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In THIS PAPER the Mura-Nakasone model for fatigue crack initiation is extended to
the situation where randomness in material microstructure (e.g. in grain size) and in
the applied stress are important factors. The analysis and formulae presented provide
a quantitative characterization of the effect of statistical scatter in grain size of the
metals on the crack initiation time. Also, crack initiation time is analyzed for the
situation where the applied stress is a narrow-band stationary stochastic process. The
mean value, variance and probability distribution of the time to crack initiation are
derived, and the results are illustrated graphically for real empirical data.

1. Introduction

IT 1s WELL RECOGNIZED that the nucleation or crack initiation process often com-
prises a significant portion of the fatigue life in engineering structures. The notion
of crack initiation is however, not unique; the definition depends on the scale of
observation. For example, in the assessment of fatigue life in engineering design,
the crack nucleation time may be associated with the number of cycles neces-
sary to initiate a dominant (long) crack. However, for physicists and material
scientists, the initiation time is usually regarded as the time in which the defects
in crystals appear and microscopic flaws along the slip bands are generated. It
is ckar that, in order to gain a proper understanding of the entire fatigue phe-
nomenon in engineering materials, an insight into the microscopic mechanisms of
fatigue is of great importance. Development of quantitative microscopic models
for crack initiation is also of practical significance, especially at low stress levels

http://rcin.org.pl



762 K. SoBczyk, B.F. SPENCER, J. TREBICKI

(i.e., high-cycle fatigue) where the crack initiation period usually consumes the
predominant part of the fatigue life.

Although the fatigue crack initiation phenomenon is not yet fully understood,
a number of proposals have been put forward to explain the origins of fatigue
cracks and to estimate the associated initiation time (for a comprehensive analysis
of the existing results, see SURESH [1]). In more recent models, various dislocation
mechanisms in the metallic structure play a dominant role. The approaches which
seem to be especially physically sound are associated with the key role played by
persistent slip bands or PSB (i.e., narrow bands with highly localized cyclic strain
accumulation) and with modelling the forward and reverse plastic displacement
(within PSB) by dislocations motion (cf., MURA, TANAKA [2], TANAKA, MURA
[3], LiN, FINE, MURA [4] and MURA, NAKASONE [5]).

In the model of MURA and NAKASONE [5], which has methodical similarities
to the Griffith theory of (macroscopic) fracture, the fatigue crack initiation life is
predicted as the number of cycles necessary for the Gibbs free energy to reach the
maximum value. More specifically, according to Mura and Nakasone, the accumu-
lation of dislocations within PSB (during the load cycles) enhances the internal
tensile stress which leads to an energetically unstable state of the material, and
therefore, this energy has to be released via the formation of an extremely thin
void, i.e., the initiation of a crack. The critical time, in terms of the number of
loading cycles, is obtained by considering the balance of the elastic strain energy
(enhanced by the accumulated dislocations) and the energy released via the for-
mation of the crack embrion in the PSB. In addition to its convincing physical
background and reported applications to crack initiation under contact fatigue
(cf., [6]), the model of Mura and Nakasone has features which make it feasible to
perform the analysis aimed at quantification of the effects of randomness present
in the crack initiation mechanism. The objective of this paper is to extend the
Mura and Nakasone predictions of fatigue crack initiation time to the situations
when randomness in the microstructure (specifically in the grain size) and in the
applied stress occur as important factors. The analysis and formulae presented
in the paper provide a quantitative characterization of the crack initiation time
in terms of statistical parameters (e.g., variance, higher-order moments) of the
grain size and the amplitude of the randomly varying applied stress.

2. Basic features of Mura-Nakasone model

Construction of a quantitative model for crack initiation in metallic poly-
crystal materials based on the accumulations of dislocation dipoles in PSBs and
making use of the change in the Gibbs free energy, is presented in detail by MURA
and NAKASONE in Ref. [5] (cf., also the companion paper by VENKATADRYAN,
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et al. |7]). Therefore, detailed derivations will not be repeated here. However,
for completeness, the general idea has been presented in what follows.

The stress s(t) applied across a slip plane in the material is assumed to be
uniformly periodic. This applied stress causes dislocation accumulation which
changes the Gibbs free energy of the system. After a certain number of cycles,
this energy reaches a maximum value which is allowed to be released by forming
a crack. The change in the Gibbs free energy G is (cf. [5])

(21) AG = -W, — Wa + 2a97s

where «, is the surface energy of each face of the crack; ag is the embryonic micro-
creck size; W is the accumulated strain energy of dislocations after N cycles of
loading; and W3 is the elastic energy release anticipated due to the opening of
an embryonic initial crack of size ag. In general, W; is defined in terms of the
stress intensity factors for Mode I and 11, and therefore, it depends on the specific
geometrical situation in question, particularly on the location of crack initiation.
If the crack initiation site is far from the surface of the body, one may use the
intensity factors for a crack in an infinite body. In this case, the energy Wy can
be represented in a simple analytical form (cf. [5]). The embryonic initial crack
size ag is calculated in terms of the density of dislocations in the slip band.

Appropriate calculations give an explicit result for AG in the form of a
quadratic function of the number of cycles N, i.e., AG = —A; N2+ A;N, A; > 0,
where Ay, As > 0 are constants related to the geometry, material properties, dis-
location characteristics, etc. Hence, there exists a critical cycle number N* for
which AG takes a maximum and the system becomes unstable, i.e., when

J
JN

(2.2) (AG) = 0.

Solution of the above algebraic equation yields the following expression for the
number N* of cycles to crack initiation:

. 2—-f Vs
rin——=17f
h 2

where the following notation is introduced (cf., Fig. 1):

5 — slip irreversibility factor; 0 < f < 1,

sy — frictional stress of the material,

As = Smax — Smin  — the shear stress range acting on slip layer,

h - width of the slip band,

l — length of the dislocation pile-up; grain size d = 2I.
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Formula (2.3) for N* has been obtained in [5] for an applied shear stress. For
a normally applied stress, the shear stress range can be represented as

A
(2.4) As= 23:1 sin o,
where @ = 7/2 — /3, and § is the angle between the slip band and the normal

stress direction s,.

S
(a) T (b)

sy

FiG. 1. a) Schematic illustration of the crystalline structure and the PSB in a crystal
grain; b) A possible trajectory of a narrowband random stress process acting on the slip
plane.

The formula of Mura and Nakasone (2.3) may be regarded as an § — N
curve on the microscopic level. It clearly exhibits an inverse relation between the
number of cycles for crack nucleation and the applied stress range. The fatigue
limit can be regarded as twice the frictional stress s; of the material, i.e., no
crack is initiated at stress ranges lower than s;. Formula (2.3) also gives an
explicit dependence of the crack initiation time on the grain size when the length
of the persistent slip band 2[ is regarded as the grain size. The nucleation time
is greater for smaller grain sizes.

The frictional stress sy is the resistance of material to motion of the dislo-
cations, and its value depends on the structure of the material. For convenience
in practical applications, it has been assumed (cf., [6]) that s; can be replaced
by the kinematic shear yield strength s,. As far as the irreversibility factor f
is concerned, the experimental data indicate that values of f are quite small (in
the range from 10~ for small plastic strain amplitudes to 10~! for large strain
amplitudes). In Ref. [5], the interpretation of the irreversibility factor f is re-
lated to the ability to accumulate plastic deformation in the material (e.g., if

http://rcin.org.pl



PROBABILISTIC MICROMECHANICAL DESCRIPTION... 765

the material is purely elastic, it has no plastic deformations, and f = 0), and
an estimate of f from plastic strain is proposed. Since plastic strain depends
on the applied stress amplitude As, the value of f is, in general, a function of
time. Using the experimental data reported in [8] for the tension-compression
tests and the power empirical equation relating f to the plastic strain g, the
authors of paper [6] give the following relationship: f = ¢(As —2s4)9, where g is
the exponent in the relation: f ~ (e,)9.

3. Effects of randomness on crack initiation time

3.1. General remarks

As it is seen from the short description of the model of Mura and Nakasone,
the crack initiation life N* (or, T* = N*/w,, where w, is the cyclic frequency of
the applied load) depends on the basic material properties (e.g., grain size and
frictional stress, which in turn depends on temperature and material hardness),
the applied stress and the boundary conditions when a specific crack initiation
problem is considered for a finite body. However, what has been widely recog-
nized, an additional factor that plays a significant role is the statistical variability
of the mirostructural properties. An important source of this variability is the
randomness in the grain size.

In the micromechanical modelling of various phenomena (including the Mura
and Nakasone model), a mean (or characteristic) grain size is usually used. How-
ever, as we have discussed previously (cf., SOBCZYK, SPENCER [9]), the mean
grain diameter is not a number which can be readily derived or estimated from
any single kind of metallurgical measurement. It is usually obtained by dividing
the total of the mean grain diameters by the number of grains in some “represen-
tative volume”. But, the mean grain size diameter always provides only a very
rough information about the microstructure. Although the basic stereological
relationships for the mean grain diameter are viewed as exact, the accuracy of
the measurement depends on the number of grid applications and the degree of
irregularity of the grains. In addition, the passage from the true spatial dimen-
sions to their counterparts observed on planar sections involves a great loss of
information (cf., [9]). Therefore, it seems to be important to incorporate into the
model of Sec. 2, a more detailed information on the grain size, e.g., its statisti-
cal moments of higher order and probability distribution. Moreover, appropriate
modification of the model (2.3) to include randomness in the applied stress seems
to be important for wider applicability of the model.
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3.2. Randomness in grain size

According to [5], the grain size in formula (2.3) expressing the initiation life-
time, is the mean grain size d = 2l. Therefore, the question which arises is: what
form should formula (2.3) take if a more detailed information about the grain size
is to be taken into account? We mean such an extension of the initiation time
formula (2.3) which accounts for a more detailed characterization of the grain
size, while at the same time it preserves the information contained in formula
(2.3), i.e. regarding the mean grain size. A possible approach is as follows.

Equation (2.3) can be rewritten as

* ] A - Ay
(31) N* = WM‘,N(di a)v QDM',N(d! 0!) = g = B[]’

where Ap and By are the following constants:

(3.2) A ¥s(2 = f)

3
) e | W
Rf(Ds = 2a) s S

and a in (3.1) symbolizes all parameters occurring in Ag and By. Let us consider
the relationship

(3.3) N* = ¢o(X; )

where X is a random variable characterizing the grain size. Let us assume that
the mean value (X) of X is d, the variance of X is 0%, and the third and fourth
central moments are denoted by mg, my, respectively. Expansion of ¢(X;a) in
a Taylor series about the point d = (X) yields

dX? X=d

dp

(3.4) N* =p(d;a) + (X - d) IX

1

X:d+§(X—d) + ...
Formula (3.1) is seen to take into account only the first term in (3.4); in this
sense we can say that the Mura, Nakasone formula (2.3) written in the form
(3.1) constitutes a zero-order approximation of N*. In order to account for
the variance of the grain size as well as for its higher order moments, the fur-
ther terms in Eq. (3.4) should be considered. Averaging of both sides of (3.4)
yields

- 1.0 1 dP
3.5 N* = p(d; @) + =0% = | x=a + 3=+
( 0) {P( 1'} + 20/\ dXQ }\—d+ 6"’”’3 d/YJ J\':d
Therefore, the Mura-Nakasone formula for crack initiation time generalized in
this way is

o
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Ap(lnd — By + 2)
d*(Ind — By)?

- 1
(3.6) N* = p(d; a) + Eci—

1  Ap(2Bg —2Ind - 6)

6™ @B(lnd— Byt

where, according to (3.1), (3.2), the first term on the right-hand side of (3.6) is
the right-hand side of the Mura, Nakasone formula (2.3).
Formula (3.6) can be written as:

(3.7) N* = omn(d;a)l + n(d; o, ai-,m;;, wr)]

where

_102 Ind — By + 2 +lm 2By —2Ind -6
T2 X@(nd-By)?2 ' 6 ° d3(Ind— By)?

(38)  n(d; 0%, m, ..

For the case of uniform distribution of the grain size X in the interval
[d — A,d + A], where A can be regarded as a scatter parameter, we have

3
(3.9) (XY=, = %, m3 = d(d* + A?)
and formula (3.8) takes the form
. = Tl 0
(3.10) n(d; a, 0%, mg,...) SA #(nd - By)?
]. 2 22Bﬂ—2illd_6
A G b Ty

In the case of lognormal distribution of the grain size (which is a common hy-
pothesis) i.e., when the probability density of X is

ey > - & 1 (lnz—A)?
(311) f,\’(:.l’.') = mexp {—5( C ) ], Qi< <lod

where ¢ > 0 (A and (? are the mean value and variance, respectively, of the
normal random variable In X), formula (3.7) takes the form

(3.12) N* = oum,n(d; @) [1 + % (exp(¢?) - 1) Sl 2] i

(Ind — Bo)?

Figures 2 and 3 visualize the effect of the uniform randomness in the grain size
on the rumber of cycles to crack initiation (along with the Mura-Nakasone pre-
dictions).
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FIG. 2. Mean value of the number of cycles to crack initiation for different values of the
coefficient of variation versus mean value of the grain size. Uniform distribution of the
grain size is assumed.
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F1c. 3. Standard deviation of the number of cycles to crack initiation.

3.3. Randomness in applied stress

The model of Mura, Nakasone (2.3) has been built under the assumption of
constant amplitude cyclic loading. However, most loads which are of interest
in engineering practice show significant random variability. Moreover, when the
model is used to predict the crack initiation time in such problems as fatigue
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under contact stresses (cf., [6]), the stress amplitude As occurring in formula
(2.3) is determined by the contact pressure p as a function of the horizontal
spatial coordinate, the friction force and the residual stresses which depend on the
morphology of the surface and properties of the material. These factors provide
additional contributions to the random variability of the stress range. Extension
of the model to a general randomly varying load which accounts for the interaction
effects seem to be premature. However, accounting for a random loading seems
to be possible if we restrict our attention to random processes which, in a sense,
resemble harmonic oscillations with randomly varying amplitude, i.e., stationary
narrow-band random processes. In this case, one can adopt the notions of an
equivalent cycle and an equivalent stress range (cf., [10]).

Let us assume that a time-varying stress acting on the structural component
and generating fatigue crack initiation is characterized by a narrow-band sta-
tionary random process S(t) with the mean mg = 0, standard deviation og and
spectral density gs(w). For a narrow-band process, the spectral density gs(w) has
significant values over a narrow band of frequencies (around certain central fre-
quency wg). The spectral content of such a process is conveniently characterized
by the spectral moments Ay and the regularity factor g (cf., [10])

+00

3 Ao
3.13 e = k dw, - Y
(3.13) k _iw 9s(w) B pTET

If the process S(t) is additionally Gaussian, then the regularity factor g is the
ratio of the average number of zero-crossings by process S(t) to the average
number of peaks. A narrow-band process has (approximately) an equal number
of peaks and zero-crossings with positive (or negative) slope, so g — 1.

The stress range As = Hg occurring in formula (2.3) in the case of a random
(stationary, Gaussian) S(t) can be characterized in various ways. We propose
here two approximations. The first approximation is a mean range:

(3.14) Sr = {AS) = {Smax) = (Smin) =2(ZF)

where Z is a random height of the peaks of the stress process which has a Rayleigh
probability distribution with the density

y _ oz z*
(3.15) p(z) = 2P| —553 ) 220

with v = og. After evaluating (Z) by integration with respect to the density
(3.15), we have
(3'16) Smr = 25¢ms ‘g“ = 52)9 e=V1- v2.
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For a narrow band process, ¢ = 0 and one obtains
(3-17) Smr =V 2?1'!5']*"]5 =V 2?1'0'5.
Therefore, the formula (2.3) of Mura and Nakasone modified in this way is

2=f
(\/ﬁds—zsf)f-

A second, more satisfactory modification of formula (2.3) is as follows. For a
narrow-band random Gaussian stress process, the stress range Hg can be quan-
tified as being equal to 2Z. Hence, it is a random variable which has a Rayleigh
distribution p(z) given by (3.15) with parameter v = 20g. In this case, the time
to crack initiation is a random variable T* = N*/w,, where w, is the equivalent
frequency of the stress process S(t). Explicitly,

Seed 1
Syt SRR S i = X
(Hs —2s7)f 'Hs-2sg

(3.18) N*=C

T =N

(3.19)
¢ = C2=
f
where C is given in (2.3). The time to crack initiation is a positive quantity, i.e.
T* > 0. This implies that
(3.20) Hs—25; >0

since f occurring in (3.19) is a parameter with its possible numerical values
around 0.1 in an air environment. Therefore, to satisfy the condition (3.20) the
stress range Hg should have a shifted Rayleigh distribution

_z—2sp (z — 2s7)?
G2y @ = ew (-5, as 2y

2s5¢
or a conditional Rayleigh distribution py (2|Hg > 2s7) = p(2)/(1 —/ p(z)dz)
0

where p(z) is given in (3.15). Our further considerations will be focused on the
influence of the shifted Rayleigh distribution on the distribution of the time to
crack initiation 7. Due to (3.19) and (3.21), this distribution has the form

G (7
(3.22) pr-(t) = 333 °XP ( ek 50

where v = 20g. It is worth noting that the probability density (3.22) has no finite
moments of orders higher that two. Distribution (3.22) allows us to calculate
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exact values of the mean and the variance of the time to crack initiation. However,
in practice, simpler formulae for mean value and variance of N* may be useful.
Using the Taylor expansion of N* given by (3.19) with respect to the random
variable Hg around the mean value (Hg) = hg and averaging, we obtain the
following results for (N*)

C,

e L SN b, B
(3.23) e +4(2 2) TP

and the first order estimate of variance var(N*)

Cy

(324) \rar(N"] = (4 e W)mﬂ%.

Since Hg has distribution (3.21) with v = 20g, hence
(3.25) (Hs) = hs = \/mv/[2 + 28§ = o5V 2m + 255.

It is seen that formula (3.18) accounts only for the first term in (3.23). The
equivalent frequency occurring in (3.19) is (cf. [10])
. A 5
(3.26) we = 2{NF(0:1)) = =2 = 28,
os Os
where (N*(0.1)) is the expected number of zero-crossings with positive slope.
Therefore,
1
(3.27) (T*) = —(N*), var(T*) = —var(N").

We w?

4. Numerical illustration

In order to determine numerically the effect of randomness on the crack initia-
tion time according to the formulae derived in the previous sections, typical values
of the basic parameters of the model have to be specified. The micro-mechanical
parameters of the model depend upon the material under consideration, the en-
vironment, the temperature etc. For example, the friction stress sy characterizes
the resistance of material to the motion of the dislocations and its value depends
on the structure of the material, and usually it is affected by temperature (cf.,
[12]); as indicated in [6], it can be express in terms of material hardness and some
empirical constants.

Here, we adopt the parameters occurring in [5]. They are as follows: h =
0.016 mm, sy = 25 MPa = 25 N/mm?, v¢ = 35 N/m, f = 0.1. The values
of the parameters vg, f are characteristic for air environment. Figures 2 and 3
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visualize the effect of randomness in the grain size on the number of cycles N* to
crack initiation. In these figures, the dependence of the mean value and standard
deviation of the number of cycles to crack initiation on the coefficient of variation
of the grain size are presented versus the mean value of the grain size, respectively.
The uniform distribution of the grain size in the interval [d — A,d + A] and the
deterministic stress range AS = 100 MPa are assumed. The mean values N*
presented in the Fig. 2 are calculated on the basis of the formulae (3.7) when
only the mean value d and variance 0% = A?/3 of the grain size are taken into
account, i.e.

e Ay o Ind — By + 2
(51) N = vd= 5, [ A @md= B ]

The dashed curve presents the determmlstlc number of cycles to crack initiation
obtained from the formulae (2.3). Figure 3 shows the standard deviations of the
number of cycles N* = T"* /w, when they are calculated using the following exact
probability density:

(4.2) fr-(t) = (wi?gexp(ﬁo/weﬁ) > Bo) falexp(Ao/wet) + By), t> 0.

This density is obtained in the common way (e.g. [10]) when N* in formula
(2.3) is regarded as a function of random variable d = 2[ with probability density
fa(z), where & > hexp (1.5) to satisfy the condition 7* > 0. It turns out,
that the approximation (4.1) of the mean number of the cycles to crack initi%giun

gives a very satisfactory agreement with the exact mean value < N* >,= / (t/

we) fr- (t)dt calculated from the exact probability density (4.2). In the cgse of
uniform distribution of the grain size, the relative error R = | < N* >, —P:f"|/
< N* >4 is very small. Namely, for the considered coefficients of variation
cov = 0.2, cov = 0.35 and cov = 0.5, the error R satisfies the inequalities
R < 0.01%, R < 0.15% and R < 0.8%, respectively.

To quantify the effect of randomness in applied stress on the basis of the
formulae given above, let us assume that process S(t) is Gaussian and stationary
with the following correlation function and the corresponding spectral density

2 2
g YLy R L = s PN
(43 Ks(t) = odew(-atr?), gsle) = z2men (s )

where 7 = t3 — 13, 0_29 is the variance of S(¢) and « is the correlation parameter
characterizing the rate of correlation decay with increase of 7.

According to (3.26), the equivalent frequency is w, = 2a®. The regularity
factor, according to (3.13), is # = 1.95a. To make the considered process narrow-
band, we select a value for a for which the regularity factor # tends to one;
therefore we take @ = 0.5. In this case
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(4.4) We

s

as gs

Figures 4 — 6 show the probability density (3.22) of the random crack nucle-
ation time for various numerical values of the grain size d, standard deviation og

V20Bs _ 5

o~ 0.7

Probability density function

0.0E+0

I
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1600.0

FiG. 4. Probability density of the crack initiation time for different values of grain size:
(1) d = 0.001; (2) d = 0.01; (3) d = 0.1 mm; standard deviation of the stress process
o5 = 55 MPa.
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F1G. 5. Probability density of crack initiation time for different values of the standard
deviation os of the stress process: (1) 55.0 MPa, (2) 75.0 MPa, (3) 95.0 MPa, grain size
d = 0.05 mm.
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of the random applied stress and width of the slip-l:na.m(:)lo h, respectively. The
characteristic behavior of the probability P(T* > t) = fr-(z)dz of no crack

nucleation for fixed time ¢ should be underlined. For éa.ch figure given above,
growth of the values of the parameters d, g and h causes a decrease in the
probability P(T* > t), which means an increase in the crack nucleation time.
It is also interesting to notice that probability densities converge very slowly to
zero in their right-hand side tails, especially for the case of the small values of
the parameters d, og and h.

0.012

Probability density function

t
0.0 200.0  400.0 600.0 800.0 1000.0

FiG. 6. Probability density of the crack initiation time for different values of the slip
band width k: (1) A = 0.016; (2) h = 0.032; (3) h = 0.048 (nm); grain size d = 0.05 mm,
standard deviation of the stress process o = 75 MPa.

Figures 7 — 9 illustrate the exact mean value of the crack initiatin time cal-
culated using the exact probability density (3.22), that is

(4.5) (N*)s = (weT™) = we / tpy, (t)dt = ExvidE o
dog
0

G =1]
f 3

and its approximations obtained from the formula (3.23). Curve (1) presents
the zero-order approximation N(‘l) of (N*)s when only the first term in (3.23) is

accounted for. Curve (2) shows the second-order approximation Ny of (N")s
when the first and second terms in (3.23) are included. According to (3.23) end
(3.25), the explicit formulae for N{‘l) and N(‘g) are as follows:

http://rcin.org.pl



PROBABILISTIC MICROMECHANICAL DESCRIPTION... 775
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different width of the slip band h when random stresss process with standard deviation
os = 75 MPa is applied. Grain size d = 0.05 mm.

A simple calculation gives the following relationships between the exact mean
value (N*)g and its approximations

= 1 T * 1 T *
(4.8) (N*)s = 5mlNiy, (Mg = gnw{g].

Figures 7 — 9 and relationship (4.8) show that the approximation of the
exact mean crack nucleation time, taking into account only the mean value and
variance of the loading process, can not be sufficiently satisfactory. In such a
case the higher order statistical moments of random loading process should be
considered. Nevertheless, the approximation (4.7) seems to be a very effective
and simple tool to predict the lower-bound approximation of the exact mean
crack initiation time.

5. Conclusions

In the paper the fatigue crack initiation has been studied with a special
attention given to the effects of a randomness in the grain size and the applied
stress. Making use of the idea proposed for the deterministic case by Mura and
Nakasone, we derived simple formulae for the statistical moments and probability
distribution of a random crack initiation time. The numerical calculations for
real material parameters show the sensivity of the initiation time to the random
variations in the grain size or the applied stress.

For example, Fig. 3 shows that the coefficient of variation of grain size affects
significantly the standard deviation of the initiation time. This indicates the

http://rcin.org.pl



PROBABILISTIC MICROMECHANICAL DESCRIPTION... 777

importance of the higher-order moments of the grain size in prediction of the
initiation time. Figures 4 — 9 illustrate the dependence of various statistics of the
initiation time on the basic material constants and characteristics of the applied
stress obtained under various approximations. The formulae derived and the
figures presented can be easily used for estimation of the crack initiation time for
purposes of the reliability assessment.
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