuity in the slope of the
stress-strain /displacement curve at the peak load. In other words, conditicns for
localisation are still not clear.

In the present paper, the mechanisms for the material instability whia lead
to deformation localisation and tension softening will be revealed. The study
will be based upon an analytical procedure which allows the conditions br the
material instability in short-fibre-reinforced composites to be highlighted The
material instability is examined using the classical bifurcation criterion, with an
emphasis on the role played by fibre bridging in the macroscopic instabilitr. It is
found that while the microscopic instability in the bridging traction plays amajor
role in the macroscopic instability of the composite, it is the level of dunage
in the matrix that determines when the macroscopic instability is indued by
the bridging instability. The satisfaction of the classical bifurcation critesion is
identified with several failure modes, depending on the degree of damage in the
matrix. The phrase ‘microscopic instability’ is used to define the instant when
the bridging stiffness momentarily vanishes.

2. General formulae for multiple cracks

The prediction of the effective elastic and fracture properties of a medium
containing multiple cracks has received considerable attention. Among the stud-
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ies are the solutions based upon the non-interacting approximation, when the
interaction among the cracks is neglected. Under this assumption, the effective
elastic properties can be expressed in explicit forms. The interactions among
multiple cracks complicate the prediction of the overall material behaviour. The
schemes based upon indirect considerations of crack interactions, such as the self-
consistent method and the differential scheme may considerably underestimate
the overall moduli, as has been pointed by WANG et al. [4].

In this section, we shall present an analytical approach for the calculation of
the overall tensile modulus of bodies containing multiple parallel bridged cracks.
For this, we shall make use of the procedures in the previous work of KARIHALOO
et al. 3], and those in the recent works of WANG et al. [4, 5].

The overall (average) strain and stress of a cracked body are related via

(e-g. [6])

(2.1) Eij = C;gkt O+ — 2V z / [ui] nj + [uj]n;) dSN

S
where £;; and oy are the average strain and stress components, respectively. u
and n; are the total crack opening/sliding displacement (COD/CSD) and the
component of the unit vector normal to the crack faces. Cgm is the compliance
tensor of the uncracked material. For parallel flat cracks when n; is a constant,
Eq. (2.1) can be rewritten as

1 = i
o7 2 ([wilnj + [u]ni) Sy
N

(2.2) eij = Clir Ok + =

where [_u,_] is the average COD/CSD for a single crack over its faces, and Sy is
its area.
We note that Eq. (2.2) can be written as

(2.3) Eij = Cg“UM + [tr.,] ng -+ [uj nz)

where w is a non-dimensional crack (lcnmty parameter, and L is an internal length
scale, which will be defined later. In the above expression, [u;] is taken to be the
COD/CSD for a representative crack.

We consider only infinitesimal deformation and rotation. Taking the time-
derivative of the above equation gives

: , 0 - 1 — — . Ow
(2.4) Eij = C?jki ox + I ([ui] nj + [uj] ni) ﬁ&"k(

I N A
30'“ 80“
Here, we have assumed that the crack density is a function of the applied stress.
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Strictly speaking, [u;] is also a function of w, which is in turn a function of
ox. However, Eq. (2.3) implies that [w;] is a generic crack opening/sliding dis-
placement in a representative element. In analogy with the usual non-interacting
solution, we assume at this stage that this generic crack opening/sliding displace-
ment is not related to the crack density, so that the derivative of[u_d with respect

to w vanishes. Equation (2.4) gives the tangent compliance tensor

) p— — Ow  w [ Ouy] Jlu,)
SO ] ey 5 = R, [kt M L 3= gl
(2.5) Cijkt = Ciji + 7 ([ui] mj + [uj]ni) o -+ T (301:; nj + Tos n;

whence the rate form of the constitutive relation (2.4) can be written as
(2.6) gij = Cijki Okt-

We now return to the determination of [u;]. For bodies containing multiple
cracks, the effect of crack interactions and of any bridging tractions must be
taken into account in the calculation of the crack opening displacement. Using
the pseudo-traction formalism [7], the average crack opening displacement is cal-
culated by applying a pseudo-traction on the faces of a single crack. In order to
determine m and thus Cjjj for a body containing randomly distributed multi-
ple parallel bridged cracks, we shall first invoke the analytical procedures in the
works of WANG et al. [4, 5] for two regular arrays of bridged cracks, namely, a
doubly periodic rectangular array and a doubly periodic diamond-shaped array
of bridged cracks, shown in Fig. 1. We consider the two-dimensional case, when
the parallel cracks are perpendicular to, say, the direction 2. Following the pro-
cedures in the above works, the traction consistency condition on each crack in
either of the two doubly periodic configurations is expressed as follows:

TQ
i S < epe

H

I
Wﬂ?&bw—» wrpe  wdmpe  Sae

HHET R e W ke
e RN
(a) (b)
F1G. 1. Doubly periodic rectangular (a) and diamond-shaped array (b) of bridged cracks.
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+oo 4
(27 o) -2), [ Kiju(z,27) ofy(a’) da? + pij(e) = oy, @ € [0,0),
=13

where rrfj is the pseudo-traction on the crack faces, cr?j is the applied stress, p;;
is the bridging stress exerted by the fibres, and a is the half-length of a crack.
Kiju(z, #7) is the stress influence tensor which has been described in the previous
works of the authors (e.g. [4, 8]).

However, in the present paper, in order to trace the nonlinear behaviour
of the material, we shall recast the traction consistency condition (2.7) in an
incremental form

+oo &
(2.8) Ao}i(z) — 2 Z f Kijwi(z,a7) Adhy(a?) da? + Apij(z) = Aoy,
=17

z € [0,a).

For the two-dimensional case under study, the parallel cracks are perpendic-
ular to direction 2, so that we need only the pseudo-tractions o}, and of, for
calculating the crack opening/sliding displacements. Following the procedure in
the recent work by WANG et al. [4], it is found that the incremental pseudo-
tractions for the two periodic arrays of cracks shown in Fig. 1 can be written
as

Aoz ¢r
5 0
(2.9) Aot - { o } Aoy,
Ad?y N n" -
(210) AJPd — ,qd 019,
12
where

1 T -1
"o 2 T8 2w [y o H | 2En W i
(2.11) (" = {1 + 4sin e " _1 +2Wﬂ- ol In (cos 3

. : [ 1 9k 2 -1
(2.12) (F = {1—4sinz%ae“2%“ 1+2£1r _ 2knW ln(cosﬁ)} ‘

waE'

[ L H | 2k W? E
(2.13) n = {l+4sing%{e_2%"' 1—2W:rrJ = ﬂle, In (msff)} i
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ma } H 2k W‘2 i :
214 fhpet _ A2 TG _aflr e el e .
(2.14) 7 {1 4sin We W 1 2W?r o ln(cosw.

E' = E for plane-stress, and E' = E/(1 — v?) for plane-strain deformtion.
In deriving Egs. (2.9) - (2.10), a linear relationship between the increnental
bridging stress Apjg(z) and incremental COD/CSD has been assumed

(2.15) Apas () = kop Alug)(z); Apia(z) = kiz Alu](2);

where [u1](z) and [us](z) are the crack opening/sliding displacements. Itis ev-
ident that kjo and kg in the above expression should be the tangent brdging
stiffnesses.

We presented above the incremental pseudo-tractions on the crack facs fol-
lowing the asymptotic analysis of WANG et al. [4, 5|. They are found to be
constants (in an average sense only) and dependent upon the geometry »f the
crack arrays and the instantaneous tangent bridging stiffnesses. Ao}, (Aoly)
and &crgg (Ao’l’g) are the two incremental pseudo-tractions for the douby pe-
riodic rectangular array and diamond-shaped array, respectively. Accordng to
the analysis in the work by WANG et al. [4], these two regular patterns should
represent the two extreme interactions among multiple parallel cracks, namely,
the maximum “shielding” and “magnification” effects under unidirectional tension
and the maximum “magnification"” and “shielding" effects under in-plane shear.
Based upon this analysis, WANG et al. [4] deduced that the overall modulis of a
body containing randomly distributed multiple parallel cracks should be vithin
a pair of bounds corresponding to the moduli for the doubly periodic rectargular
and diamond-shaped array, respectively. Moreover, it was found that when the
the terms 4sin? %e”%“ [1 + 2%71" and 4sin? nge'z’%“ [l - 2%17] were
neglected in the expressions (2.11) - (2.14), i.e., when the expressions 2.11)
~ (2.14) reduced to

., 2?::;32 w? may) "

(216) C = {1 = _TTI_-EET In (COS W)} s
2;712 er ma =

(217} . = {1 == W In (COSW)} s

the overall moduli so calculated for low to moderate crack density wee al-

ways in the middle of the range bounded by those obtained when the terms
QL _oH H 5 TQ H H

4sin® — e2W™ (14 2—n| and 4sin® — e ?W™ |1 —2-—7| were retiined.
W W W W

Expressions (2.16) — (2.17) are nothing but the so-called non-interacting solu-

tion. Numerical computations of KACHANOV [6] for random discrete unbidged
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parallel cracks also were found to be close to the non-interacting solution. Thus,
it is reasonable to use the expressions (2.16) — (2.17) to calculate the pseudo-
tractions

(2.18) Add, = ( Aad,, Aob, = nAdd,.

Having obtained the pseudo-tractions, the average crack opening/sliding dis-
placements can be easily found

+a

e ST ) { ahaie )

* avs
— —?:E ln(cos ) { 2012,2 }

The subsequent development is for plane-stress deformation condition. Substi-
tuting (2.18) into (2.19) gives

o (Al ) 22 ) (conT) { 1A% )

which can be rewritten as

1
Ao? 2w Ta 0 Aluy]
—Eu —_ﬂ_;n In (cos W)

(2.21) =

5 1 =
_ég:z]z ? %C In (cos E) é&i’ﬂ
Ta w

Expression (2.21) describes the local behaviour of the cracked material. The
global constitutive behaviour of the material can be determined from (2.6), to-
gether with (2.5).

3. Analysis of material instability

In this section, we shall study the material instability in the macroscopic
tensile response of the composite, especially that induced by the microscopic
bridging mechanism. For this, we use the classical bifurcation criterion for dis-
continuity localisation across parallel planes [9]. As will be seen later, for the
case studied in this paper, this criterion is equivalent to other bifurcation criteria
identified by NEILSEN and SCHREYER [10] for the study of material instabilities.
The classical bifurcation criterion is
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(3.1) det[Qi;] = 0

where @Q;; is the acoustic tensor defined as

(3.2) Qij = nkDyijimy.

Dyijy is the tangent stiffness tensor which is the inverse of the tangent compiance
tensor Cy;ji in Eq. (2.5).

In order to obtain the acoustic tensor (3.2), we need to calculate th: tan-
gent compliance tensor from Eq. (2.5). For this, we need the total crack open-
ing/sliding displacement m, and its partial derivative with respect to og. For
fibre-reinforced quasi-brittle composites, it is observed in experiments thit the
density of the multiple cracks increases with increasing load until it reaches a
saturation level ws, when the localisation sets in [11]. Moreover, in these mate-
rials the damage localisation usually coincides with the pull-out of fibres from
the matrix. This implies that at localisation, the partial derivative dw/drg in
Eq. (2.5) can be equated to zero. Of course, the second term in Eq. (&5) is
essential to the strain hardening description which may be found in the wirk of
KARIHALOO and WANG [12]. The tangent compliance tensor (2.5) at the iistant
of localisation therefore reduces to

WAE Ws 6@ . 8@ ;
Cisht = Cija + L (301-: s Ok il s

Let us consider the localisation into a planar band under unidirectiond ten-
sion og9. For the considered two-dimensional case, the conventional crack dnsity
parameter w is defined as

(3.3)

a?

= WH'
The rate form of the stress-strain relations (2.6), after making use of Eq.(3.3),
are

(3.4) w

[ 1 e 0
é E T ;
25 7. i v 1 ws0lu 0 ot
(@) il Nl N e oy
€12 s 0 2(1+v) +2&8[u1] a2
L E L 60’12 <

Calculating dus]/do9s and d[u;]/do 12 from Eq. (2.20), and noting tht for

the considered case, L = a, we get the tangent compliance matrix

http://rcin.org.pl



MATERIAL INSTABILITY IN THE TENSILE RESPONSE OF SHORT-REINFORCED... 847

(3.6) [Ci) =
1 v
. 1 W o )
v W, ma
=|~F E—d(?) ;ECln(cosw) 02
2(1+v) WA\® ws Ta
0 0 T—‘i(?) EQIH(COSW)

and, by inversion, the corresponding tangent stiffness matrix

(3.7) [Dy;] =
, 2 -
5[1—4(2) “iL,]
a ™ Eb‘
[ w\?w w2 !
1_,,2*4(_) 2.5 [1-»3-4(—) =2
a iy a
- Ev 5 E &
5 w\?w w\?w i
1—32—4(;—) = L [1—u2—4(—) — L
0 : 0! - S -
'3
2[(1+u)~2(“—-) “EL,]
| a 7r =

Here, we have introduced two non-dimensional parameters

(3.8) L; = (ln (cos %) ;

(3.9) ik

Il

7 In (cos :V_a) ,

where the subscripts ¢ and s denote tension and shear, respectively.
Substituting the tangent stiffness tensor into Eq. (3.2) gives the acoustic
tensor whose components in a matrix form are

2 l(l—l—u) —2(%)2?)&3]

(3.10) [Qy] =
Qi) 0 E

http://rcin.org.pl
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As we are interested in the unidirectional tensile case, we only discuss L; in
the sequel. We first rewrite L; (3.8), using Eq. (2.16), and omit the subscript 22
from ko for brevity,

ln (cos %?)
- 2k W In ( ﬂ'a)

waF e w

The value 2a/W represents the ratio of the cracked area to the nominal area in
the direction perpendicular to the loading direction. It therefore represents the
conventional damage parameter in the context of damage mechanics. Denoting
2 = 2a/W, L; can be rewritten as

(3.11) L=

1

m
a1 A e )
1- }?}fﬁiln (

™
cos 59)

It is seen from Eq. (3.10) that the satisfaction of the localisation criterion (3.1)
requires that L; — oo. When this condition is met, it is seen from (3.7) that
the determinant of the tangent stiffness matrix, det[D;;], also vanishes. [Dj;] is
symmetric, as is [@Q;;]. Therefore, the condition Ly — oo leads to the satisfaction
of all bifurcation criteria identified by NEILSEN and SCHREYER [10], namely, the
classical bifurcation criterion (3.1), the general bifurcation criterion, the limit
point bifurcation criterion and the loss of strong ellipticity criterion. In the
following, we shall use the phrases “localisation” or “material instability" to refer
to the consequences of det[Q;;] = 0, i.e. when L; — oc.

4. Conditions for material instability

Several features of the material instability are revealed by the above results.
First, for unbridged material (k = 0), it seen from Eq. (3.12) that the satisfaction
of the localisation criterion det[Q;;] = 0 requires that Ly = In { cos EQ) — oc.
This simply means that the damage parameter, or any effective quantity,  tends
to 1. In this case, Lg also becomes zero. So the material loses instability both
under unidirectional tension perpendicular to the crack and under in-plane shear.
Thus, the bifurcation criterion is identified with the damage-induced rupture of
the material.

When k # 0, it is seen from Eq. (3.12) that L; is determined by the tan-
gent bridging stiffness k. For short-fibre-reinforced cementitious composites, a
trilinear bridging law, such as OABC shown in Fig. 2, is commonly used (e.g.
[3]). This is obviously an idealisation of the actual fibre pull-out test results.
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AP

Eu B \

o= > fu]
" (uler

Fia. 2. An idealised trilinear bridging law OABC and a more realistic smooth bridging
law OAD with continuous slope.

The problem with the idealised trilinear bridging law is the discontinuity in the
tangent bridging stiffness k. In real materials, especially when the average effect
of randomly distributed fibres is considered, the tangent bridging stiffness varies
gradually, as shown by OAD in Fig. 2. This continuous bridging traction can,
for example, be described by

PR T
(41) =kt ] luler |
The tangent bridging stiffness can thus be written as
- . (] (08
(42) k=ko {1 - g]—}ﬁ luler |
(4]

where kg is the initial tangent bridging stiffness when the fibres are bonded to
the matrix (see Fig. 2). It is evident that the tangent bridging stiffness vanishes
at [u] = [u],, and it becomes negative, when [u] > [u],,. The expression (4.2)
is in line with the simple local constitutive law that JIRASEK and BAZANT [13]
used in their study of the localisation phenomenon within the formalism of the
non-local theory. The initial tangent bridging stiffness ko can be calculated from
the linear bridging model developed by LANGE-KORNBAK and KARIHALOO [14]

7 v, B
(4.3) ko = va—EfL
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where 74 and 7, are the frictional bond strength and the adhesive bond stringth,
respectively. h is the so-called snubbing factor, L is the length of fibres, axd Ey
their modulus of elasticity.

When k > 0, it follows from (3.12) that L, has the following property:

(4.4) Q—0: Ly — 0.

In other words, no instability can set in, if there is no damage in the material.
Thus, as expected, the case 2 — 0 can be excluded from the instability amlysis.

When 0 < © < 1, the bifurcation criterion (L; — oo) can only be saisfied
when the following condition is met (cf. (3.12)):

8ka 1 T
(4.5) 1- EO? In (cos EQ) =Rl
that is
2
(46) écr=%g—r<0 for 0<2<1
In (cos EQ)
with
(4.7) D=1 k" — 0.

The variation of the normalised k" with Q given by (4.6) is shown in Fig. 3.

k) (—5)

Q

Fic. 3. Variation of normalised tangent bridging stiffness at macroscopic instability
with damage parameter. No instability is possible when ¢ = 0. Thus the point on the
axis of ordinates at 1 is excluded, as highlighted by the open circle.
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From the above analysis and Fig. 3, we are able to discern several features of
incipient material instability. First, it follows from Eq. (4.6) that for all values of
Qin the range 0 < §2 < 1, no instability can set in, if the tangent bridging stiffness
k is greater than 0. In other words, no matter how much the matrix is damaged,
as long as the fibres are still bonded to it (k > 0) , the composite will not exhibit
any instability at the macroscopic level, even when a through crack has formed
in the matrix (see Fig. 4(a)). The tangent stiffness of the composite will continue
to be positive. This is exactly what happens, for example, in strong continuous
fibre-reinforced composites, as is demonstrated by the ACK model [15].

The second feature is that k can vanish before or after a through crack has
formed, i.e., @ — 1. Here, we discuss the formation of a through crack (2 — 1)
when the fibres are still bonded to the matrix, i.e., k > 0. In this case, L; (3.12)
can be approximated by

mal

kW

Here, W loses its meaning, although its appearance in the above formula simply
points to the existence of an internal length scale. The expression (4.8) indi-
cates that the bifurcation condition (L; — o0) requires that the fibre bridging
stiffness vanishes k£ = 0. In other words, after a through crack has formed or is
about to form, the macroscopic instability of the composite coincides with the
(microscopic) bridging instability (see Fig. 4(b)).

The third feature is that when the localisation band is still not a through
crack (i.e. 0 < Q < 1), the localisation criterion can still be satisfied when k" is
given by (4.6). We recall that the average crack opening displacement for a row
of periodic cracks without the bridging action of fibres can be rewritten as (see,

e.g. [16])

(4.8) ==

nE 0? ]
—— —— Alul.
8a In (cos 392) el
When the cracks are bridged by fibres, the total instantaneous resistance of the

composite material to crack opening can be written as the sum of matrix and
fibre contributions

(4.9) A(_Tyn —

7k 0? -
8a In (cos 59)

Thus the condition (4.6) implies that the resistance of the composite material
to crack opening displacement vanishes because the instantaneous resistance of
the matrix itself to crack opening is exactly counterbalanced by the loss of the
bridging resistance (see Fig. 4(c)).

(4.10)

http://rcin.org.pl



a

T PA k>0 >
Bt “occrs
(a)
l . [u] e/

Fibre bridging action Macroscopic response

LY

[u] e/

Fibre bridging action Macroscopic response

(c)

E] . e/
Fibre bridging action Macroscopic response
o
PA k<0
T Q<1
(d) el Mg e
. EU] . eld
Fibre bridging action Macroscopic response

FiG. 4. Relationship between bridging stiffness and macroscopic response of th: com-
posite material. (a) no instability, when the fibres are bonded to matrix (k > () even
though a through crack has formed in it (2 = 1); (b) macroscopic instability iiduced
by loss of bridging stiffness (k = 0) and formation of a through crack (2 = ); (c)
macroscopic instability induced by a combination of matrix damage (2 < 1) andinitial
softening of bridging stiffness equal to k" < 0; (d) macroscopic tension-softening -aused
by matrix damage (2 < 1) and considerable softening of bridging stiffness (k 2 0).
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The parameter & in (4.6) includes the physical effect of several factors on
the inception of localisation. First, instability of the composite at the macrolevel
is possible, when k < 0, i.e., the fibres are only exerting the residual friction
bridging action. The closer € is to 1, the smaller the absolute value of k. When
Q = 1, the macroscopic instability occurs at k = 0, i.e. it coincides with the
microscopic (bridging) instability. Second, the dependence of the absolute value
of k" on the modulus E of the uncracked matrix indicates that the stiffer the
matrix, the less susceptible is the material to microscopic instability. Third, k"
contains a length scale, here the half-length a of a crack. As the parameters €2 and
E are scale insensitive, k" introduces a scale effect into the loss of macroscopic
instability of short-fibre-reinforced materials. The macroscopic response of large
specimens made from these composites will be more sensitive to vanishing of
bridging stiffness than that of small specimens with the same level of damage
(0 < Q< 1).

It is seen from Fig. 3 that the absolute value of k" increases rapidly when
the value of € deviates from 1. This means that in order to delay macroscopic
instability of the composite, it is very important to prevent or delay the coales-
cence of the discrete microcracks. In principle, if the microcracks are somehow
prevented from coalescing whilst at the same time the tangent bridging stiffness
is maintained above the critical value given by (4.6), macroscopic instability of
the composite cannot occur. In practice though, the discrete microcracks are
likely to propagate and coalesce once the fibres begin to be pulled out, i.e., once
k reaches zero. Figure 4(d) illustrates such a possibility whereby the composite
exhibits tension-softening, while the cracks in the localisation band are still frag-
mented (0 < € < 1) but the tangent bridging stiffness is equal to or less than the
critical value (4.6). This provides a softening model which is different from that
introduced by L1 et al. [17] in which the softening is a result of fibre pull-out
from a through crack (2 =1).

5. Conclusions

In this paper, based upon the pseudo-traction technique and an asymp-
totic analysis, the tensile stress-strain relation is established analytically for
short-fibre-reinforced composites containing multiple parallel bridged microc-
racks. This allows an analysis to be made of the macroscopic material instability
in the tensile deformation process of these composites. The material instability
at the macrolevel is examined using the classical bifurcation criterion, with an
emphasis on the role of the bridging action of fibres. Conditions for the incipient
macroscopic instability are obtained as functions of damage in the matrix, crack
length, and the microscopic bridging stiffness. It is found that no macroscopic
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instability is possible as along as the tangent bridging stiffness is positive, i.e.,
as long as the fibres remain bonded to the matrix. However, whilst the bridging
instability at the microlevel plays a major role in the macroscopic instability, it
is the damage in the matrix that determines when the macroscopic instability is
induced by the bridging instability. The microscopic bridging instability does not
necessarily induce macroscopic instability. Indeed, macroscopic instability may
be delayed until the fibres are only exerting residual frictional action. Likewise,
the formation of a through crack is neither a necessary nor a sufficient condition
for the onset of tension-softening in the composite. The results also suggest that
in order to delay macroscopic instability in the tensile response, it is very impor-
tant to prevent or to delay the coalescence of the discrete microcracks that form
in the strain-hardening stage.
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