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Fatigue crack evolution in a metal reinforced by short fibres

Dedicated to Professor Zenon Mroz
on the occasion of his 70" birthday

V. TVERGAARD and T.®. PEDERSEN!

Department of Solid Mechanics
Technical University of Denmark
DK-2800 Kgs. Lyngby, Denmark

IN NUMERICAL ANALYSES OF FATIGUE damage evolution in metal matrix composites,
the development of final failure and the subsequent crack growth in the material are
accounted for. Cell model analyses are used for aluminium reinforced by short SiC
fibres, with the matrix material represented by a cyclic plasticity model, in which con-
tinuum damage mechanics is incorporated to model fatigue damage. The Bauschinger
effect, ratchetting, mean stress relaxation, and cyclic hardening or softening can be
accounted for by the material model, as is important in studies of low cycle fatigne.
Different fibre aspect ratios and spacings are studied for different loading cases.

1. Introduction

AN INCREASE OF THE TENSILE STRENGTH and the stiffness of a metal can be ob-
tained by a reinforcement using short brittle fibres. However, such reinforcement
also leads to poor ductility and low fracture toughness. The failure mechanisms
for such metal matrix composites under monotonic loading can be divided in
three groups: ductile matrix failure, debonding of the matrix-fibre interface, and
brittle failure of the reinforcements, as has been discussed by NEEDLEMAN et al.
[1]. For these failure mechanisms, numerical cell model studies are well suited to
obtain a parametric understanding of the effect of different material parameters,
such as the fibre volume fraction, the shape and distribution of fibres, and the
matrix parameters (NUTT and NEEDLEMAN [2], TVERGAARD |3, 4, 5, 6], LLORCA
et al. [7]).

For cyclic loading, where fatigue failure or even ratchetting can develop,
ALLISON and JONES [8] have reviewed experimental results on the behaviour of

'Present address: MAN B&W Diesel A/S, Research and Development, Teglholmsgade 41,
DK-2450 Kgbenhavn SV, Denmark

http://rcin.org.pl



800 V. TVERGAARD AND T. @. PEDERSEN

discontinuously reinforced metal matrix composities (MMC), in particular alu-
minium based composites. Both the matrix fatigue damage, and the effect of
particle fracture and debonding at the particle-matrix interface are described in
[8]. It is emphasized that the plastic strain range during cycling is the predom-
inant factor influencing fatigue damage, and that it is important to distinguish
between average strains and local strains due to the highly nonuniform straining
in the two-phase materials. Experiments by LLORCA and Poza [9] for SiC par-
ticulate reinforced Al have focussed on effects of reinforcement fracture. Analyses
by LLORCA et al. [10], using the GURSON model [11] for MMC’s under cyclic
loading, consider the first 9 cycles and find agreement with some of the dam-
age features observed experimentally. However, the Gurson material model with
isotropic hardening does not account for a number of important cyclic plasticity
effects.

The present investigation follows the approach used by the authors [12, 13] in
studies of the initial damage development for low-cycle fatigue in MMC's. These
analyses are here extended to also account for final failure leading to crack forma-
tion in the matrix material. Cyclic plasticity in metals can be described by various
more complex material models such as the fraction model of BESSELING [14] or
the multisurface kinematic hardening model of MRGz [15]. The description here
is based on a nonlinear kinematic hardening rule (ARMSTRONG and FREDERICK
[16], LEMAITRE and CHABOCHE [17]), using a superposition of isotropic harden-
ing and kinematic hardening, for which it has been found that the Bauschinger
effect, cyclic hardening or softening, ratchetting, and mean stress relaxation can
be described. With continuum damage added to this model (LEMAITRE [18]),
fatigue damage evolution can be described, and the particular fatigue model to
be used here has been employed by PEDERSEN [19, 20] to study fatigue fail-
ure in cold-forging tools. A similar model has been used in [21] to study the
creep-fatigue interaction.

Only the matrix fatigue failure is considered in the present study. so that
perfect bonding is assumed between the matrix and fibres, and the possibility
of fibre fracture is neglected. However, with short fibre reinforcement plastic
yielding in the matrix starts early, and there is a wide range of cyclic loads for
which fatigue life is mainly controlled by the matrix fatigue characteristics [8].

It should be noted that a damage model directly based on the micromechanics
of the failure mechanism would be preferable, but such a model for growing
microcrack density during cyclic plasticity has not been developed. Also, the
continuum damage model with a single scalar damage parameter cannot describe
the orientation effects associated with microcracks. However, a number of studies
of low cycle fatigue in structural components have shown that the model has good
predictive abilities.
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2. Problem formulation and material model

The evolution of fatigue damage and fatigue crack formation in a metal rein-
forced by short fibres is here studied by analysing a unit cell containing a single
fibre. The material with the periodic array of aligned fibres shown in Fig. 1 is
modelled approximately by an axisymmetric cell model proposed by TVERGAARD
[22]. It was found in [22] that this fibre arrangement gives a better agreement
with experimental uniaxial stress-strain curves found by CHRISTMAN et al. [23]
than that obtained by considering a simpler cell model representing transversely
aligned fibres. The square array of fibres shown in Fig. 1b has the fibre spacing
2a., and the initial radius r, = (2/y/7)a. of the axisymmetric model is chosen
such that the fibre volume fraction f of the cell is equal to that of the material
in Fig. 1
r%ﬁf

Here, £y and 7y are the fibre half-length and radius, respectively, £. is the cell
length, and the aspect ratios of the fibre and cell are
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F1G. 1. Periodic array of aligned, transversely staggered fibres. a) cross-section along
fibres; b) cross-section normal to fibres.

The major average principal stress oy in the composite is taken to be in the
axial direction, and due to the assumed axisymmetry only the cases with a uni-

form transverse average stress o, can be considered. In the cases to be analysed,
a fixed ratio between the axial and transverse average stresses is assumed

(23) o9 = poy.
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The boundary conditions at the flat ends of the unit cell are straightforward,
but on the curved side of the circular cylindrical cell, equilibrium and compat-
ibility with the neighbouring cells has to be represented approximately. As is
seen in Fig. la, a neighbouring cell is identical to that analysed, but points in
the opposite direction. The detailed formulation of these boundary conditions
can be found in TVERGAARD [22].

In the following analyses the matrix is modelled by the cyclic plasticity model
with fatigue damage, while the fibres are taken to be elastic with Young's modulus
E; and Poisson’s ratio vy. Furthermore, perfect bonding is assumed between the
matrix and fibres, and the possibility of fibre fracture is neglected. Thus, the
only type of failure accounted for is the fatigue damage evolution incorporated
in the cyclic plasticity law used for the matrix.

The analyses in the present work are based on a small strain formulation
of the field equations, since the geometry changes are typically small in fatigue
situations, even though the accumulated plastic strain p can grow large. The total
strain increment is given by the sum of the elastic and plastic parts, é;; = éfj+éfj.
The elastic stress-strain relationship is described by Hooke's law as 6 = L;;x€f;,
where the summation convention is adopted for repeated indices, a;; is the stress
tensor, and the elastic constants for the matrix denoted E and v.

The plastic strain increment follows the normality rule, €. = %j, where

i
the plastic multiplier, A, is obtained from the consistency condition, f=o0.
A Mises yield surface with mixed hardening is used, as specified by

(2.4) f=6.-(R+k)=0,

where the stress state is described by the effective stress tensor, 6. = (35;;5;;/
1

2)1/2 in terms of the effective stress deviator 8ij = Ojj— 551-3&“. Here, 6;; = 0ij/
(1= D) - X;;, where D is a scalar describing the amount of damage in a material
point (LEMAITRE [18]). The kinematic hardening is governed by the back-stress
tensor, Xj;, representing the centre of the yield surface in the stress space.

The size of the yield surface is described by the scalars R and k. Here, k is
a constant and R a variable, which is used for describing the isotropic hardening
or softening of the material. The initial conditions of a cyclic hardening material
are described by k = o, and R = 0, where o, denotes the initial yield stress. The
evolution equation for the variable R is described as

(2.5) R =b(Rx(A,q) — R)A,

where b is a material parameter and the value R (A, q) represents the limit of
isotropic hardening or softening, as described in more detail in [24, 25]. The influ-
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ence of the nonproportionality of the loading path on the softening or hardening
of the material is described as suggested by BENALLAL et al. [26].

The kinematic hardening of the material is described by means of the back-
stress tensor, X;;, which is taken to be the sum of three contributions, in order
to enhance the description of the material stress-strain response

3

(2.6) Xg= Y 5.

n=1

Each of the back-stress tensors, Xf;), follow an evolution equation suggested in
[16], and modified in [27] to enhance the description of ratchetting. The evolution
equation for the back-stress deviator X g is of the form

9 7) XD{"} 2 (H)X(n) P Xén] 5 XD("') (n))‘
( W ] J’Y ~—= W 1 i 3
o0
1/2
where the effective back-stress is X" = (ZX’{’:;]X{R}) . The parameters in

(2.7) and the representation of ratchetting are further described in [20, 12].

The scalar, D, which is incorporated in the constitutive equations as outlined
by LEMAITRE [18], is used to describe the development of fatigue damage in the
material. For an undamaged virgin material, D = 0, but when the accumulated
plastic strain, p, reaches a threshold value py, damage starts developing in the
sense of microvoids or microcracks. As it reaches a critical value D,, the material
has a high density of microcracks, which are likely to coalesce into a macroc-
rack leading to failure of the structural component. The damage development is
described by

: 1 ifp>
(2.8) D= Z;é'rrt(p), a= : e
S 0, if p < py

where S, is a material parameter describing the energy strength of damage. The

1/2
effective plasti in i : is determined as p = eF.éf ‘hich gi
plastic strain increment 1s determined as p = 36” F , which gives

D= ;\/(I—D). The strain energy release rate is given by Y = 02Ry /(2E(1-D)?),
where the effective stress is denoted by o, and the triaxiality of the stress field
is accounted for by the parameter Ry, which is here taken to be specified by

Okk

1t CO‘_ okk 2> 0,
(2.9) Ry = i
exp (C—) . Orr < 0.
Oy
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The material parameter C is adjusted to describe the mean stress sensitivity of
fatigue damage development [19], such that fatigue is more pronounced under
tensile loading than under compressive loading.

The gradual formation of a crack in the matrix material around fibres, as the
damage parameter D reaches the critical value D, is described here by using a
numerical techinque. In the previous investigations [12, 13] by the authors, only
the initial stages of damage development were considered, so that the peak value
of D had not exceeded D,.

The form of the incremental constitutive relations resulting from this mate-
rial description for cyclic plasticity with fatigue damage has been given in detail
in [12]. This material model for the metal matrix has as many as 23 material
parameters, which have to be determined by experiments for the matrix material.
Among these, F and v are the elastic constants, while S, pg, D, and C character-
ize the damage evolution, and the remaining 17 parameters are used to describe
cyclic plastic deformations, including the Bauchinger effect, cyclic hardening or
softening, ratchetting, and mean stress relaxation. Cyclic plasticity is complex
and these many parameters are necessary to give an adequate description, as has
been explained in a number of the papers cited above.

Numerical solutions are obtained by a finite element approximation, using
a linear incremental method based on the principle of virtual work, as explained
in [12]. An example of a mesh used for one of the numerical analyses is shown
in Fig. 2, with the hatched region representing the fibre. The mesh consists
of quadrilaterals, each built up of four crossed triangular elements with lin-
ear displacement assumption. A special Rayleigh-Ritz finite element method
[28] is used to implement the boundary conditions and to enforce the fixed stress
ratio (2.3).
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F1G. 2. Mesh used for some of the numerical computations.
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The fatigue crack development is incorporated in the computations by using
an element vanish technique [29]. Thus, when D = D, is reached in a triangular
element, the stiffnes matrix for this element is set to zero, and the nodal forces
corresponding to the remaining stresses in the element are stepped down to zero
over a number of subsequent increments.

3. Results

The material values used here to represent the aluminium matrix are k/E
= 0.002 and v = 0.33, and b = 7.0, R /E = 0.012, Ry/E = 0, ar = 0.3,
Br = 160, yg = 0.5 and C, = 0.5. Furthermore, in the back-stress evolution
equations (2.6) - (2.7), the parameter values used are y' = 400, v =50, v3 =
2000, XX /E = 0.0008575, X2 /E = 0.00142, X3 /E = 0.000285, m; = 3,
me = 3 and mg = 3, as in [12]. In the damage evolution equations (2.8) -
(2.9), the parameter values are S/E = 0.000024, py = 0.03, D, = 0.12 and
C = 0.04. Furthermore, the elastic constants of the SiC fibres are specified by
Ef/E = 5.71 and vy = 0.21 (see TEPLY and DVORAK [30]). For a rather soft
aluminium most of the parameters needed in the cyclic plasticity model have
been specified by HOPPERSTAD [31]. These values are used here, but the values
of k and the parameters specifying the kinematic hardening have been modified
to better represent the aluminium with higher hardness used by CHRISTMAN
et al. [23]. Furthermore, while HOPPERSTAD [31] used 2 terms in the sum
(26), 3 terms are used here to obtain a more smooth transition from elastic to
elastic-plastic deformation. The values of S, pg and D, are partly based on data
given by LEMAITRE [18], and finally the value of C is chosen to be reasonably
representative of the measured mean stress dependence for high cycle fatigue of
aluminium.

Figure 3 shows the overall stress-strain loops predicted for a particulate rein-
forced material with the aspect ratios ay = a, = 1 and the fibre volume fraction
f = 0.13. Here a uniaxial cyclic stress is prescribed, p = 0, using stress-controlled
loading with balanced cycling, omax/E = —0min/E = 0.0036. In this kind of test,
strain ratchetting is possible and is in fact often observed [8], as has been dis-
cussed in [12]. In Fig. 3, where 27 loops have been reached, the first several loops
show a slow movement of the mean strain in the negative direction, i.e. some
ratchetting due to the hardening behaviour. But the most significant feature
of this figure is the result of final failure development, which gives much larger
strain amplitudes in the last loop, and also significantly reduced slopes on the
elastic parts of this loop. Towards the end, the stress-strain curve is somewhat
jumpy as a result of the gradual failure evolution, which is represented in the
solution by using the element vanish technique.
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F1G. 3. Overall stress-strain loops for 27 cycles with balanced stress-controlled cycling,
Omax/E = —Omin/E = 0.0036. Here, f =0.13, ay =a. =1 and p=0.

Figure 4 shows the distribution of damage at two stages of the solution,
i.e. for ¢; = —0.0013, o, /E = —0.0019, during loop No. 22, and for ¢; = 0.0060,
o1/E = 0.0034, during loop No. 27, just near the end of the curve shown in Fig. 3.

X3 x; t

=X X

F1G. 4. Contours of constant damage, for balance stress-controlled loading, oy /E =

—0Omin/ E = 0.0036, with f = 0.13, af = a. = 1 and p = 0. a) at ¢ = —0.0013,

o, /E = —0.0019, during loop No. 22; b) at ¢, = 0.0060, o, /E = 0.0034, during loop
No. 27.

The distributions of damage D are shown by the contour curves, and regions
where final failure has occured are shown hatched. The location of the particulate
is indicated by dashed lines, and it should be noted that the apparent small
amount of damage inside the sharp fibre edge is due to a plotting inaccuracy
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resulting from averaging in the plotting programme. The distribution of the
damage fields is quite similar to the results shown in [12], but the present results
are extended to also show the onset of final failure in the matrix material and the
subsequent crack growth. Figure 4a shows that failure has first developed at the
axis of the cylindrical cell, centrally between two fibre ends, while failure at the
sharp fibre edge is just initiating. In Fig. 4b these two failure regions have grown
together, forming a crack that significantly reduces the strength of the cell, as is
also seen in the last loop of the stress-strain curve in Fig. 3.

Figures 5 and 6 show analogous results for a larger particle volume fraction,
f = 0.35, with the same values of the material parameters for the matrix and
particles. The larger stiffness due to the higher reinforcement volume fraction
results in a smaller overall strain range corresponding to the same stress ampli-
tudes. Here, 70 loops have been reached, and the end of the curve shows that
final failure is developing under monotonic elongation, without reaching the pre-
scribed tensile stress amplitude in this last loop. The damage distributions in
Fig. 6 correspond to two rather late stages, at ¢; = 0.00041, o;/E = 0.00067,
during loop No. 67, and at €; = 0.0052, o1 /E = 0.0026, during loop No. 70. In
Fig. 6a only a tiny region of final failure has developed at the sharp particulate
edge, but there is a high level of damage in a large material region at the plane
of symmetry between two particle ends. Just three loops later Fig. 6b shows that
much material has failed completely, and that the two open cracks have nearly
linked up.
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F1G. 5. Overall stress-strain loops for 70 cycles with balanced stress-controlled cycling,
Omax/E = —0Omin/E = 0.0036. Here, f =0.35, ay =a. =1 and p=0.
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F1G. 6. Contours of constant damage, for balanced stress-controlled loading, omax/E
= —0Omin/E = 0.0036, with f = 0.35, ay = a. =1 and p = 0. a) at ¢; = —0.00041,
o1/E = 0.00067, during loop No. 67; b) at ¢, = 0.0052, o,/E = 0.0026, during loop
No. 70.

It is noted that the last part of the overall stress-strain curve shown in Fig. 5
would not be stable if a monotonically increasing load was prescribed. In the
computations it has been assumed that a low constant strain rate is prescribed
(for quasi static behaviour), and that the sign of the strain rate is reversed when
the prescribed overall stress amplitude has been reached.

Again for the same values of the material parameters and stress amplitudes,
and for f = 0.13 as in Figs. 3 and 4, results for higher aspect ratios of the fibre
and the unit cell, @y = a, = 2, are shown in the next two figures. As expected,
the longer fibres give higher overall stiffness, which leads to a somewhat smaller
overall strain range than that found in Fig. 3, but the stress-strain loops in
Fig. 7 still show clearly that the slopes are reduced in the last loop, due to the
failure evolution. The damage field at a stage near the end of the solution, at
ey = 0.0039, o, /E = 0.0030, during loop No. 27 (i.e. the last loop), is illustrated
in Fig. 8. Here, the region of final failure has initiated at the sharp fibre, edge,
and is currently extended on both sides of this point. It is seen that the maximum
damage level along the axis of the cylindrical cell had been reached about one
fibre radius ahead of the fibre end, but that the region of final failure is closer to
the flat fibre end than indicated by the initial damage distribution.

Also a case of still larger aspect ratios, ay = a, = 4, has been analysed under
the same balanced uniaxial cyclic stress. This gives still more narrow hysteresis
loops, more like those shown in Fig. 5. Here, we only show the damage fields and
the distribution of final failure in Fig. 9, at ¢; = 0,0025, o1/E = 0.0028, during
loop No. 29 (the last loop). This figure shows that the failure distribution near
the end of the longer fibre is very similar to that found for ay = a, = 2.
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F1G. 7. Overall stress-strain loops for 27 cycles with balanced stress-controlled cycling,
Omax/ B = =0min/E =0.0036. Here, f =0.13,ay =, =2and p=0.

X1

2y

Fic. 8. Contours of constant damage, for balanced stress-controlled loading, omax/E
= —0Omin/E = 0.0036, with f = 0.13, ay = a. = 2 and p = 0. At ¢ = 0.0039,
o1 /E = 0.0030, during loop No. 27.

The effect of stress triaxiality is considered in Figs. 10 and 11, where trans-
verse tension is specified by p = 03/01 = 0.25 The material is the same as that
studied in Figs. 7 and 8, with oy = a, = 2, but higher stress amplitudes are used
here, omax/F = —omin/E = 0.0048, since an important effect of the increased
stress triaxially is that higher stress levels are required to give plastic yielding.
The stress-strain loops in Fig. 10 show the same trends at those found in the
previous cases, under cyclic uniaxial stress. Thus, the strain range is gradually
reduced in the first cycles due to the hardening behaviour, and some ratchetting
in the negative direction takes place, while in the last loops the strain range
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increases again, due to the evolution of damage and final failure in the matrix
material. Figure 11 shows the damage fields and the region of final failure in the
last loop (i.e. in loop No. 17), at €; = 0.0032, o1/E = 0.0039. It is seen that the
failure distribution here is rather similar to that shown in Fig. 8.

%!

%

Fic. 9. Contours of constant damage, for balanced stress-controlled, omax/E =
—0min/E = 0.0036, with f = 0.13, ay = a. = 4 and p = 0. At ¢ = 0,0025, oy /E
= 0.0028, during loop No. 29.
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F1G. 10. Overall stress-strain loops for 17 cycles with balanced stress-controlled cycling,
Omax/ E = —0min/E = 0.0048. Here, f =0.13, ay = a, = 2 and p = 0.25.

Also strain-controlled cycling is important in applications and in test situ-
ations. A few cases have been analysed here for uniaxial stress conditions, i.e.
for p = 0 in (2.3). For (€1)max = —(€1)min = 0.004, stress-strain loops for the
material with f = 0.13 and ay = a, = 1 are shown in Fig. 12. The first loops
are very similar to those in Fig. 3, but due to the fixed strain amplitude, the
cyclic hardening here results in gradually increasing stress amplitudes. Later
on, as damage results in the growth of a crack through the matrix, the material
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stiffness is reduced, and then the fixed strain amplitude results in significantly
reduced stress amplitudes, as is seen for the last loops in Fig. 12. The correspond-
ing development of low-cycle fatigue is illustrated in Fig. 13 for an intermediate
stage at ey = —0.0011, o;/E = —0.00035, in loop No. 17, and for the last loop
analysed (loop No. 64) at €; ~ 0, 09/F = —0.00013. The fields in Fig. 13a are
rather similar to those in Fig. 4a, although the situation in Fig. 13a is slightly
before the first onset of final failure. Figure 13b shows a very well-developed
crack, close to a situation where the fibres are completely separated from parts

Xyt

- X

FiG. 11. Contours of constant damage, for balanced stress-controlled loading, omax/
E = —onin/E = 0.0036, with f = 0.13, af = a. = 2 and p = 0.25. At €l = 0.0032,
a1 /E = 0.0039, during loop No. 17.
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Fi1G. 12. Overall stress-strain loops for 64 cycles with balanced strain-controlled cycling,
(€1)max = —(€1)min = 0.004. Here, f =0.13,ay =a.=1and p=0.
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of the matrix material. Similar analysed for a material with ay = a, = 2 (as
that in Figs. 7 and 8) has shown a behaviour analogous to that found in Fig. 12
and 13.

Xt

F1G. 13. Contours of constant damage, for balanced strain-controlled loading, (¢1)max =
—(€1)min = 0.0036, with f = 0.13, ay = a. = 1 and p = 0. a) at ¢ = 00011, 01 /E
= —0.0035, during loop No. 17; b) at €; ~ 0, oy /E = —0.00013, during loop No. 64.

4, Discussion

Previous studies of the damage evolution by fatigue failure in meta. matrix
composites have been extended here to also account for the final failure of the
matrix material and the subsequent growth of a matrix crack. The onset of failure
is controlled by the damage model, as the failure criterion relies on reaching a
critical value of the damage parameter, and the numerical representatior. of final
failure applied here has made it possible to continue the fatigue analyses far
beyond the initial stages of damage evolution.

In should be emphasized that the metal matrix fatigue failure investigated
here is only one of the failure mechanisms observed for MMC’s (ALLISON and
JONES [8]), and that also fibre fracture and debonding of the fibre-matrix nterface
play a role in practice. But there is a wide range of cyclic loads for which the
matrix fatigue characteristics dominate the fatigue life, and for this range of
material behaviour the method presented here is expected to be a very useful
tool in parametric studies of the effect of the main parameters charactersing the
metal matrix composite.

The examples used to illustrate the method here are all in the range of low
cycle fatigue, since the number of cycles to final failure range from 17 to 70. This
choice has been made for convenience, to avoid very large numbers of cycles in the
numerical computations. However, since the predicted fatigue damage evolution
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is linked to the amount of plastic straining, it is clear that somewhat smaller
overall stress amplitudes will give much less plastic strain accumulation in each
increment, and therefore a much increased number of cycles before final fatigue
failure is predicted.

In comparing the analyses for fixed overall stress amplitudes and for a fixed
fibre volume fraction, but with three different values, 1, 2 and 4, of the fibre and
cell aspect ratios, it has been noted that increased fibre aspect ratio gives higher
axial stiffness, and therefore a smaller overall strain range corresponding to the
fixed stress range. But it is also noted that the number of cycles to final fatigue
failure in these three cases is practically the same. This emphasizes the fact that
the onset of final fatigue failure in the metal matrix is a function of local plastic
strains rather than overall plastic strains. While increasing fibre length gives
smaller overall strain range, it also results in larger local strain concentrations
near the sharp edges at the fibre ends, and the final fatigue life determined in
the numerical analyses is a result of competition between these two effects.
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