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THE MAIN QUALITATIVE PROPERTIES of Hooke's tensors can be found in their invariant
decompositions, both linear and nonlinear. The invariant nonlinear spectral decom-
positions are presented in the review [7] and the papers quoted therein. This paper
deals with linear invariant decompositions initiated in [12] - [20]. A straightforward
and complete description of all such possible decompositions is presented here in
Part I. The main results are given in formulae (7.1), (7.3). The next part (to appear),
Part II, will contain derivations, conclusions and unexpected applications.

1. Introduction

1.1. In this paper we will call Hooke's tensor any Euclidean tensor of the fourth
order H which realises a symmetric linear transfromation of the space of symmet-
ric second order tensors § into itself, or quite the same, which realises a quadratic
form on S,

(1.1) E—-H-§ E—§-H-E.

It is convenient to identify the space of all Hooke’s tensors H with symetrized
tensorial square of space S

(1.2) H=symSQS.

1.2. The importance of Hooke's tensors in many applications cannot be overes-
timated. They are, primarily, the starting point of the linear theory of elasticity,
which is still, for many essential areas of science and technology, the most im-
portant part of solid state mechanics. This starting point are elasticity tensors:
the stiffness tensor S and the compliance tensor C of Hooke’s law

(1.3) 06=8-¢, ¢=C-.0, 8S0C=CoS=lsg
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738 J. RYCHLEWSKI

Quadratic forms

(1.4) e(fe)=¢e-S-¢g w(o)=c-C- 0o

are here respectively, doubled energy of infinitesimal deformation € and doubled
work of stress o.
The limit tensor M in quadratic limit criterion

(1.5) o-M: o < const

is also a Hooke’s tensor. It was introduced by R. VoN Misgs [1] and later
popularised for the orthotropy case by R. HiLL [2] and others. The form
m(o) = o - M - o is sometimes called the Mises stress intensity. Earlier we have
demonstrated [3] that the condition (1.5) for each anisotropic elastic material
defined by compliance tensor C has a uniquely defined energy meaning.

1.3. The number of theoretical papers on Hooke's tensors is staggering. Yet new
ideas, approaches and results appear not very often. For example, although their
symmetry with respect to rotations and mirror-reflections of the basic Euclidean
space, enjoys great description by A. E. H. LOVE and W. VoIGT, it still remains
interesting (see e.g. [4]). Still far from a satisfactory and effective description
is the problem of complete systems of invariants of Hooke’s tensors (see the key
results [5]).

1.4. In the recent years, one of the more promising directions of the qualitative
analysis of Hook’s tensors are their invariant decompositions. In the last 15 years,
particular development can be observed in the direction [6], originated, as it soon
turned out, by Lord Kelvin 150 years ago. It consists in spectral decomposition
of an individual Hooke’s tensor. Symmetric operator H acts in space endowed
with scalar product « - 3, hence the unique spectral decomposition is the case
(see [6, 7])

(1.6) H=hPi+..+hPr, h<..<hy, r<6,

where invariants hy,...,h, are eigenvalues and tensors Py,...,P, constitute an
orthogonal decomposition of unity

P, k=1,

(1.7) Is=P; + ..+ P, PkOPg={ 0 ki,

The orthogonal projector & — Py - & projects orthogonally & onto subspace
‘P composed of proper states w of tensor H which correspond to eigenvalue hy,

H-w=hw,
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(].8) Sz'P] ++Pf, dim‘Pk =TI'Pk.

Sometimes it is more convenient to put the spectral decomposition in a less
rigorous form

(1.9) H=hw @w; +..+ hgwes ® we,

without demanding the difference between the eigenvalues. Here wy are proper
states which constitute the orthonormal basis in S,

H'LIJl =h,1w1,..., H'wﬁ =hﬁwﬁ, wk-w;=6kg.

For example, for a cubic crystal, the stiffness tensor has the spectral decom-
position

(1.10) S = 1P + 59Py + 53P3,

while the decomposition of the space of deformations into the subspaces of proper
states has the form

(1.11) S=P+Py+Ps, =1+2+3

where, using the crystal axis we have

& 00 u 0 0 Qpsm
(1.12) Pi~| 0 2 0 |, Pa~| O » O g Parel P10 ¢
00 = 0 0 —u—vw wo g g

To this example we will return in Sec. 3, Part II of this paper (to be published
in Arch. Mech.).

The invariants hy and projectors Py are isotropic functions on the space H.
So the spectral representations (1.6) are nonlinear invariant decompositions of
Hooke’s tensors. As to the history, details and benefits of this approach, see
paper [6], the review [7] and the references quoted therein.

1.5. Another, completely different approach to Hooke’s tensors consists in their
linear invariant decompostions. They appeared as a natural adaptation of the
classical theory of group representations (see e.g. (8, 9, 10, 11]). Thus the
obtained results are given in papers [12, 13, 14, 15, 16, 17, 18, 19, 20], and
possibly elsewhere. These papers are useful and have been applied, but they
have certain drawbacks. Only some decompositions are described there, while
the mathematical tools are unnecessarily complex, and, in any case, uknown
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to most of the specialists in solid mechanics. For some historical remaris see
paper [4].

1.6. This paper deals with the very linear invariant decompositions of the space
of Hooke’s tensors H. We will try to:

(1) Systematically and completely describe all such possible decompostions.

(2) Do this in a straightforward and possibly simple way, referring to themost
basic notions of geometry and algebra (on purpose, we do neglect references .o the
theory of group representations, harmonic functions, etc., being quite unmeded
here).

(3) Persuade the Reader that this approach is interesting, and may per-
haps lead to applications, worth considering, important and even surprising (see
Part II, esp. examples A trough G).

This set of problems dealt with here touches upon the theory of tensorfunc-
tions and its applications. We do not describe these relations, making refeences
to the exisiting broad reviews |21, 22, 23, 24].

2. A classical decomposition of H with respect to internal symmetry

2.1. Let us begin with acting on Hooke's tensors of 4! permutations »f the
symmetric group ¥ = X4. These are linear operations o X H referred to in
Appendix 1. Each linear combination of operators e x will be called permuation
operator. Put them as a formal linear combination of elements of the groip X

2
(2.1) p=(a101 +.... + ax024), P XHEZGi (oi x H)
1

(here some of the factors a; might of course be equal to zero).
Every Hooke’s tensor H has the internal symmetry, usually given in the form
of tediously written equations for its components

(22) Hijr = Hijue = Hjigt = Hppij-

Properly speaking, it means that this is a tensor symmetrical to the folbwing
subgroup:

(2.3) Ty = {(1234),(2134), (1243) , (3412) , (2143) , (4321) , (1423) , (134)} .

Let us number its elements from 1 to 8. Let us introduce the symmetri:ation
operator with respect to this subgroup
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1
(24) SHEg(G[-l-"‘-l—O'g), G";‘GE'H.

Cleary, repeating this operation does not change the result, i.e. sy osy = sy.
The operation @'€ 3 A — sy x A € @€ is therefore a projector. It
projects the entire 81-dimensional space @ € onto the 21-dimensional subspace
of Hooke’s tensors, H = sy X (@48 .

The entire group ¥ is generated by subgroup Xy and two appropriately cho-
sen (external to it) permutations, e.g. two transpositions

(2.5) (23) = (1324), (24) = (1432).
Let us introduce two convenient permutation operators
1
(2.6) [=id = (1234), c=3 ((23) + (24)).

They can be considered to be basic permutation operators acting on Hooke’s
tensors in the following sense.

LEMMA.  Permutation operator p transforms each Hooke's tensor into a
Hooke's tensor, i.e. p x H € H , iff it can be written in the form

(2.7) p = al + be.

Proocf. Itisevident that the property p x # C H can be equivalently given
as the corrmutation rule posy = sy op. Therefore it is necessary to demonstrate
that the form (2.7) is sufficient and necessary for the commutation to occur.

Sufficience: Let us divide the group ¥ with respect to subgroup ¥y into a
sum of three right layers Y3, By o (23), Xy o (24) and a sum of left layers 34,
(23) 0 X, (24) 0 By. The operator ¢ commutates with sy. Indeed, on both sides
of the equation c¢ o 83y = sy o ¢ there is the same sum of all the 16 elements of
the group £ which do not belong to subgroup £¢. Hence every operator p of the
form (2.7) commutates with sy.

Necesaty: Let us take any permutation operator (2.1). Let us denote by
ag, -+, 0y all the elements of the layer (23) o X4, whereas by o7, ...,094 — the
elements «f layer (24) o 3y;. We see that for every Hooke’s tensor

(28) px H=(ajo;+... + aogooy) x H = (fL[+f)<23) +C(24>) x H

where @ = (a1 +...+ag), b = (ag+ ...+ as), ¢ = (a17 + ... +az4). In order
for the Hooke's tensor H= (x @ x @y ® y +y ® y ® x ® x) to remain after the
operationpx, a Hooke’s tensor, we additionally need b = e¢. Therefore (2.1) must
have the brm (2.7).
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742 J. RYCHLEWSKI

2.2. Let us find the permutation operators acting on Hooke’s tensors as projec-
tors, thus fulfilling the condition

(2.9) px(pxH)=pxH for all HeH.

This condition is reduced to two equations 2a% 4+ b* = 2a, 4ab+b* =2b and
has only two solutions different from [, namely

([+2¢), t=§([—c).

Operator s acts upon H as a total symmetrization of Hooke’s tensors, since

(2.10) 5=

Lo =

(2.11) sxH=

| =

1 24
((1234) + (23) + (24)) x H = 1 Zl:gi x H.

It projects orthogonally Hooke’s tensors onto the subspace of totally symmet-
ric Hooke's tensor Hs = s x H. Since s + t = [ and, as it can be easily verified, for
all tensors (s x Hy) - (t x Hy) = 0, then H; = t x H is an orthogonal complement
of Hy in H.

We have described a classical basic orthogonal invariant decomposition.
(2.12) H = Hs + Hu, 21 =15 + 6.

The dimensions follow from the direct calculation: there are 6 binding con-
ditions for 21 components H;;y, if it is to be symmetric to all permutations. The
invariance of this decomposition follows from the commutation of operating of
the groups X, O in H. Further on we shall decompose both parts of (2.12).

Therefore, every Hooke’s tensor can be uniquely given in the form of the sum
(2.13) H=H, + H,
of the totally symmetric part Hy and the part Hy orthogonal to it, Fig. 1.

EXAMPLE 1. Totally symmetric stiffness tensors

(2.14) S=8, S=0

describe Cauchy’s elastic materials. The components of the stiffness tensor must
satisfy 6 conditions (t x 8);;,, =0, i.e.

(2.15) 2Sijk1 — Siktj — Sitkj = 0,

called Cauchy’s conditions. The discussions on the formal and physical status of
these conditions go 170 years back (see e.g. [25, 26, 27, 15]).
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H=H,+H,

H,
H,
H
15 = H,
H,

6

Fia. 1.

3. The decomposition of H with respect to external symmetry

Isotropic Hooke's tensors constitute a 2-dimensional subspace H**. By de-
noting its orthogonal complement as H*" we obtain the second basic orthogonal
invariant decomposition.

(3.1) H=H*+H™  21=2+19.
HM
Htl'l
H
2 — His
Hu
19
H = HS +H™
FiG. 2.

Parts of the decomposition

(3.2) H = H" + H™
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will be called, respectively, the isotropic and anisotropic part of Hooke’s tensor
H, Fig. 2.

4. The plane of isotropic Hooke’s tensors'

4.1. The building blocks for isotropic Hooke’s tensors are, as usual, the unity 1
and the symmmetric group X. Every such tensor is proportional to a respectively
chosen tensor

(4.1) [hn=mx(1®1), m = al + be.

All tensors of this form, proportional to the one with a fixed permutation
operator (a,b) = const, constitute an invariant straight line spanned on I, which
will be denoted as J,. The straight lines Ju,, Jm, are different iff operators
m, m, are independent, i.e. are not proportional, (a1,b) # l(az,b2). So we have
an infinite number of invariant decompositions of the plane #H'

(4.2) HP = T + Tongs  2=[(141).

Scalar product on this plane is not hard to obtain:

(43) ]Iml . ]Im2 = 9ayas + 6b1bg + 3(a by + albg).

Hence
|| = 9a% + 6b* + 6ab.

The invariant decomposition (4.2) is orthogonal when
(4.4) 3ayas + 2b1by + (a1by + asby) = 0.
4.2. Hooke’s isotropic tensors act as linear operators in S (hence e.g. in Hooke’s
law) as follows

(4.5) Ly - &= a(tr&)l + bE.

Their composition has the form

(46) ]Im1 o] Hmz = Ems, mg = (3(11(12 + ay by + agbl)[ —+ (blfJg) c.

'It is sensible to gather a few classical formulae of linear isotropic elasticity in a clear
geometric form.
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Operation & — I - & is a projection of H* on the straight line Iy, i.e.

(4.7) Iy o I = I,

if equations 3a? + 2ab = 2a, b*> = b are valid, so for three and only three pairs

(4.8) (0,1), (%,0), (—%,1).

In other words, only three isotropic Hooke’s tensors act as orthogonal projec-
tors in space S:

the unity (identity operator)
(4.9) Is=ex (1®@1), Is-&=¢,

the projector onto the straight line of spherical tensors P

(410) Ip = (1®1)r Ip-E=E&p,

S| =

the projector onto the 5-dimensional subspace of deviators D

1
(4.11) Ip = (c—gl) x(1®1), Ip-&=&p.
By these definitions we have Is = Ip + Ip. This corresponds to a classical
invariant irreducible decomposition of the space S,
(4.12) S=P+0D, 6=1+5

and, hence, to a unique decomposition of every symmetric tensor & into the
spherical part &p and deviator &p

tre,
(4.13) E=Ep+Ep, Ep= %1.

Let us consider the formulae

Is-Is = TrIg =dimS = 6,
(4.14) Ip-Ip = Trlp =dimP =1,
Ip Ip = Trlp =dimD = 5,

and a useful identity

(4.15) H=IsoH=Hols.
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4.3. As the most natural basis on the plane H' we consider the orthogonal basis
(4.16) (Iplp), [Ip|=1, |Ip|=v5, Ip-Ip=0.

It is reasonable to take the orthogonal basis

(4.17) (LL), |Ll=v5 |[I=2 L-I=0
where
(4.18) ngsx(1®1)=%([+2c)x(1®1)

is the isotropic totally symmetric tensor.
In classical elasticity, it was historically assumed to use the nonorthogonal
basis

(4.19) Up, kY, Ip-lg=1.

We have not seen the non-orthogonal basis (Ip, Ig) in use.
All these bases are shown in Fig. 3.

H*® = Jp+TIp = T+ T = Tp + Ts

Jo
Fic. 3.
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The following relations are useful:

1 2 9
b = Lt L=t Syttt
Ip = 5[[5— 6“1= ~lp+Is, | L= 511?— iﬂv = 2lp — gﬂs-

The relations between the invariant factors of decompositions

(4.21) H* = hplp + hplp = holl, + b = klp + llg

follow from the previous formulae.

EXAMPLE 2. For the stiffness tensor S of an elastic isotropic material, when
S € H*, §*" = 0, the invariants (Sp,Sp) are examples of Kelvin’s moduli (see
[6, 7). We have k = 3X, | = 2u where A\, u are Lamé’s constants.

5. The invariant 10-dimensional subspace of anisotropic Hooke’s tensors of
the first type

5.1. We are now to examine the possibility of invariant divisions of 19-dimensional
space H®", consiting of all anisotropic parts of Hooke’s tensors. The orthogo-
nality to H'® can be written in the form of orthogonality conditions to basis (Ip,
Is)

(5.1) 3lp - H=0, Is-H=0.

5.2. Let us fix the permutation operator m and consider the set D, of Hooke’s
tensors of the form

(5.2) mx(1®n+n®1), m = const,

where n takes any value from the 5-dimensional space of deviators of the second
order D. Clearly, the set Dy:

e is located in H*",

e is a linear subspace,

e dim D, =5,

e this subspace is invariant,

e this subspace is irreducible.

Indeed D, C H", since every tensor (5.2) as a result of the equation trn = 0,
is orthogonal to H**. Every linear combination of the tensors of the form (5.2) is
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a tensor of this form, hence D, is a subspace. Every basis ny, .., n5 of D generztes
a basis in Dy, so dimD, = dimD. If we rotate any tensor (5.2) from Dy, by
any tensor Re€ O

(5.3) Rimx(1@n+n®1)]=mx[1@(Rx*n)+(R*xn)®1],

it remains in D, so this is an invariant subspace. Finally, the irreducibility of
D follows immediately from the irreducibility of the space of deviators D. being
a building block for Dy,.

5.3. Let us take two subspaces Dy, and Dp,. It is clear that only two situations
are possible:

(5.4) Dy N D, = {03 when m;,my are independent,

(5.5) Dmy = Dy, when this is not the case.

When the pair (m;, ms) is an independent pair, let us take a direct sun (see
Appendix 1)
(5.6) D =D, + Dy, 10 = (5+5).

Since for all independent mj, my

(5.7) Dmy + Py =D+ D,

then we have obtained a 10-dimensional invariant subspace of anisotropic Hhoke’s
tensors ©. It contains all 5-dimensional subspaces ®,, and can be split, in an
infinite number of ways, into a sum of two such irreducible subspacess.

Grave warning: It can be easily verified that it is not so that every ensor-
from the found space ® has the form m x (1 ® n +n ® 1) for certain m, n.
To put it more forcefully, an infinite number of tensors from ®© do not beling to
any 5-dimensional subspace D, (some of our geometric intuitions obtaired in
dimensions 2 and 3 ought to be given a tight rein!).

5.4. Let us calculate the scalar product of the parts of the decomposition
(5.8) F=mx(1dn+n®1)+mx (1QE+ER1).
We have
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(5.9) [mx(1en+n®1)]:[m; x (1®E+E®1)]
= [ﬁalug - 4(&152 4 agbl} + 5b162] n-&.

Hence in particular

(5.10) Imx (1®n+n®1)*=pu(m)n?,
where p (m) = 6a® + 8ab + 5b.
Two subspaces D, and Dy, constitute complete invariant orthogonal de-
composition of space D iff
(5.11) bayas + 4(01:52 o ﬁ‘.zbl) 4= 5()1&2 = [.

There is an infinite number of such decompositions.
5.5. The following particular cases of the decompositions of Hooke’s tensors
HY' € D will prove to be most interesting:

standard decomposition, non-orthogonal one

(5.12) Hy =(1ew+w®1l)+cx(1@o+0®1),

orthogonal decomposition with respect to internal symmetry

(5.13) 7=5Xx(1a+a®@1l)+tx (1®B+B®1),
orthogonal decomposition

(5.14) H%‘=(1®tp+<p®1)+(c—§[)><(1®tl)+t|1®1),

seemingly quite artificial, but its role will become evident in Part II of this paper.

The tensor HY' is an orthogonal projection of Hooke's tensor H onto a 10-
dimensional subspace ©. From the definition of permutation operators these
relations follow inmediately

o =w+ g, w=%{a+2ﬁ],
(5.15) 1 9
B=§(2w—9), Q=§(a—ﬁ},
1 1
b= g(a -B)=eo
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The norm of tensor HF' from D is

), 14 1 1
(5.16) |H%"|2=—3—or-a+§|3-{3=5w-w+9w-g+199-9-

6. The canonical decomposition of the space of Hooke’s tensors

6.1. What is left to describe are the tensors that constitute in H" the invariant
orthogonal complement of the defined invariant space D.

We denote this complement by D, dimD =19 — 10 = 9.
First, it is immediately evident that every tensor D € D is totally traceless,
i

(6.1) trD =0 for every operation tr.

Indeed, it should be a tensor orthogonal to H™ and to ©. If D- (1®1) =
1-D-1=0and (1®a+a®1)-D =21-D-a = 0 for every «, then
Dypi; = 0. Similarly, with the orthogonality conditions of D to ¢ x (1® 1) and
¢X (1®a+a® 1), we obtain Djppj = 0. From the symmetry with respect to
group Ly, it follows that D is totally traceless.

Secondly, every tensor D € D is totally symmetric. This results from orthog-
onal decompositions: H = Hs + H, and

(6.2) Hy = To+D,4+D, 15=1+5+409,
(6.3) Hi=Ji+D, 6=1+5,

evident due to the dimensions of the parts.

6.2. Thus the invariant space D consists of totally symmetric and traceless ten-
sors of the fourth order, which we call fourth-order deviators?.

It can be demostrated that space D is irreducible®.

?In [12, 15, 19] and possibly elsewhere, they are called, for certain reasons, harmonic tensors,
and even the very decompositions to which they led are called harmonic decompositions. These
names are in our approach neither necessary nor fortunate.

9This would be the only proof reaching deeper into the theory of representations of compact
groups and that is why it will be neglected here (see e.g. [10] and the classical textbooks quoted
therein),
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To sum up: we obtained the following unique canonical decomposition of the
space of Hooke’s tensors

(6.4) H=H*+D4+D, 21 =2+10+9.

The meaning and the gravity of this decomposition and the solemnity of its
name will become clear later on (see also J. P. SERRE [11]). Every Hooke's tensor
is a unique sum

(6.5) H = H" + HY' + HY

of three mutally orthogonal parts: the isotropic part H'S, the first anisotropic
part HE' expressed by two second-order deviators and the second anisotropic part
HE' being a fourth-order deviator, Fig. 4.

H=H'+D+ D

D
A
HE'
H / 2
10 2
HE Rty
?
Hil
9

Fic. 4.

7. Summary: all the possible invariant decompositions of the space of
Hooke’s tensors
7.1. All that has been presented above can be summarised as follows.

Every complete invariant decomposition of the space of Hooke's tensors has
the form:

(7.1)  [H = (Tn + Tn) + @y + Duny) +D, 21 =(1+1) + (5+5) +9,]|
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where ny,ny) and (my, mg) are two pairs of pairwise independent permutation op-
erators. These pairs can be chosen arbitrarily, so there is an infinite number of
such decompositions. Each of them is a split of parts H** and D of the unique
canonical decomposition (6.4). By fizing operators ny,ng,my, mg and grouping
arbitrarily the irreducible spaces from (7.1), we can obtain every invariant decom-
position of space H.

In particular:

1) the classical decomposition H = H,+H( we obtain by taking n; = m; = s,
ny = my = t and grouping the spaces as in (6.2) and (6.3);

2) the classical decomposition H = H' + H is valid for any choice of
permutation operators,

(7.2) H" =D4D, 19=10+09.

7.2. The result obtained (7.1) will be given also in another form, being a handy
form for someone primarily interested in applications.

The manual for linear complete invariant decomposition of any Hooke’s
tensor:

Let (ny,ny) and (my, my) be two arbitrary chosen pairs of pairwise independent
permutation operators (2.7). Then for any Hooke's tensor H € H there is a pair
of scalars (hy, hy) a pair of second order deviators (&1, &3), a fourth-order deviator
D, such that

(7.3) [H—‘-h;ﬂnl +h-_;[[,,2+m| X(1@E+6§ @) +mx (1R +6LE 1)+D.J

Having fized the pairs (ny,ny), (my,ma), the correspondence
H « Ul],hz.f.i,’-.'z,D)

is tsotropic and one-to-one.

The choice of a decomposition, i.e. the choice of operators (nj,ny) and
(m;,my) depends, as we shall see, on the role of Hooke's tensor H in a given
context. The anisotropic part of Hooke's tensor H®" is uniquely determined
by pair (my,my) and three deviators (&;, &>, D). These deviators will be called
anisotropy deviators.

For example, we shall demonstrate the complete decomposition choosing

n =%I,ng= (C—%[)Tml =s, my = t. Then

(74) H=hplp+hplp+sx(1Q@a+a®l)+tx(1®p+p®1)+D.
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7.3. We shall find explicit isotropic functions defining (h, ho, &, &2,D) by H.
We will do so, for example, for (7.4)

(?‘5) H- (h'p,h'p,a,ﬁ,D).

It is most simple to obtain the coefficients of the isotropic part hp, hp. Let us
introduce two self-evident linear invariants of tensor H

(7.6) H-(3lp) = 1-H:1 = Hppgy,
(7.7) H:Is = TrH = Hpgp,.
Every linear invariant of H has the form H - I;;, so it is a linear combination

of these two. In particular, by scalar multiplication of (7.4) by Ip and Ip, we
have

1
(7.8) R T
3 5

To obtain the deviators «,f, it is convenient to use V. V. Nowvozhilov's

(TrH - hp).

tensors?
(7.9) p = H-1, pij= Hijp,
(7.10) v = ((28) xH)-1, v = Hipjp = Hippj.

He observed in [27] that these are the only two tensors that can be obtained from
Hooke's tensor by direct application of the trace operator.

ExAMPLE 3. If C is a compliance tensor, then € = C - 1 is deformation, to
which an elastic material reacts under hydrostatic pressure o = 1.

EXAMPLE 4. In the theory of elastic waves, a role is played by the tensor
Sippi/ 0, where g is density and § is the stiffness tensor, [28] (see also example F
in Part II of this paper).

Let us note that

i 1
(7.11) hp = :-s—trp, hp = E(Btrv — try).

7.4. Let us introduce Nowvozhilov's deviators

tr trv
(712) Hp = UM — Tu]., W= Wi '-'3‘-1

*These tensors are also used in [19]; tensor vy; is called therein Voigt's tensor (for reasons
unknown to me).
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By taking H in the form (7.4) we obtain, by direct calculation, according to
definition (7.9), (7.10),

1 1
(713) Up = '3'(?“4‘2[3}, Vp = §(?cx—ﬁ]
Hence 1
(7.14) &= ,—f,(pp + 2vp), B =up — vp.

Finally, by substituting (7.11), (7.14) in (7.4) we obtain the fourth-order devia-
tor D.

Thus the entire sequence (hp, hp, &, B,D) was ezpressed by Novozhilov's ten-
sors w,v, as an explicit linear isotropic tensor function of H.

Similarly we can obtain the sequence (hp, hp, w, g,D) in a complete decom-
position

(715) H=hplp+hplp+(1Q@w+w®1)+cx(1@p+po®1)+D.
We shall then have

1
(7.16) w = ?(5!!1) —4vp), o=

The identity resulting from these formulae

(3vp — 2up).

=1 b3

(717) H=hplp+hplp+m x(1@up+up®1)
+m2x(1®vD+v[)®1)+D,

1
where m; = ?(5[ —4c), my = %(—2[ + 3c) expresses directly Hooke's tensor by

its Novozhylov's tensors p, v and D.
Let us also note formulae for the norm of Hooke's tensor

(7.18)  [H? = |H*|’ + HZ[® + [HZ|> = h + 5h3

1
+;—4a-a+§B-B+D—D.

7.5. In most papers on the linear invariant decompositions of Hooke's tensor,
the starting point was, what is customary in the theory of group representation,
the symmetrization s x H. This leads to decomposition (7.3) with

(7.19) n =m; =s, ng =my =t

(G. Backus [12], Yu. 1. SiroTIN [13, 14], J. JERPHAGNON, D. CHEMLA,
R. BONNEVILLE [15], J. PrATZ [16], R. BAERHAIM [19]). The tools used were
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unnecessarily complex. This decomposition is, moreover, often quite unnatural,
e.g. for anisotropic parts.

Only E. T. ONAT [17] used one of the infinite number of other decompositions,
namely the case

(7.20) np=m=I[ ng=mp=2c

It has been repeated by S. C. CowIN [18], described in [19], and proved to be
convenient for S. FORTE and M. VIANELLO [4].

Nowhere is the unique canonical decomposition (6.4) noted or underlined,
even though it is the true basis for all invariant decompositions of space H.

Appendix 1. Notions

For the readers without everyday touch with multilinear algebra, we remind
several introductory notions, necessary and sufficient to understand this paper.

1. Direct sums. Let us take any finite-dimensional linear space £ with ele-
ments X,.... The subset P C L is called linear subspace in £ when it contains
any finite linear combination of its elements. Taking two mutually independent
subspaces Py, Py, i.e. those that intersect only in 0, we will call a direct sum of
these two, a set of all x € £ of the form x = x| + %2, x; € Py, x2 € Py. This sum
is, of course, a subspace in £. We will use the simplest notation for it: P; + Py>.
The decomposition x = x; + x2 of every element x € P; + Py is unique. This
uniqueness is best regarded as a generalizing definition: the smallest subspace in
L which contains all the subspaces of the sequence Py, Ps,..., Pr will be called
their direct sum, denoted by Py +...4+ Py, when the representation of each element
x € Py + ... + Py in the form

(A.1) x = x] + X2 + ... + X, X1 € P1,.nry Xk € Py
is unique, i.e. when

(A.2) x=0 iff Xi=Xn=...=% =0,

A direct sum of the sequence Py, ..., Py such that

(A.3) Pit . +Pu=L

will be called direct division of the space L.
If in the space £ a scalar product is defined, and the parts of the direct
sum are mutually orthogonal, then the direct sum is called orthogonal. In order

"There are also other notations instead of + (e.g. + or @).
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to stress this we will write 4 instead of +. If Py + Py = L then P, is called
orthogonal complement of Py in L and we write Py = P]l.

2. Spaces of Euclidean tensors. Let & be our starting Euclidean space with
elements X, ... called vectors with scalar product xy = x-y. Every element
A € ®7 & we call, as usual (at least for over fourty years [29]), g-order Euclidean
tensor. Every tensor is a finite linear combination of simple tensors a; ®a;®.....®
a,. In this paper we are only interested in two cases dimé = 3 and dim& = 2 (see
Sec. 4, Part. II) and ¢ = 2 and ¢ = 4. Moreover, we examine only symmetric
second-order tensors w € 8 = sym ®* & € @& and fourth-order tensors of the
type He @°S c ®*¢,

(A.4) w'=w, H'=H.

It is convenient to view the set of tensors @7 £ as a Euclidean space endowed
with a natural scalar product A - B, being a bilinear operation defined on simple
tensors by the recipe

(A.5) (a1 ®....®ag) - (b1 ®..... ® by) = (aiby)......(agbg).

In every space @7 & acts the group O of rotations and mirror reflections of
the starting space £. This action A — R*A, R € O is by definition lirear and
defined on simple tensors by the recipe

(A.6) Rx(a; ®...®a,) = Ra; ® .... ® Ra,,

where a — Ra is action of the group O on vectors. The subgroup O(A)
consisting of all R € O that preserve A, R+ A = A, will be called sgmmetry
group of tensor A.

The linear subspace of tensors P C @ € will be called here isotropic or
invariant subspace® when it is stable under group @, O * P = P (i.e. when
R*xA € Pforall R € O, A € P). If P is an invariant subspace, then its
orthogonal complement P~ is an invariant subspace too. An invariant subspace
is called irreducible if it does not contain any proper invariant subspace. The
decomposition of the examined invariant subspace £ C @?€ into a direct sum
of invariant subspaces Py, ..., P

(A.7) Pt LP=EL

will be called a complete invariant decomposition if all the subspaces Py, ..., P
are irreducible. Not always are we interested in complete decompositiors.

5In multilinear algebra, the name tensorial subspace is rather used.
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In the space @7 € acts also one more group, namely the symmetric group Z,
consisting of permutations o, ... We shall denote permutations in the usual way,
e.g. 0 = (2413) € £; means o(1) =2, 0(2) =4, 0(3) =1, o(4) = 3. The action

A — o x A is linear and defined on simple tensors by the recipe

(A8)

o X {a1 ® i ® aq) — a(,_lm (1 I ®ar;(q).

The actions of groups ¥, and O are commutative:

(A.9)

ox (R*A)=R«(oc x A).

REMARK. We will not really need either a more developed terminology or
more profound results of the theory of group representations, otherwise truly

beautiful.

Appendix 2. Notation

For readers more accustomed to the usual Cartesian index notation, we shall
add a convenient rephrasing of the formulae:

XY © T, Yi,

XQY & T,

Xy € TpYp,

1 5;'5.'

A H & Ajju, Hiju,
AoH & AUPQHP(IH’
A -H & ApgrsHpgrs,
(wT)ij = wii,
trw=1-w = wy,

([x A)ijrt = Aijkls

1
|w| = (wpqwpq)?,

a,§ & aij, iy,

a® & < @ik,

o & & apglpg,
(Kronecker’s symbol),
H-w & Hijpgpg,

w-H- w & HygrswpgWrs,
o =H:¢ & 0ij = HjjpgEpqg,
(H)ij10 = Hiaijy

TrA =Is-A = Apgps;
%(Aikjt + Aitj),
H| = (HpmHmm)%-

(¢ X A)ijr =

Thisdictionary enables one to write any formula in this paper in Cartesian index

language. For example,

. 1
tx1®8+B®L);u= 5(25fjﬁk1 + 280k — 6irBjt — Bixdji — 0itBrj — Bik;j)

(see (7.4), (2.10), (2.6)).
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