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PreviousLy, we developed a gradient thermodynamic theory of internal fields (mi-
gratory motions). The theory predicts the observed periodic deformation structures,
in material domains under uniform tractions. More recently we showed, in a uniform
stress field, that the theory has the proper mathematical framework for the prediction
of Portevin-Le Chatelier (PLC for short) instabilities.

Here we review our previous work and address the more difficult problem of a non-
uniform stress field. Specifically, we predict the points of instability of a solid cylinder
under torsion, with the experiments of Dillon as backdrop. Again, we find close agre-
ement between theory and experiment,.

1. Introduction

IN A RECENT SERIES of paper, VALANIS [1 — 4], we presented an isothermal, gra-
dient thermodynamic theory of internal fields. The theory provided a theoretical
basis for the appearance of non-uniform strain fields, in homogeneous material
domains, under uniform surface tractions, in situations where local theories would
predict otherwise. In the most recent paper, VALANIS [4], we demonstrated that
imbedded in the theory is a mathematical framework, for the theoretical treat-
ment of ‘unstable solids’.

Specific attention was given to the Portevin-Le Chatelier effect, whereby a
macroscopically uniformn domain under uniform, monotonically increasing trac-
tions, suffers spontaneous changes in deformation, at specific discrete values of
the tractions while the resulting strain becomes non-uniform.

It was further shown that this metastable behavior is caused by the presence
of particular internal field &;. These are continuous and twice differentiable and
bounded in the material domain D in the sense that ||¢;|| < co in D, double bars
denoting the Euclidean norm. The fields satisfy the partial differential equation:

(1.1) CVIE+Z.£=0
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818 K. C. VALANIS

in D, where C is a material constant, V2 is the Laplacian and X(0) is a t:nsor
function of the stress o, to be discussed in the text. We shall refer to this equation
as the Instability Equation. In the specific case treated here, & signify end-
points of diffusion and/or rearrangement processes. They represent, ther:fore,
equilibrium states in the sense that their dual internal forces =; are zero.

The boundary conditions are:

& =0 on S
(1.2)
f;‘f_j'nj =:0. on Sp,

where S; and S, denote a permeable and impermeable surface, respectively. Quite
clearly the solution of Eq. (1.1) gives rise to an eigenvalue problem. If X is
constant in D, then non-null solutions to Eq. (1.1) will exist only for specific
characteristic values of ©.

In our most recent work, cited previously, VALANIS [4], we applied the theory
to the experiments by LUBAHN [5], who tested flat steel specimens in tersion,
DiLLON [6] who did experiments on hollow aluminium cylinders under tcrsion
and SHARPE [13] who tested solid aluminium cylinders under tension. All these
experiments were done under load control and at a slow rate of loading.

All three authors observed metastable behavior of the Portevin-Le Chatelier
type in the sense that the deformation was a monotonic continuous function of the
tractions, except for specific discrete values of the latter, at which the macerial
body suffered a sudden and spontaneous change in the deformation.

The application of the theory to the above experiments resulted in the demon-
stration that the Instability Equation (1.1) contains the appropriate physcs of
metastable behaviour and that its solution, in all three cases, given precise pre-
dictive values of the tractions at which the instabilities were observed.

Moreover it was shown that the collapse tractions are, within a geometric
factor, the eigenvalues of the solutions of the Instability Equation (1.1).

We refer the reader to VALANIS [4] for details but treat the flat bar in tension in
some detail in Sec. 3.

In this paper we illustrate the ability of the theory to deal with the more
complex problem where the tractions are not uniform. The work was motivated
by the researches of DILLON [6], who carried out experiments in load control, on
solid aluminium cylinders in torsion. As in previous cases, material instabdlities
of the Portevin-Le Chatelier type were observed, in the sense that the cylinders
suffered spontaneous changes in twist at discrete values of the applied torque.

As is well known, local theories will predict that the twist is a continuous
function of the applied torque. Such theories, therefore, are incapable of describ-
ing, let alone predicting, this type of phenomenon.
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GRADIENT FIELD THEORY OF MATERIAL INSTABILITIES 819

2. Gradient thermodynamics

The theory is expressed in terms of gradients of internal variables, more
appropriately, internal fields. It was given previously, in a Helmoltz and a Gibbs
formulation in earlier work by VALANIS |1 - 3]. It is basically the following. The
Helmotz (Gibbs) free energy density denoted by 1 (denoted by ¢) is a function
of the strain tensor €;; (stress tensor o;;) and three different types of internal
variables:

(i) Second order tensors p;;, which are dissipative and obey evolution equa-
tions of the local type.

(ii) Vectors g; and their gradients g; ; which are also dissipative and give rise
to inhomogeneous strain fields in the presence of uniform surface tractions.

(iii) Vectors & and their gradients §; ;. These are a subset of g; in the sense
that their dual internal forces =; are zero! Thus, either & are inviscid or they
represent terminal equilibrium points of an irreversible process.

Both q; and & are mathematical representations of non-affine migration of
subsets of particles, into material subdomains that are exterior to the initial neigh-
borhood of the particles (see VALANIS [3]). Such motions are brought about by
diffusion of dislocations, voids, interstitials and/or other processes such as parti-
cle diffusion or microslip.

2.1. Helmotz formulation

The formulation is based on the global variational inequality (2.1), that per-
tains to a material domain D of volume V and surface S under prevailing isother-
mal conditions:

(2.1) U < /Tgﬁuid.5'+/f5§uidV,
S Vv
where V¥ is the total free energy of the domain, 7; - the surface tractions, f; —

the body forces in D, u; — the displacement field and 4 is the variation operator.
The free energy density 9 such that

(2.2) ] pdV = U

is then introduced where
(2.3) ¥ = Y(eijs Piji Gis Gij)-

Since &; are a sub-class of q; they do not appear explicitly in Eq. (2.5).
In variance with local theories, 1 is a function of the strain tensor, m local
internal variables p;; and n vectorial internal field variables ¢; and their gradients
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gi,j; subject to the constitutive constraint that for all rigid body displacement
variations du;:
(2.4) Wr=0; dg=0.

2.2. Field equations
The following relations then hold in D, VALANIS [1 - 3], for all p;; and g;:
(2.5) oij = Oy [eij,
Qij + 0 /9pij = 0.
(2.6)
Qi = (/4i;); — O/,
(2.7) oiji + fi=0,

where Q;; is the internal force dual to p;; and Q; the internal force, dual to g;.
Note that Q;; and ¢; must satisfy the dissipation inequalities:

(2.8) Qijdij > 0

(2.9) Qigi >0

whenever ||Q;;]| # 0, [|Qil| # 0, double bars denoting a Euclidean norm. As

mentioned previously, the sub-class of ¢; such that @; = 0, is denoted by &;.
The theory is made complete by the addition of “internal constitutive equa-

tions”. These are relations between @;; and ¢;; on the one hand and Q; and ¢;

on the other, whose existence is necessitated by the inequalities (2.8) and (2.9).
More will be said about this point in the text to follow.

2.3. Boundary conditions

We shall limit the analysis to the case where the configuration defcrmation
is diffusive in the sense that ¢; and & are migratory motions. The following are
then the boundary conditions.

On Sy, the part of the surface where tractions are given:

(2.10) oijnj = Tj.

On Sy, the complement of Sy, where displacements U; are given:
(2.11) wi = U;.

On S, the permeable part of the surface:

(2.12) O/ 8qi m; = 0,
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GRADIENT FIELD THEORY OF MATERIAL INSTABILITIES 821

while on S;, the impermeable complement of Sp:
(213) q; = 0.

No boundary condition is necessary for p;;.

2.4. Gibbs formulation
The Gibbs free energy density ¢ is given by Eq. (2.16) where:
(2.14) ¢(oij; Dij : @i Gig) = ¥ — oijeij-
Equation (2.16) in conjuction with inequality (2.1) and the equilibrium equa-

tion, leads to the following variational inequality that pertrains to the Gibbs
formulation:

(2.15) - /1:.,;5'1} - ]uiﬁf,- > /5¢dV.
S 1% 1%
The pertinent equations that follow, VALANIS [3], are given below. In D:
(2.16) Egj = —6¢>/60ij,
(2.17) Qi; = —0¢/Pyj,
(2.18) Qi = (0¢/0q:,;),; — 9¢/0qi,

while the constitutive equations for (;; and @; remain the same. The form of
the boundary conditions remains unchanged. Thus on Sp:

(2.19) oing = T;.
On S,:

(2.20) d¢/0q; jn; = 0.
On S

(2.21) =1L
On S,'_:

(2.22) g =0.

2.5. A partitioned form of ¢

In this paper we shall posit that the energies associated with the pertaining
deformation mechanisms are additive in the sense that:

(2.23) ¢ = e+ ¢p+ ¢
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where
(224) ‘f’e =2 ¢8(Ufj]s qﬁp = qﬁp((fij)pij}:
(2.25) P = Pql0is; Gigs %)

Thus, in view of Eq. (2.15):
(2.26) €ij = €5 + € + e

i.e., the strains are also additive.
We shall focus our attention on the variables &;, the dual thermolynamic
forces Z; of which are zero. Thus, it suffices to write ¢ in the form:

(2.27) b = ¢*(0ij Pijs Gi3 Gij) + Pe(0ij; €is €j3j )-

We shall, however, put mathematical constraints on ¢* and ¢,. Ve shall
require that ¢* be continuous in its variables but that ¢¢ be continuous n &; and
&i.j. The physical ramifications of these constraints will become evidentin what
follows.

2.6. The form of ¢¢

The theory proposed here is linear and thus ¢ is quadratic in its argjuments.
In the full expansion of ¢, the part attributed to & and its gradient isgiven in
Eq. (2.30):
(2.28) e = —(1/2)5;;&&5 + (1/2)C¢; 36 4

where 3;; is a material function of stress and C is a positive material onstant.
This form gives rise to material instabilities of the Portevin Le-Chatelier type as
shown previously by VALANIS [4].

2.7. Constitutive questions

Inequality (2.1) becomes an equality when 60 is expressed in terns of the
variation §D* of the dissipation D*:

(2.29) 50 = / TibudS + / FbwdV ] 5D*dV
s v v

where

(2.30) Al = Chogy = 0 for all ||Qi|l # 0.

Inequality (2.30) is a Variational Inequality that ensures that no fre: energy
may be extrated from a material by means of an ‘external agency’ to which the
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variations dg; are due. Its mathematical significance is that of all the variations
dg; only some, a subset, are admissible, i.e., those that satisfy the inequality
Qidg; > 0, for all ||Q;]| # 0.

In the event that dg; = ¢;0t, where ¢; is the actual rate of ¢; due to the
actual physical process, then the variational inequality becomes the Dissipation
Inequality, i.e.,

(2.31) D* = Qg > 0.

As argued previously, also for local thermodynamics, VALANIS [7], @; and ¢; are
thus related. The most obvious such relation is the one where Q; is linear and
homogeneous in ¢;, i.e.,

(2.32) Qi = bijdy; bijGiq; > 0

which may or may not be a good description of the process at hand.
This relation is, however, a member of a broader class of relations for which:

(2.33) @y="0 dorall ;=10

This 1s the class that we use in this paper. Most probably, the number of relations
in this class is infinite and we shall not attempt to enumerate all these in this
paper, even if we could.

Since, however, &; are subsets of ¢; that represent terminal points in the
metastable process, they may be defined by the operational relation:

(2.34) gGi=&, Qi=0.

3. The Portevia-Le Chatelier effect

Previous theoretical work on this effect appears in the papers by AIFANTIS [8,
9, 10]. There it vas demonstrated that the field equations that govern the spatial
and temporal ewlution of the dislocation densities, have analytical features that
give them the czpability for describing this effect.

Here, the ddormation mechanism of interest results in a series of contained
collapse events, not associated with a continuous plastic process brought about
by coordinated ntergranular slip. A collapse process is a spontaneous structural
rearranngement that takes place at constant stress. We conclude that the internal
variables of the :ollapse process are not those of continuous plastic deformation,
but others that »bey different internal constitutive laws.

REMARK

It is of historical interest that DILLON [6], observed a small amount of plastic
strain between netastable states but LUBAHN [5] did not. Thus in the “Lubahn
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solid” the deformation between metastable states is elastic. In this “idel” solid:
¢ = ¢e + ¢¢, i.e., ¢ is independent of p;; and ¢;. More generally, by virtie of the
constraints on ¢* and ¢, the collapse to a new configuration is brougit about
through the internal fields &;, which are not present in the continuow plastic
process.

In effect: (i) ¢¢ = 0 when & = 0; (ii) the variables &; are constan during
(continuous) plastic deformation; (iii) during collapse, 0, hence €€, is onstant;
moreover, p;; and g; are also constant, since 0 is continuous in these wariables,
the agents of the plastic process (local and non-local). Hence €P and €“are also
constant. Thus, in Eq. (2.27), ¢* is constant during the collapse proces.

To proceed with the analysis, we begin with Eq. (2.6)2, which inview of
Eq. (2.34), gives rise to the following defining equation for &;:

(3.1) (0¢¢/0Ei;),j — Ode/0&i =0

in D. We further set I;; to be linear and homogeneous in o;;. But sinceall non-
elastic mechanisms are assumed to lead to isochoric deformation, then J;; must
be linear and homogeneous in the deviatoric stress tensor s;;. Thus, Ej. (2.28)
becomes:

(3.1)' de = —(B/2)s4&:€; + (C/2)& 5¢i,;-

Without loss of generality, we set B equal to unity. Then in view of Fq. (3.1),
the following second order partial differential equation for &; is obtainec in D:

(3.2) C¥; 55 + 8i5&; = 0.

3.1. The boundary condition

We shall take the position that the boundary is permeable. This mus be true
if the material is uniform. In essence, since there is internal diffusion, th: bound-
aries of all internal sub-domains are permeable. Hence the external loundary
is also permeable. This conclusion is confirmed by the demonstrated ageement
between the theory and the experimental results.

Hence, S = S, and thus on S:

(33) {g'jnj = 0.

The strain Ef-, which the &-field contributes to the total strain is givel, in the

light of Eq. (2.18), by Eqgs. (3.4):
(3.4) e5; = &i&j — (1/3)6bk5i;.

Note that EE;‘ =
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4. Metastable behavior of a flat bar under tension

The problem of the flat bar under tension was solved in a previous work,
VALANIS [4]. Because of its relative simplicity and the fact that it illustrates the
essential points of metastable behavior, it merits a (brief) review which we give
below.

We consider the case of a rectangular domain of length a in direction z(z,),
width b in direction y(z2) and of small thickness ¢ in direction z(x3). Thus,
0<z<a 0Ly <band 0 < z < ¢ Further, we consider solutions such
that &; is constant in the thickness direction z. A uniform tensile traction T is
applied on the boundaries z = 0, a, while the boundaries y = 0,b and z = 0,¢
are traction-free. A uniform stress state prevails throughout the plate by virtue
of the equation of equilibrium. The deviatoric stress components s;; are zero for
i # j, while 81y = s = 2T'/3, 532 = s33 = —s/2 where T is a positive scalar.
The boundary condition (3.3) now becomes: 9¢;/dz = 0, z = 0,a; 9¢;/dy = 0,
y=0b.

We seek solutions that lead to repetitive, patterned material structures and
thus are periodic in the variables z;. In light of the boundary condition (3.3), the
only admissible solution, VALANIS [4] is the following:

(4.1) & = A, cos(nmz/a) cos(mmy/b),

where m and n are integers and A; are eigenvectors of the characteristic equation:

Ay 511 Al
(4.2) Al A | = 522 Ay |,
Az 833 Aj
where
(4.3) A = C{(nw/a)? + (mm/b)*}.
Thus it follows that:
(4.4) A =8=(2/3)T,
(4.5) Ay = A3 =0.

In view of Eq. (4.4), a solution ezists only for characteristic values of the traction
T. However, A, is indeterminate.
The strain field is shown in Eq. (4.6):

2/3
(4.6) ffj -1/3 A? cos® mn(z/a) cos® nw(y/b).
—-1/3
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REMARK

The field equation predicts that spontaneous collapse (and self-orgarization)
occurs when the maximum (tensile) principal stress o reaches an eigenstate, at
which it attains a characteristic value T,

(4.7) T. = (3/2)C({(n/a)? + (m/b)*}=*,

where m and n are positive integers. The integers m and n are independent,
giving rise to denumerably infinite metastable states. Hovewer, given n, the
collapse traction T' is a maximum for m = n. If the material resists collapse as
long as possible then it will until m = n. This is the maximal traction hypothesis
which we adopted previously, VALANIS [4].

Thus setting m = n in Eq. (4.7) we find the following simple relation for the
collapse traction T:

(4.8) T, = Teon®

where

(4.9) T, = (3/2)Cn® [(1/a)? + 1/0)%]
or

(4.10) T = ) T

Hence, the square roots of the collapse tractions are proportional to th: ordinal
number of their occurrence.

Two things remained to be found: (a) the constant /Ty, and the ordinal
number n. at which the first collapse takes place. To this end, Eq. (410) was
written in the form of Eq. (4.11):

(4.11) VT = /Teo(ne + 7).

Setting the cross-sectional area of the bar equal to unity (with no loss of general-
ity), a plot of /T, versus r gave a straight line with a slope 1.972, while setting
r = 0 determined n., found to be equal to 14. Thus:

(4.12) VT, =1.972(14 + 1),

7 =0,1,2...m. The match with individual experimental and calculated values of
traction loads and ordinal numbers, shown in Table 1 below, is very clos: despite
reading errors as well as experimental errors.
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Table 1. Comparison of observed and calculated tractions and ordinal numbers

r=0,1,2.m 0 1 2 3 4 3
Observed P, 760 | 860 | 980 | 1120 | 1260 | 1420
Calculated P. 764 | 878 | 998 | 1127 | 1263 | 1407

Calculated ne +r 14 15 16 17 18 19

5. Metastable states in torsion of a solid cylinder

In this section we apply the theory to predict theoretically the experimental
results of DILLON [6], in which solid cylinders made of aluminium 1100 were
subjected to pure torsion. Observations were made of the torque at which a
cylinder collapsed to a subsequent stable state. A depiction of the experiments
is given in Fig. 1.

160
140 =9
120¢ =0
100
80} o3
60} @@
40¢
20

1 2 3 4

FiGg. 1. Experimental values of torque (in 1b) with initial and terminal values of twist
(no units) at points of instability.

To this end, we let 7, # and z be the polar coordinates of a cylinder radius a
and height h, subjected to pure torsion. We now recall Eq. (3.2), which is the
equation of metastable motion:

(5.1) CV2&; + i€ = 0,
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where V2 is the Laplacian operator, given in cylindrical coordinates by Eq. (5.2):
(5.2) V% = 8%;/0r + (1/r)dE, |or + (1/r2)0%¢;)06% + 0€;)02*.

We exclude solutions that depend on f and are thus periodic in @, becaus: then
either & or 9¢€;/d0 will vanish at specific points on the circumference. This is
not warranted since all points on the circumference of a continuum have equal
status. Equation (5.2) thus becomes:

(5.3) V2 = 8% )0r® + (1/r)0¢; | Or + 8%¢;02%.

The boundary condition is given by Eq. (3.3), i.e., & jn; =0on S.

It remains to determine the stress tensor s;; in the Cartesian coordinate
system z;. The components of s in the polar coordinate system are zero with
the exception of sy, = s,p = 7. A tensor transformation gives then the following
values of s;; in the z;-system:

0 0 —78inf
(5.4) 8ij = 0 0 Teos
—78inf Tcosf 0

DIGRESSION

When the stress field o;; is not explicity known, the solution of the equation,
(5.5) CV2E; + 546 =0

faces impossible difficulties unless certain hypotheses are made in regard to the
mechanism of collapse. The difficulty lies in the fact that the amplitude of the
inelastic strain field in all metastable states is indeterminate. Thus the concept
of a constitutive equation whereby the stress tensor is a continuous function of
the history of the strain tensor, must be abandoned. In this case it is no longer
possible to determine, in general, the stress field in a domain given the tractions
on the surface. The reason is that the condition of compatibility is no longer
applicable since the deformation is not known.

These considerations do not apply in our particular case, because tae stress
field in a solid cylinder under torsion is statically determinate — what will be
discussed shortly.

5.1. Stress field cylinder under torsion

In a cylindrical coordinate system (r, 8, z) the components of the stress tensor
are zero with the exception of og. = 7. As a result of the stress feld, the

http://rcin.org.pl



GRADIENT FIELD THEORY OF MATERIAL INSTABILITIES 829

equilibrium conditions are:
(5.6) 00¢,/0z = 0oy, /00 =0

and therefore gy, = 7(r). It follows that if on the free ends (2 = 0,h), the
tractions 7(0,7) = 7(h,r) are prescribed as functions of r, then oy, is (statically)
determinate.

In the experiments by Dillon, cited previously, a torque Tg (experimental)
was applied to one cylinder end, while the other was held fixed. It is not known
whether the experimental shear stress distribution 7(r) was ezactly linear in r,
resulting in a torque Ty (= Tg). If it was not, then the experiment consisted
in applying a torque T}, together with a self-equilibrating stress system, very
localized at the cylinder end. We will thus proceed on the basis that a torque
T}, was applied in the form that 7 = 79r/a, where a is the radius of the cylinder.
Our position will be justified by the findings.

Substitution of Eq. (5.1) in (5.4) gives rise to the following set of equations:

CV%, = +71sinfé3,
(5.7) CV2%,y = —1cosf&s,
eV = +7sinfé; — 7cosf&.

It is shown in the Appendix that this set of simultaneous partial differential
equations reduces to the following uncoupled set of equations in &;:

(5.8) CV%;+7¢ =0

which in the light of the linear dependence of 7 on r becomes:
(5.9) CV2¢; + 1o(r/a)éi = 0.

The boundary conditions in the cylindrical coordinate system are:

ot /or =0 (r=na);
(5.10)
9;/0z=0 (z=0,h).

5.2. Solution of equation (5.9)

Because the shear stress 7 is a function of r only, it is useful to begin with
the case where &; are functions of r only, i.e., & = &(r). It is pointed out that
this is not a maximal field solution. However, it will be shown that the collapse
stresses of the maximal field solution are very close to the ones obtained here.
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In view of Eq. (5.3), the differential equation for §; is given below:
(5.11) Cld*&/dr® + (1/r)déi/dr] + To(r/a)é = 0

with the boundary conditions d¢;/dr = 0, r = a, and the boundedness condition
ll&ill < o0, 0<7 <a.
We introduce the transformation p = r/a, whereupon Eq. (5.11) becomes:

(5.12) d*¢i/dp? + (1/p)dEi/dp + T*p&i = 0

where 7* = 79a?/C.
To solve this equation we appeal to the “generic” equation:

(5.13) d%¢;/dp® + (1/p)dé; Jdr + (bep®™ )% zi; =0
which has the solution, Boas [11]:
(5.14) i = Aido(br€) + B;Yy(brf),

where Jy and Y} are the Bessel functions of order zero, and A; and B; are unde-
termined constants of the solution. To obtain Eq. (5.11) from Eq. (5.14) we set
¢ = 3/2 and thus:

(5.15) 2y/7* /3 =b=(2a/3)V/(10/C).
Because &; are bounded in the domain 0 < r < a and in light of the fact that
Y (0) = oo, we set B; = 0 and thus:
(5.16) & = AiJo(bp*?).
The remaining boundary condition, at p = 1, is d§;/dp = 0. Hence:
(5.17) Jy(b) =)
where J, is the Bessel function of order one.

It follows that a non-null solution for &; ezists only for characteristic values
of b, these being the zeros of J;. The amplitudes A; remain indeterminate.

In physical terms, the deformation of the cylinder is continuous in the applied
torque, except for specific values of b when the deformation is augmented by the
spontaneous appearance of the gradient fields &. The magnitude of the augmen-

tation, however, is indeterminate. These characteristic values of b are points of
instability.

5.3. Values of the toeque at points of instability
The relation between 7y and the applied torque is given below:

(5.18) 70 = (2/ma*)T.
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In view of Eq. (5.15),
(519) k‘jgﬂ) =\ In,

where the constant k& is given by Eq. (5.20),

(5.20) k = (3a/2)\/(CT/2).

Moreover, jf"') is the n-th zero of J; and T}, is the value of the applied torque

at which the n-th instability occurs. In other words: the square root of the n-th
collapse torque is proportional to the n-th zero of the Bessel function J;.

Two issues arise at this juncture: (a) the first measurable collapse torque and
(b) the determination of the constant k. In our previous work, in connection with
instabilities in a uniform stresses field, as in the case of in tension of a uniform
bar and torsion of a hollow cylinder, we found that the first collapse traction was
found to occur at a high value of n, generally greater than ten. For such values of

n and over substantial intervals An, j{n) may be approximated by the formula:

(5.21) jfn} = j1 + 7n, n > ng; ng > 10

where 7§ is a constant. For these values of n and in view of Eq. (5.21):

(5.22) VT = k(j} + ).
14
12
10
6
4
2 4 6 8 10

F1G. 2. Square root of experimental values of torque vs. their sequence.

In light of the above considerations, a plot of the experimental values of /T},
versus n, should give a straight line with a slope kw. Such a plot is shown in
Fig. 2, where the experimental points follow closely a straight line with a slope
km equal to 0.421 and hence, k = 0.134. With this experimentally determined
value of k, we have the following theoretical expression for the collapse torque
Ty
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(5.23) VTn = 0.1345™.
This is a remarkable result.

The first observable value of T, was found by inspection to be Tjg. The
theoretical values of T,, were then calculated and are given together with the
experimental values in Table 2. The agreement is quite close.

Table 2. Experimental and theoretical values of collapse torque (ft — 1b).

n 19 20 21 22 23 24 25 26 27 28 29

(VTn)ex | 794 | 850 | 8.83 | 9.24 | 9.75 | 10.3 | 10.6 | 11.0 | 11.5 | 11.9 | 124

(VTn)en | 8.10 [ 852 | 8.94 | 9.36 | 9.79 | 10.2 | 10.6 | 11.0 | 11.5 | 11.9 | 12.3

() 60. |63 | 66 | 69 | B | 76 | m | 82 | 85 |8 | oL
h 47 | 61 | 75 | 90 | o4 |18 | 32 |46 |60 | 72 | 89

5.4. Maximal internal fields

We recall that in the case of a flat bar (Sec. 1), the solution for the internal
vector field was given by Eq. (4.1), shown here as Eq. (5.24):

(5.24) & = A cos(nmz/a) cos(mmy/b).

Given n, denumerably infinite set of m may be chosen in the solution. However,
it was argued in that section that the mazimal traction hypothesis requires that
m = n. The fields that satisfy this conditions were called mazimal fields.

The solution obtained above is not a maximal field solution, yet the agree-
ment between the theoretical collapse torque values and their experimental coun-
terparts was excellent. Is there any inconsistency? We proceed to examine this
question.

To this end, we write Eq. (5.11), in cylindrical coordinate system:

(5.25) C[9%¢i/0r® + (1/r)0&|0r + 8°€i/02°] + mo(r [a)€; = 0.

We introduce the transformation, p = (r/a), ( = (2/h),0< p <1, 0< (< 1,
whereupon Eq. (5.25) becomes:

(5.26) 9%€:/0p* + (1/p)0i/9p + (a/h)*0%&i ]9 + *pi =0

where 7* = (a%79/C). The following set of maximal field solutions satisfy the
boundary condition (5.10)s:

(5.27) & = Ry(p) cos(nm¢),
http://rcin.org.pl
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n = 1,2,..00, where R(™) satisfies the differential Eq. (5.28):
(5.28)  d?R™/dp* + (1/p)dR™ Jdp — (am/h)*n2R™ + 72pR™ = 0.

Evidently R, is not a periodic function and thus it must be interpreted as having
n (albeit decreasing) half-oscillations in the domain 0 < p < 1, just like cos nw(
in the domain 0 < { < 1.

REMARK

Note that as h — oo at constant radius a, Eq. (5.28) tends to (5.12). We can
thus say that the solution & = &;(r) pertains to a cylinder of infinite length. We
call the n-th eigenvalue of this solution (7})oc-

5.5. Solution of equation (5.28)

DILLON [6] tested specimens of diameter of 0.5 inch. (a = 0.5) and length of
either 9 or 19 inches. He did not specify the specimen length in the test reported.
We shall take the conservative position that h = 9 - this will become clear shortly
— in which event (h/ma) = h* = 11.46. The object then is to determine 7,; such
that the solution R (p) has (a) n half-oscillations and (b) a derivative dR™ /dp
that vanishes at p = 1.

REMARK

Because the solution &;(r), independent of z, depicts collapse torque values
that were close to their experimental counterparts, we reason that 7, must be
close to (1.557)?, which are the values of (7;1)a. Furthermore, since:

(5.29) VT = 0.134(2/3) /7

and because the first observable T}, was Tg, we also reason that the first 7} is in
fact 7{g.

The solution then consisted in finding the eigenvalue 7;y such that R™ had
19 half-oscillations and its derivative dR™ /dp vanished at p = 1. The solution
was found numerically by means of the software NDSolve of MATHEMATICA
and the function R('9) is shown in Fig. 3. It has 19 half-oscillations. Its derivative
function dR™ /dp shown in Fig. 4, passes through zero at p = 1 The eigenvalue
T1g was found to be equal to 8235. This value compares with 8227 which was the
value of (7). The difference between the two is of the order of 0.1% which is
well within the experimental error. The same was found to be true of all other
- For instance 754 was found to be 19017. The corresponding value of (739) o
was 18998. Again the difference between them is about 0.1%.

http://rcin.org.pl



834 K. C. VALANIS

FIG. 4. First derivative of Rn(r) : n = 19.

CONCLUSION 1

A parametric study showed that the two values tend to come closer together
as (am/h)? tends to zero, not surprisingly. Thus below a certain value of this
parameter, the length of the specimen does not affect the values of the collapse
torques, This theoretical finding suggests an interesting experimental program
to determine the effect of the cylinder geometry on the values of the collapse
torques. The theory predicts that they are proportional to the square of the
cylinder radius and become independent of the lenght as the latter becomes
asymptotically infinite.

CONCLUSION 2

In the case of the maximal field solutions and for a cylinder geometry such
that (h/ma) > 10, as in the case of the specimens tested, the values of the collapse
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torques are given within experimental error, by the relation:

(5.30) VT, = ki™,

where k is a material constant, in this case 0.134. This is an unexpected and
remarkable result.

The agreement between the predictions of Eq. (5.30) and the experimental
data of DILLON [6], is illustrated in Fig. 5. There, the dots are the experimental
points and the lines are the eigenstates, i.e., the “torque states” at points of
instability. Use was made of Eq. (5.22).

13

22 24 26 28

Fi1G. 5. Experimental points of instability vs. theoretical eigenstates (lines) ordinate:
square root of torque; abscissa: ordinal numbers.

Apendix

We begin with Egs. (5.7) in D, i.e.,
CV2%€, = +7sinf &3,
(A.1) CV3y = —Tcos &3,
CV%3 = +71sinf&; — Tcos O &s.
A vector transformation gives the following relation between (&;,&;) and (&,,&p):

& = £1c0s 0+ &> sin,

(A.2)

Eg = —€sinf + &5 cos .
Also:
(A.3) &1 = & cos 0 — &y sinb,

€2 = & sinf + & sin 6.
http://rcin.org.pl
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Multiply Eqgs. (A.1); and (A.1); by cosf and sin@ respectively, add anl use
Egs. (A.2); to obtain:

(A'4) v2 r = 0.

A. 1.1. Boundary condition
The boundary condition on S is:
(A.5) &ignj = 0.

In the cylindrical coordinate system Eq. (A.5) on the cylindrical surface 1 = a
becomes:

(A.6) (0&i/0r)r jn; + (0&i/00)8 jn; = 0.

However, §; is independent of § and r; = n;. Thus Eq. (A.6) reduces to:
(A.7) 9¢;/ar = 0.

Thus and in ligth of Eqs. (A.2); and (A.2),:

(A.8) 0, /0r =0; 0ty/Or =0

while on the flat surface 2 = 0, h:

(A.9) 0€;/0z=10

in view of which Eqgs. (A.4):

(A.10) 06 /02 =0, 8&/0z=0.

We now use the classical result that, if the Laplacian of a function f vanisies in
D while on S: df/dn = 0, then the function is at most a constant in D. We
set this constant equal to zero. Thus in view of Eqs. (A.8) and (A.10) it fdllows
that:

(A.11) R

Hence, in light of Egs. (A.3) we find that:

(A.12) & = —&psinf; & = €pcosh.

Hence, from Eq. (A.1)3 on the one hand and Eq. (A.1); and (A.1); on the sther:

(A.13) CV%3+ 769 =0; CV2p+7&3=0.
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A solution to the Eq. (A.13) is:

(A.14) €3 = &o.

It is now a short step to show from Eqgs. (A.1) and (A.12) that:
(A.15) CV%+ 76 =0

which is the result that was to be shown.

A. 1.2. Uniqueness of the solution

If another solution exists then &3 # &. Let £ = & — &. Then in view of
Egs. (A.13) and setting 7* = 79/Ca:

(A.16) V3 = 1r*r€
or,
(A.17) Olr(9¢/ar)]/or + rd*€/0z* = T*r2¢.

Thus, if a solution £ # 0 exists, it must satisfy Eq. (A.17) with 7% > 0 and the
boundary conditions 9¢/0r = on r = a, and 9¢/0z = 0 on z = 0, h by virtue of
Egs. (A.9) and (A.10).

We multiply both sides of Eq. (A.17) by £ and integrate over the domain
D using integration by parts and the indicated boundary conditions to find the
following result:

h a h a h a

(A.18) —//?'(6&/8?}2drd3~//f‘(6£/82)2drdz=f‘//7'2524rdz.
0 0 00 00

Since the left-hand side of Eq. (A.18) is non-positive (allowing the set of solutions
to include ¢ = constant) and the integral on the right-hand side is positive, a
solution can exist only for non-positive values of 7*. But 7* is positive and thus
a non-null solution for £ does not exist.
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