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COLINEAR IMPACT AND DYNAMIC HARDNESS is analysed at spherical contact and mod-
erate strains. A consistent three-dimensional contact theory based on viscoplastic ma-
terial behaviour is laid down involving elements of self-similarity, stationary boundary
conditions and cumulative superposition. Universal relations between impact veloc-
ity and the resulting contact region, impression depth and duration of impact are
derived. Deformed surface shapes are shown to be self-similar for power law material
behaviour and their relation to piling-up and sinking-in is explained in detail. The
coefficient of restitution at rebound is estimated to first order. The concept of dy-
namic hardness is not unequivocally defined in general and various definitions in the
literature are discussed in relation to true material rate sensitivity. Theoretical and
numerical predictions of the present model are compared with pertinent experimental
findings for different metals. Particular features such as lip formation, plastic zone
size and maximum penetration depth are elucidated.

1. Introduction

TESTING AT HIGH STRAIN RATES has been of considerable and long standing as
related to the constitutive behaviour of materials. Since there is a natural lim-
itation in the traditional uniaxial tensile test at rapid straining, several instru-
mented tests of different degrees of sophistication have been developed, a promi-
nent one being the split Hopkinson pressure bar, (cf. e.g. TIRUPATAIAH and
SUNDARARJAN [30]). More conventional testing is usually carried out by forcing
a hard body to strike a deformable solid by fall of gravity, a pendulum machine
or a gas gun. In particular, the dynamic hardness of metals and alloys at rapid
straining has been tested in this more simple way by many investigators, some
also with the purpose to quantify the strain-rate sensitivity of plastic material be-
haviour as this constituent is needed in many applications. The conversion from
measurements of an average hardness value to a constitutive equation where a
general relation between stress, strain and strain-rate is to be specified is, how-

http://rcin.org.pl



780 B. STORAKERS AND J. LARSSON

ever, not a straightforward matter. Instead, the deformation state at impact by a
striking spherical ball is inherently inhomogeneous, and an a priori knowledge of
material parameters is, in essence, necessary to interpret the test results properly.
It is the present purpose to solve the field equations accurately at spherical impact
by means of a prototype viscoplastic constitutive equation and draw pertinent
conclusions from earlier experimental findings.

To add some perspective and background to the indentation theory, some
momentous achievements will first be sketched briefly. BRINELL [5] invented his
test by pressing a hardened ball of a given diameter and load into a solid specimen.
The residual area of the imprint was then measured in order to determine the
mean pressure or hardness number. MEYER [17] found empirically that for a
variety of materials, a power law relation exists between the contact pressure
and the radius of the spherical imprint. An extensive experimental investigation
was subsequently carried out by NORBURY and SAMUEL [20] who, in particular,
examined the form of the Brinell impression in the vicinity of the contact region
and whether the material would be raised, piling-up, or the converse, sinking-
in. Surface profiles after indentation proved to be self-similar and related to
the Meyer formula for several annealed and cold-hammered metals. O'NEILL
[22] showed that the Meyer exponent could be directly related to the strain-
hardening properties determined by simple tensile testing. TABOR [29] made
complete a fully quantitative hardness theory by means of an exhaustive output
of experimental data. Two universal parameters were incorporated in the Meyer
formula and a measure of representative strain was established.

The approach so far was essentially pragmatic though characterized by a
thorough insight. A nonempirical theory, starting from first mechanical principles
was proposed by BisHop, HiLL and MoOTT [2] who assumed similarity of mode
shapes at deep indentation with that of a cavity expanded by internal pressure.
This point of view was further elaborated upon e.g. by MARSH [15] and JOHNSON
[12]. Solutions of higher accuracy became available with the progress of finite
element analysis. Perhaps the first attempt was made by AKYUS and MERWIN
[1] analysing circular elastic-plastic indentation in plane strain and numerous
analyses were then to follow. An analytical and computational investigation
was conducted by HiLL, STORAKERS and ZDUNEK [9] of Brinell indentation of
power law hardening solids. Many of the issues posed by Meyer, Norbury and
Samuel, O’Neill and Tabor were then given a rigorous theoretical background.
In this spirit, analyses based also on flow theory were subsequently made by
STORAKERS and LARSSON [24] for creep, BiwA and STORAKERS [3] for strain-
hardening plasticity and STORAKERS, BiwA and LARSSON [25] for viscoplasticity.

In a section of his classical monograph, TABOR [29] discussed the case of
dynamic hardness combined with experiments performed by impact of spheres
mainly under the fall of gravity. Effects of a viscous nature were mentioned but
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ON INELASTIC IMPACT AND DYNAMIC HARDNESS 781

no influence of true strain-rate sensitivity was detailed. The dynamic analysis
was carried out in a quasistatic manner with energy absorbed in wave motion
being neglected. A measure of dynamic hardness was determined in an average
sense as the quotient between the impact energy and the residual volume made
by the imprint. At rebound, a coefficient of restitution was established based
on Hertz theory of elastic recovery. Phenomenological though significant results
were obtained for the indentation depth and duration of impact as functions
of projectile velocity. Further progress was summarized by JOHNSON [13] who
besides treating dynamic hardness, discussed also the concept of rebound. For
one thing it was made perfectly clear that the coefficient of restitution does not
only include material parameters but also depends on the indenter shape and size
together with the mass and velocity of the impact.

Numerous experimental investigations have been described in the literature
where dynamic hardness has been recorded as a function of impact velocity
for different materials and indenter shapes, (cf. e.g. SUBHASH, KOEPPEL and
CHANDRA [27]), where in particular, the impact of Vicker’s pyramids is treated.
In these mainly empirically based investigations, the dynamic hardness is usually
compared with its static counterpart and the results depending on the indenta-
tion depth and its rate. Any attempt to relate hardness measures to the material
flow stress and strain-rate dependence in this way is doomed to be empirical as
a material particle in the indented solid experiences a complex history of strain
and strain-rate. The celebrated constraint factor, relating hardness to flow stress,
by TABOR [29] was, however, given a theoretical background by an axisymmetric
solution for spherical indentation of power law hardening materials by HILL et al.
[9], but a corresponding study for strain-rate sensitive materials is lacking and it
is the present objective to provide a remedy. First a rigorous analysis is carried
out of single impact of solids which exhibit strain-hardening and true strain-rate
sensitivity. The theory is based on a contact analysis by STORAKERS et al. [25]
where the power law material behaviour was adopted a priori. The consistent
impact results per se will be of interest in different applications such as ballistic
penetration and particle erosion, HUTCHINGS [10]. The relation between hardness
and flow stress is then discussed in some detail and conclusions are drawn regard-
ing the constitutive behaviour due to hardening and strain-rate effects being of
interest at e.g. metal forming analyses and car crash simulations. The theoretical
results obtained are compared with pertinent experimental findings, but only a
few investigators report also field measurements of inelastic deformation under
impact load. TIRUPATAIAH and SUNDARARJAN [30] and OKA, MATSUMURA and
Funakl [21] stand out in this respect.
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2. Elements of the theory of viscoplastic contact

In an attractive monograph by MROz [18], a framework was laid down or the
constitutive behaviour of viscous, hardening materials. Two viscous pot:ntials
1), ¢ were introduced generating stresses, 0;;, and strain rates, £;;, as

o : o¢

21 ot L o

related through a Legendre transformation, where
(2.2) D= Ugjéfj =+ ¢

is a dissipation function. In particular, if 1(&;;) is a homogeneous funcion of
degree (N + 1)/N, then ¢(oj;) is by necessity homogeneous of degree N 41 due
to the duality nature.

A popular and fairly general form of uniaxial material response adoped by
MROz [18] reads .
(2.3) a = O'{JEM (i) N

£

where M, N are positive exponents and oy is a constitutive parameter, €y leing a
reference strain-rate. Although specialized, Eq. (2.3) may represent a widerange
of material behaviour. In its complete form it reproduces primary creep, VADAI
[19], or strain-rate sensitive plasticity, GHOSH [7]. In degenerated formswhen
M =0, Eq. (2.3) reduces to Norton's law for stationary creep and when N = 0, to
strain-hardening plasticity. Equations (2.1) to (2.3) were adopted in a muliaxial
form based on von Mises flow by STORAKERS et al. [25] in order to malyse
indentation of viscoplastic solids. A general theory was laid down for a ‘amily
of indenters, their shapes being characterized by smooth homogeneous fun:tions.
Here a brief account will be given and confined to axisymmetric indenters 1aving
a spherical shape.

In Fig. la, a rigid indenter having a spherical, or locally parabolic, shape
within Hertzian kinematics is depicted. When formulating an associated lound-
ary value problem, the only nonhomogeneous boundary condition reducesto

(2.4) uz=nh-— ?"?/D, z3=0;, 7 <a.

With the present constitutive equation in mind, a rate formulation isneces-
sary and accordingly by Eq. (2.4)

(2.5) g =h, x3=0, r<a,
where a dot denotes differentiation with respect to natural time.
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Reduced variables were introduced a priori by
(2.6) T = af, U = hig(%)

which has far-reaching consequences as the boundary condition, Eq. (2.5), reduces
to
(27) 1‘},3 = l, :i'g = D, r < i

As seen in Fig. 1, the original problem having a moving boundary and thus
incomplete contact is now transformed to an intermediate problem constituting
indentation of a circular flat punch (Boussinesq's problem), being well suited for
numerical analysis based on finite elements. The solution to the original prob-
lem based on a spherical shape may then be accomplished by simple cumulative
superposition.

+F i
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FiG. 1. a) The original contact problem (Brinell); b) The reduced, intermediate problem
(Boussinesq).

HiLL et al. [9] proved that for deformation theory of plasticity, spherical
indentation possesses self-similarity for power law hardening materials. In par-
ticular it was shown that the expression

a?

(28) Cy = E

is an invariant where ¢, depends solely on the hardening exponent solely. In pass-
ing it may be noted that a similar relation for ¢, holds true for any homogeneous
shape p, STORAKERS et al. [24], where for instance p = 1 corresponds to a cone
or a pyramid.

The use of an intermediate flat die field to solve problems for a curved indenter
was analysed in detail by SPENCE [23] for linear elastic materials. This procedure
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784 B. STORAKERS AND J. LARSSON

was subsequently proved to hold true for normal indentation of nonlinear solids
by STORAKERS et al. [3, 24, 25] and more recently by LARSSON and STORAKERS
[14] for oblique indentation.

It may first be observed by introducing Eq. (2.8) into (2.4) that

(2.9) ug = h(l — cor?/a?)

which physically implies that at the contact contour, either the material piles up
or sinks in whether ¢; exceeds unity or not.

STORAKERS et al. [25] carried out full finite element solutions to viscoplastic
solids for the frictionless flat die problem and subsequently obtained results for
spherical dies according to Fig. 2. Ordinarily the invariant ¢, is a general function
of the material exponents but as may be seen in Fig. 2, ca = eo(M + N) holds
within a very high accuracy. For this finding to be exact, partial proportional
straining is required.

-0.5 T T T

r/a

F1G. 2. Deformed surface shapes at spherical indentation of viscoplastic materials for

M+ N =1, 1/3,1/10; (—) general viscoplasticity (M = N) STORAKERS, BIwA and

LARSSON [25], (- - - ) plastic flow theory (N — 0) BiwA and STORAKERS [3] (- - — - — )
creep theory (M — 0) STORAKERS and LARSSON [24].
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For a representative set of M, N values it was found that

(2.10) o = 1.45¢(M+N)

constitutes a very good approximation for 0 < M + N < 1.

Again referring to the notation in Fig. la it may readily be shown that the
mean pressure at contact may be expressed in the form

. N

alM i3
- M. N)j—
21" lavorm 5]
where a, Sy and By are universal parameters to be determined. It may be
noted that TABOR [29] in his classical empirical investigations of plastic strain-
hardening materials correspondingly found a = 2.8, By = 0.4.

From a numerical solution of representative M, N values, STORAKERS et al.
[25] found for viscoplastic solids that Eq. (2.11) is well reproduced by

. N
(2.12) %:3(1+2N)au (i)M( - ) .

Q1) =5 =ooa(M,N) [Bu(M, N)

3D/ \3&D

So far, the results of the analysis have been given only for a rigid spherical
indenter pressed into a viscoplastic half-space. Should normal contact occur
between two deforming spheres of different diameters and strength but having
the same material exponents, the original results may readily be generalized by
replacing the single material constant oy by o1 and o3, respectively, and the
diameter D by D) and Dj. Accordingly, STORAKERS et al. [25] showed that by
introducing

1 1 1
(2.13) = +
Utljz’q Jllfq U;!q
where ¢ = M + N and
(2.14) S + bt
' D Dy Dy

then the solution for the half-space problem immediately generates a solution
for the two-body problem. The matter was further discussed in more detail by
STORAKERS [26].

3. Analysis of colinear impact

For a start, the equation of motion for the mass centres of two colinearly
colliding bodies yields
(3.1) = —TH,[L'*‘I = mgffz
with notation according to Fig. 3 and again, a dot denotes differentiation with
respect to natural time.
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F1G. 3. Colinear collision of two dissimilar spheres.

The local velocities are then related to the approach, h, by

(3.2) v — vy = h.
Introducing a combined mass by
1 1 1

mo omp me

and using Eqs. (3.1) and (3.2) yields
(3.4) P = —mh.

At moderate velocities, when the propagation of waves may be neglected, the
global constitutive Eq. (2.12) may be adopted in the form

v . N

: h' l+“u‘-.'V)f2 h

= s 2 i
L) P =l (D) =D

where oy and D are given by Egs. (2.13) and (2.14) respectively, and where, on
introducing Eq. (2.8),

(3.6) y = 31-M-Nog-N(1 4 oN)cl HMHNI/Z,

Combining Eqs. (3.4) and (3.5) then yields

14+(M-NY/2 £ ;. \N
’ P X pefh By o
(3‘1') h+ ?TLJGD (D) (E{)D) =0.

The first integral of Eq. (3.7) gives
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_ I-(M+N)/2
(38) j2.2_N 4 2(2 N]’TOUD [.N ) h2+(.M—N)f2 = C,
(4+M —N)ég'm

where C is a constant.

From the initial conditions h(0) = 0, fz{(}) = 11(0) — 15(0) = vy, the constant
C in Eq. (3.8) becomes
(3.9) C=ug"".

By Eqgs. (3.8) and (3.9), the maximum approach depth, h,,, say, at rebound,
h =0, follows as

: (1 M+ N ) o ]FMF
i~ L 2(2-N)
(3.10) h, =D 2(2 - N) 9 v T+M-N
| i 100 €D

and accordingly, the approach rate

(3.11) h=éD

~ooD (hm)z-&wam;‘z
12

M+ N D
_(1+—2(2_N))50m

( B\ 2HM=N)/2 =N
o
hm

By Eqgs. (2.8), (3.5) and (3.11), the hardness value becomes

N
-N
@1 £ 1% 190D A
; ra?  meo - M+ N 2, D
22-ny ) o™

I .\-I;N : A 24+(M—-N)/2 'z—lx\"'
hqn hm .

The impact time as a function of indentation depth is given by simple quadra-
ture of Eqgs. (3.8) to (3.10) as

1
py e N MAN
(3.13)  t=¢! (1+ 52%) ém (D)r‘t—?i—?n
| . Yoo D b
hfhm

[ dx
(1 — g2HM=N)/2) 1/(2=N) g
0
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or by Eq. (3.10)

hfhm
h_m dz

14 T !
(&L4) Y J (1_$(4+M—N)f2)”(2‘N)

The impact time, t,,, at maximum approach, h = h,,, may be expressed by
means of the gamma function, I', used in Euler’s integral in Eq. (3.14), as

2 =N
b F(4+M—N)F(2—N)

(3.15) b= AT =N ( M+ N )
) b g

2-N)4+M-N)

(cf. also BORODICH [4]).

The approach time is only weakly dependent on the impact velocity. In
particular at perfectly plastic contact, M = N = 0, the time as a function of the
approach, Eq. (3.13), reduces to

2 . wh
(3.16) } = -T;t,,larcsm (2tmvo) 2
where »
Tm
) te, = | —m——
et i (IQCQJUD)

from Egs. (3.6), (3.10) and (3.15) and accordingly, independent of the initial
velocity.

TABOR [29] proposed a frequently used and simple dynamic hardness number,
Hpr = W/V, in an average sense where

2
(3.18) W = m;"
is the energy at initial impact, and
fim
(3.19) V= n/a?dh
0

is the residual imprint volume, (cf. Fig. 1a).
Based on the present theory, Tabor’s hardness number may be readily deter-
mined by Eqgs. (2.8), (3.10), (3.18) and (3.19) to yield

5 T
(3.20) Hpr= 190 190 i .
i 22— N) 22-N) )0
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When analysing the forward contact collision at fully inelastic behaviour, the
influemce of elasticity was neglected. At rebound, however, purely elastic response
is to Ibe expected and will possibly prevail for the remaining duration of contact.
This iis not a quite straight-forward matter to analyse but a simple estimate could
be made to first order.

It may first be observed that with the constitutive equation presently adopted,
the load at maximum approach will vanish, Eq. (3.12), and accordingly, the
rebound velocity will reduce to nil. At purely plastic impact, however, the contact
force, Eq. (3.12), will attain its maximum value at the rebound event and with
the pressure and conjugate elastic surface displacement distributions available,
determination of the coefficient of restitution could be made to first order.

The coefficient of restitution, e, is defined as

\ 2 We
(3.21) e =37
where again W is the impact energy at initial contact and W, is the released
energy at rebound or equivalently
(3.22) T
Vo
where v, is the velocity when the colliding particles separate.

The energy dissipated at forward motion may immediately be determined by

means of Eqs. (3.18) and (3.20) to read

'YO'I]D:] (hm ) 2+M /2

at nonviscous contact, N = (.

As to the determination of the released energy, in Fig. 4 the pressure distri-
butions determined from flow theory by Biwa and STORAKERS (3| are depicted
for a range of values of the strain-hardening exponent M. As may be seen, they
deviate considerably from the Hertzian elliptical distribution. In case of perfect
plasticity, M = 0, the contact pressure, py,, is approximately uniform and an
analytical estimate may then be carried out.

The conjugate elastic surface displacement distribution is well known, (cf.
e.g. JOHNSON [13], p. 57), and reads

(3.24) ... Pt E(r/a),

where 1/E = (1 — v?)/E; + (1 — v2)/E; and E(r/a) is the complete elliptical
integral of the second kind with modulus r/a. E(0) = n/2.
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F1G. 4. Normalized contact pressure distribution when M = 1,0.5,0.25,0.1,0.05 and 0
for spherical contact by flow theory.

The energy loss at rebound is then simply 7p,,@a?/2 where % is the mean
displacement or explicitly

(3.25) 7 = 6Pma
3nE
and accordingly
2 3
(3.26) W, = Pma
3E

At perfect plasticity, from the above results it may be concluded that p,, =
309, Eq. (2.12), and a@®> = 3Rhy,, Eqs. (2.8) and (2.10), approximately. The
elastic energy loss then reduces to

_ 72v/30%(Rhm)%/?

(3.27) We i

and the impact energy, Eq. (3.23), to
9 2
(3.28) W = :?-ﬂauRhm

if ¢9 is set to 3/2.
Thus the coefficient of restitution becomes
s 16v300 ( R )W
er = — — .
‘.TTE hm

(3.29)
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Since from Eq. (3.10)

1/2
(3.30) hm=( i ) v,

9mog R
then by Eq. (3.30)

(3.31) ;2 = 16v300 (QWDR:’)W

B mug

As it has been pointed out earlier by JOHNSON [13], the restitution coefficient
is not a single material parameter but depends on the geometry of contact and
the mass and velocity of initial impact.

A relation similar to Eq. (3.31) was proposed by JOHNSON [13] and the
difference, of the order of 20%, reduces only to a constant. This is due to the
present account of piling-up and to the fact that the true pressure distribution,
in contrast to the Hertzian one, was used at energy release. Some supporting
experimental results by GOLDSMITH [8] are seen to be of the relation e ~ ""0—1!4'
Eq. (3.31), as reproduced in Johnson’s monograph [13].

4. Experimental aspects and discussion

Some major assumptions and approximations introduced above in the impact
analysis will be briefly discussed. The dynamic analysis was carried out with
influence of wave motion neglected. This is relevant if the impact velocity is
much smaller compared with the elastic wave speed. In the present context and
ordinary circumstances in general, it has been estimated by JOHNSON [13] that
for shallow imprints, the assumption is tolerable if the impact velocity is less
than 500 m/s, approximately. More precisely, TIRUPATAIAH and SUNDARARJAN
[30] found in their dynamic tests of copper and iron at recorded impact velocities
of 180 m/s by WC balls of 4.67 mm diameter, that the energy loss due to stress
waves was within a few per cent. Likewise TIRUPATAIAH and SUNDARARJAN [30]
found that the difference between adiabatic and isothermal flow properties was
of the same order.

A measure, A, in order to quantitatively categorize different regimes of elasto-
plastic indentation was proposed by JOHNSON [12] as

Ea
(1 —v2)oyR
in the present notation, where o, is the flow stress at a representative strain
magnitude

(4.2) e =0.2a/R
as established by TABOR [29].

(4.1) A=
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From an elastic-plastic finite element analysis, BiIwa and STORAKERS [3]
found for a variety of representative materials, that for A > 30 fully plastic
flow was reasonably well attained at a/R > 0.03. At continued indentation and
increasing contact, the accuracy of the present theory based on linear kinematics
deteriorates at large strains and the assumptions are less well fulfilled when a/R
becomes a decade higher, (cf. MESAROVIC and FLECK [16]). The impact analysis
was further carried out at vanishing frictional contact. It is well known, however,
that for lumped relations such as between loading, indentation depth and contact
region, frictional effects will only slightly affect the results, CARLSSON, LARSSON
and Biwa [6].

As a principal finding above, the dynamic hardness value Hp = P/ma® was
derived as a function of the indentation depth, h, by Eq. (3.12). It is clear
that any effort to derive uniquely a material constraint factor to convert the
experimentally determined dynamic hardness values to their static counterparts
will not be successful. The mass and the radius of an impacting sphere will
be essential parameters as was also the case for the coefficient of restitution,
Eq. (3.30) above. A still more striking obstacle remains to relate the dynamic
hardness to material flow stress-strain data. It may also be noted from Eq. (3.12)
that the influence of piling-up behaviour, as governed by the invariant ¢z in
Eq. (2.8), has only a weak influence of hardness when remembering the factor
from Eq. (3.6).

Before trying to correlate the theoretical findings with experimental results,
it should be stressed that by the adopted constitutive Eq. (2.3), both at initial
impact and at rebound, the hardness measure vanishes when both the strain-
hardening and rate sensitivity are taken into account. Remembering though
that this simple prototype model comprises only three parameters to vary and
to simulate a wide spectrum including especially low strain-rates, obviously the
constitutive equation should include a cut-off stress.

At any instant during the impact process, h/hp, it may be seen from
Eq. (3.13), however, that the dynamic hardness is related to the absolute in-
dentation depth, h, as
(4.3) Hp ~hEW,

The same dependence also follows if the present analysis is applied to Tabor’s
estimate, Eq. (3.20).

Using Tabor’s measure of representative strain, Eq. (4.2), and the invariant,
Eq. (2.8), an apparent measure of dynamic hardness can now be determined by
means of Eq. (4.3)

(4.4) Hp ~ eMt¥

to the first order as N is ordinarily of the order of 0.1.

http://rcin.org.pl



ON INELASTIC IMPACT AND DYNAMIC HARDNESS 793

An extensive number of experimental investigations of inelastic impact with
associated determination of hardness has been presented over the years, for a
recent account cf. e.g. TIRUPATAIAH and SUNDARARJAN [31]. However, resid-
ual deformation fields are seldom measured and recorded and for this reason
only the results of two investigations are examined in some detail. First an
admirably careful and thorough investigation was carried out by TIRUPATAIAH
and SUNDARARJAN [30] who, by the impact of spherical WC balls of diameter
4.67 mm, determined the dynamic properties of annealed copper and iron over
a considerable range of impact velocities of up to 200 m/s. This was achieved
by means of a gas gun for high velocities while a gravity drop tower was used
for lower velocities, 10 m/s, for accuracy. Dynamic hardness was determined
using Tabor’'s method with elastic effects neglected. Also residual surface profiles
outside the contact region, lip formation, were recorded using a digital height
measuring equipment with a resolution of 1 pm.

TIRUPATAIAH and SUNDARARJAN [30] observed that the hardness values
showed both strain-hardening and rate-sensitivity effects. They found that the
dynamic hardness was in excess of 30% compared to static values for copper in
the particular circumstances prevailing. At ordinary Brinell testing the harden-
ing exponents, M, were found for copper and iron resulting in 0.41 and 0.31,
respectively. At high strain rates, up to 10* s7!, the corresponding exponents,
M + N, for apparent strain-hardening, Eq. (4.4), were 0.56 and 0.18 respec-
tively. It is interesting to notice then, as was also concluded by TIRUPATAIAH
and SUNDARARJAN [30], that the tests on iron exhibited strain-rate softening
and accordingly, a negative value of the strain-rate exponent, N. As has already
been stated, the simple form of the constitutive Eq. (2.3) may not be used for
consistency for any strain-rates. In a restricted region, the theoretical predictions
of Fig. 2 as regards piling-up or sinking-in and based on the exponents M, N,
may be put to trial when comparing experimental recordings of lip formation.
More recently, SUNDARARJAN and TIRUPATAIAH |28] determined the exponents
for several more metals and alloys by impact experiments. In the data, both sig-
nificant strain-rate hardening and softening, respectively, were found. However,
no corresponding field measurements of deformation profiles were recorded.

In Fig. 5, the experimentally determined residual surface profiles are repro-
duced from the tests by TIRUPATAIAH and SUNDARARJAN [30] at representa-
tive strains of about 7%. It may first be seen that the surface heights of the
two materials investigated are of different orders of magnitude and it is difficult
to observe any difference between the dynamic and static results. For copper
(M = 041, N = 0.15) as depicted in Fig. 5a, the developed lip profile is not
very pronounced but a very modest sinking-in behaviour is perceptible. This is
in accordance with the predictions shown in Fig. 2 as the relative profiles depend
only on M + N and when the combined exponent is (.56, a slight sinking-in will
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794 B. STORAKERS AND J. LARSSON

result. More precisely for M = 0.5 it was shown by BIwA and STORAKERS ([3],
Fig. 3) that the maximum lip height occurs at r/a = 2. In Fig. 5b where results
from iron, M + N = 0.18, are shown, the lip profiles clearly exhibit piling-up
behaviour again in agreement with Fig. 2.

(a) (b)
6x107° 40x107°
4
. 20 o
h,. o h,. E'G o
ﬂo—--g“*qﬂ&—%‘ﬂo—a-m——— . ) W 9-0000 -~ -5 -
a
-2
-20
24
-6 40 ety
0 1 TR T SRR D 0 2 s 5 8
r/a r/a

FiG. 5. Dimensionless surface profiles at dynamic impact (O) and static indentation (o);

a) Copper; dynamic: ¢ = 7.92% and static: € = 7.79%; b) Iron; dynamic: ¢ = 6.88%

and static € = 6.3%. Experimental data according to TIRUPATAIAH and SUNDARARAJAN
[30].

TIRUPATATIAH and SUNDARARJAN [30] concluded from their experimental
findings that in the case of copper, static and dynamic profiles coincided which
is obvious from the background just given. For iron, however, at straining of
8%, a distinction was observed as shown in Fig. 6 where the maximum lip
height is recorded as a function of representative strain by TIRUPATAIAH and
SUNDARARJAN [30]. Thus strain-rate softening behaviour, N < 0, causes an
increase in lip height as is evident in Fig. 2.

OKA, MATSUMURA and FUNAKI [21] investigated dynamic and static inden-
tation of hard steel balls on substrates made of annealed commercially pure alu-
minium, iron and gray cast iron. Lip heights were recorded by a surface pro-
filometer and strain distributions were measured by a photoengraving method.
Most of the experimental observations were made at impact velocities of 200 m/s
and the depth of indentations produced was indeed large, a/R ~ 1. This is far
beyond the assumptions made in the present theory. For moderate imprints,
however, dimensionless lip heights are shown in Fig. 7 reproduced from tests on
aluminium and iron conducted by OKA et al. [21]. No quantitative conclusions
may be drawn from the comparison with the present predictions, as no hard-
ening properties were recorded. In Fig. 7a, applicable to aluminium, it may be
seen that within the scatter present, the relative lip height is depth-independent,
implying self-similar behaviour and that the material is strain-rate hardening.
For iron, Fig. 7b, the results are less consistent but there is an indication of
strain-rate softening behaviour as was the case also in the investigation made
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Fi1G. 6. Dimensionless ratio of maximum lip height to contact radius versus average
strain at dynamic impact (0) and static indentation (o). Experimental data for iron
according to TIRUPATAIAH and SUNDARARAJAN [30].
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FiG. 7. Dimensionless ratio of maximum lip height to depth of indentation versus
average deformation. Experimental data for dynamic impact (0) and static indentation
(o) according to OKA et al. [21]; (a) Aluminium, (b) Iron.
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by TIRUPATAIAH and SUNDARARJAN [30]. In analogy, the relative size of the
plastic region increased for aluminium and decreased for iron at high strain-
rates. Related phenomena may occur also in other circumstances. For instance,
it has been shown by HUTCHINSON and NEALE [11] that for materials whose re-
sponse is strain-rate sensitive, a considerable delay in necking at uniaxial tension
arises.

5. Conclusion

Spherical impact at moderate inelastic strains was studied at quasistatic, fric-
tionless contact by means of a three-dimensional analysis for viscoplastic solids.
The constitutive equation was admittedly simple but strain-hardening and strain-
rate sensitivity effects were taken into explicit account by power law exponents.
A dynamic hardness measure, mean pressure resistance, was derived and it was
found that besides the indentation depth, the hardness number necessarily de-
pends on a combination of initial impact velocity, mass and radius of the pro-
jectile. Any relation between dynamic hardness and material flow stress must
include these variables and also requires a full constitutive equation to be known
in advance. Thus essentially, the problem posed has to be solved in an inverse
manner and the present theory was intended to fill such a gap in a first tentative
way.

At dynamic hardness it was shown that an apparent measure of hardness
could be found simply by adding the ordinary power law exponent of static hard-
ening to the presently introduced rate-sensitivity exponent. This proved to be in
conformity with experimental findings. A crucial test of the three-dimensional
analysis proved to be a correlation with experimental measurements of residual
surface profiles. It was found that the presence of the strain-rate sensitivity ex-
ponent gave predictions of correct order with the compound hardening exponent
introduced.

It is believed that the theoretical results are computationally highly accurate
as they are based on self-similarity and a careful finite element procedure. A
drawback is that the elastic effects are not taken directly into account and that
the viscoplastic material law was based only on one strength parameter and two
exponents. With the present purpose in mind, the influence of elasticity is not a
primary issue but to improve the model, a greater range of strain-rates is more
urgent. This could preferably be done by first introducing a cut-off stress. The
price to be paid is that the computational work will be expected to become more
cumbersome as self-similarity will be lost.
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