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ELASTIC-PERFECTLY PLASTIC SOLID STRUCTURES are considered subjected to combined
loads, superposition of permanent (mechanical) loads and cyclically variable loads,
the latter being specified to within a scalar multiplier. The classical maximum dis-
sipation theorem is used to derive known results of the shakedown theory, as well as
a few apparently novel concepts: the shakedown limit load associated with a given
(noninstantaneous) collapse mode, the mixed upper bound to the shakedown safety
factor, and the mixed static-kinematic formulation of the shakedown safety factor
problem. The shakedown load boundary surface is also investigated and a number of
its notable features are pointed out. A simple illustrative example is presented.

Notation

A compact notation is used throughout the paper, with bold-face symbols for
vectors and tensors, with the rules: u-v = ujv;, 0 : € = 045645, (0 -n); = oijn;,
u-0-n = wodjn;, (A: U]U = A,‘j;,kﬂ'hk, C:A = A-ijhkaijghks where the
indicial summation rule applies. The symbol := means equality by definition.
Other symbols are defined where they appear for the first time.

1. Introduction

IN THIS PAPER, known notions of (elastic) shakedown theory will be discussed
from a non-traditional point of view. The motivation for such an approach to the
shakedown theory is suggested by a neighbour theory of plastic limit analysis.
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It is known (see e.g. [6, 8, 11, 12]) that, in the latter theory, a central role is
played by the maximum plastic work theorem of HILL [7], which in fact enables
us to evaluate the limit load corresponding to an arbitrarily assigned collapse
mechanism of a given structure, and can thus be utilized as a departure point
to develop the static and kinematic approaches to the plastic limit analysis. In
particular, within the kinematic approach, the structure’s plastic collapse safety
factor can be determined as the minimum value, over the entire set of collapse
mechanisms, of the so-called kinematic load multiplier, which can be interpreted
as the structure’s safety factor against a specified collapse mechanism.

In the shakedown theory (see e.g. [4, 5, 9, 10, 12]), a theorem analogous to
the above maximum plastic work theorem was provided in [3] for elastic-perfectly
plastic structures subjected to combined cyclic/permanent loads. This theorem is
capable of providing the combined load at the shakedown limit corresponding to
a specified collapse mode. It is the purpose of the present paper to show that, like
in the plastic limit analysis, the latter theorem can be utilized as a starting point
to develop the static and kinematic approaches to the shakedown theory. Also,
the notion of structure’s shakedown limit load for an assigned (noninstaneous)
collapse mechanism will be introduced to show that its minimum value over the
entire set of such mechanisms coincides with the structure’s shakedown limit load.

The plan of the paper is as follows. In Sec. 2, the maximum plastic dissipation
theorem (written in space integral form) will be recalled and applied to plastic
limit analysis for demonstrative purposes. In Sec. 3, the concept of inadaptation
collapse mechanism will be briefly discussed and its ingredients, such as the ‘(non-
instantancous) collapse mechanism’ and the ‘plastic strain path’, pointed out for
use in Sec. 4. In the next section, the maximnum plastic dissipation theorem (writ-
ten in time-space integral form) will be employed to derive the concept of ‘shake-
down limit load for assigned (noninstantaneous) collapse mechanism’, for which
two alternative formulations are given, static and kinematic respectively, together
with the set of equations which govern the related structural problem. Section 5
will be devoted to the shakedown load boundary surface and to its essential fea-
tures, showing that it plays the role of yield surface for the structure: namely, any
load staying within this surface is below the shakedown limit, hence no inadap-
tation collapse mechanism is produced (i.e. the limit state is elastic), whereas
any load on the shakedown boundary surface corresponds to a shakedown limit
state, in which it is prone to an impending (noninstantaneous) collapse mecha-
nism represented by a vector normal to the above boundary surface at the load
point. In Sec. 6, the maximum dissipation theorem (still written in time-space
integral form) is used to derive the classical static and kinematic formulations of
the shakedown safety factor for combined cyclic/permanent loads. Alternative
formulations are also provided: one is a two-stage kinematic formulation, an-
other is a mixed static-kinematic formulation, the latter being characterized by
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the use of free stress variables and compatibility equations. A simple application
is presented in Sec. 7. A resumé is presented, together with the conclusions, in
Sec. 8.

2. Preliminary considerations

The maximum plastic dissipation theorem [6 — 8, 11, 12] written in space-
integral form, reads:

(2.1) m(?rl,x/()': ePdV st f(o)<0 inV
l‘.’

where ‘s.t.’ stands for ‘subject to’, €’ is a plastic strain rate field assigned in
the structure’s domain V', f(0) is the (convex, smooth) yield function and o is
an unknown stress field. It can be shown that the Euler-Lagrange equations of
problem (2.1) coincide with the material plastic flow laws, i.e.

5. 40f
(2.2) g = 36"
(2.3) floy<0, A0, Aflo)=0,

where A is the consistency coefficient, Eqgs. (2.2) and (2.3) being enforced every-
where in V. In other words, the optimal stress field o given by problem (2.1)
corresponds to €” in a point-wise manner through (2.2) and (2.3).

In consideration of the arbitrariness of £” in (2.1), let &€” be chosen to be
compatible with the velocity field u; that is, the compatibility equations

(2.4) =Va iV, =0 onSp,

are satisfied. In (2.4), V* is the symmetric part of the gradient operator V, Sp
is a part of the boundary surface § = 9V, i.e. Sp C S. The notation €”(u)
will be used in the following to mean that £ is related to 1 by Eq. (2.4). Then,
applying the virtual work principle, one can write the equality

(2.5) fm9W=mm
4
where the internal product (p, 1) is given by
(2.6) (p,u) := /pu,,- -adV + /ps -udS.
% Sr
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Here, the load p equilibrated by o consists of volume forces py in V' and surface
forces ps on St = S\Sp, i.e. p={pyinV, psonSr}, and thus

(2.7) divo+py=0 inV, o-n=ps onSp.
After the above assumptitions, problem (2.1) can be recast as

o { flo) <0inV

2.8 )
(2.8) max (p, u) O in equilibrium with p

{p.0}

where 1 is an arbitrary fixed field satisfying the boundary condition @ = 0 on Sp.
Problem (2.8) substantially coincides with the aforementioned result of HiLL [6]
and in fact it provides the limit load p[u] corresponding to a specified plastic
collapse mechanism, 1, of the body constrained on Sp. The optional objective
value of problem (2.8) equals the overall plastic work developed through the
mechanism 1, i.e.

(2.9) (pli) &) = Wli i= [ D(&)av,

v

where £ = £P(11). In the load space, the collapse mechanism u is orthogonal to
the structure’s resistance surface at the corresponding limit load p[1].

If, additionally, in problem (2.8) some restriction upon the external forces p
is introduced, then @ must be suitably relaxed; for instance, if p = ap, where p
is a specified external force distribution and the scalar  is arbitrary, one obtains

(2.10) (p,1) =a(p,u).

This means that in the maximum plastic work theorem (2.8), the mechanism a
needs to be specified only through the scalar parameter a defined as

(2.11) a:= (p,u),

which represents mechanism’s projection in the ‘direction’ of the specified load
p. Assuming e.g. a = 1, problem (2.8) takes the special form

0 {f(cr) <0inV

2012 Op = MAXxX C : ek y -
L) # . O in equilibrium with ap

{a,T}

and, correspondingly, W = «,. Problem (2.12) is recognized as the well-known
static formulation of the plastic collapse safety factor problem. Dualization gives
then the related kinematic formulation, i.e.

(2.13) ap = min W] s.t. (p,1) =1,

ueM
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where the minimization is performed with respect to the set M of all mechanisms
(2.4), and the objective function, given by (2.9), represents the kinematic load
multiplier generated by u.

The above considerations show that the maximum plastic dissipation the-
orem can be taken as a starting point to derive the classical results of limit
analysis. Following a reasoning similar to that developed above, known results
of the shakedown theory will be derived together with a few apparently novel
concepts.

3. The inadaptation collapse mechanism

In Sec. 2, the maximum plastic dissipation theorem has been used for the
evaluation of the plastic limit load of a structure that undergoes a specified
(plastic) collapse mechanism. The key idea consisted in introducing, into the
body, a compatible plastic strain rate field, that is, a strain field capable of
representing an instanfaneous collapse mechanism of the structure. In order to
apply a similar procedure for evaluating the (shakedown) limit load corresponding
to a specified noninstantaneous collapse mechanism, it is necessary to give a
precise meaning to the latter sort of mechanisms.

Within the shakedown context, structures are considered to be subjected to
(besides, possibly, a permanent (mechanical) load, p) to loads q° allowed to vary
in a given (closed) domain, say IT°. Any path within the latter domain represents
a potentially active load path, and every load condition is by the hypothesis below
the plastic collapse limit value. A closed load path I1¢, repeatedly travelled by the
load point, represents a cyclic load, which is potentially dangerous because plastic
strain effects may cumulate progressively cycle after cycle until failure. (Among
such cyclic loads, most dangerous are the load paths lying on 9I1¢. If, as usual, I1°
is a plane, then there is just one most dangerous load path enveloping 011¢). The
failure produced by the cyclic load, referred to as inadaptation collapse, exhibits
the characteristics that can be specified by explaining the straining process that
manifest itself in the course of application of some cyclic load higher than the
shakedown limit value. Namely, the structure subjected to a periodic load tends
towards (and generally reaches after a few cycles) a steady state in which the
response is characterized by stresses ¢ and plastic strain rates, €, periodic as
the load, such that the ratchet strain, A€?, i.e. the net plastic strain accumulated
in the steady cycle, is a compatible strain field with zero ratchet displacements,
Au, on the constrained boundary of the body (see e.g. |2, 13, 15]).

The above plastic straining process, related to an actual steady cycle, can
thus be described by the following equations:

(3.1) Atf(x) =V Aulx}] in'¥; Au(x) =0 on Sp,
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£
(3.2) AeP(x) = | £"(x, 1) dt
/

in which (3.1) is like (2.4). Two types of inadaptation collapse modes can be
distinguished:

~ Incremental collapse (or Ratchetting), in which the ratchet strain AP is
nonvanishing at least somewhere in the structure, what causes the structure to
fail by excessive plastic strain. (It includes, as a special case, the instantaneous
plastic collapse by taking £7(x,t) = Ae?(x)dp(t—1), where §p(t —1) is the Dirac
delta centred at time .)

— Alternating plasticity collapse (or Plastic shakedown), in which the ratchet
strain A€” is vanishing everywhere in the structure which thus undergoes alter-
nating plasticity with consequent low-cycle fatigue failure.

It is seen that both types of the inadaptation collapse, similarly to the instan-
taneous plastic collapse, involve a collapse mechanism with its compatible plastic
strain field, Ag? (though the latter is trivial for alternating plasticity collapse
modes). However, in the present case, A€? describes a noninstantaneous plastic
mechanism because the ratchet strain Ag” is the result of cumulating plastic
contributions, each occurring at a different time within the strain cycle.

If the applied load is not higher than the (elastic) shakedown limit, no inadap-
tation collapse mechanism is produced, i.e. the steady-state response is purely
elastic and Eqs. (3.1) and (3.2) turn out to be meaningless. However, for load
values at the shakedown limit, the structure shakedown limit state can be envis-
aged, which is characterized by an impending inadaptation collapse mechanism.
The latter mechanism has the same features as an actual inadaptation collapse
mechanism, and thus can be represented as

(3.3) Aef(x) = Viv(x) inV, v(x) =0 on Sp,
T

(3.4) AeP(x) = [ éP(x,t)dt,
/

where éP(x,t) is some (fictitious) plastic strain rate history. Equations (3.3)
and (3.4) can be derived from Egs. (3.1) and (3.2) by considering the (positive)
scalar 7 measuring the excess value of a load promoting the actual steady cycle
(3.1) and (3.2), with respect to the related shakedown limit value. Dividing
(3.1) and (3.2) by n and then taking the limit for  — 0, one has £°/n — &”,
A€P [n — AeP, Au/n — v, and thus Egs. (3.3) and (3.4) are generated. In other
words, Eqgs. (3.3) and (3.4) represent, to within a positive factor, the incipient
actual inadaptation collapse mechanism produced as soon as the load slightly
exceeds the limit value [3, 14, 15].

http://rcin.org.pl



AN APPROACH TO ELASTIC SHAKEDOWN BASED... 719

A (fictitious) plastic strain rate history é? specified in V for 0 < ¢ < T and
satisfying Eqs. (3.3) and (3.4) constitutes a kinematically admissible plastic strain
cycle after KOITER [9]. It is characterized by two essential ingredients, i.e. the
collapse mechanisim { Ae?, v} specified by (3.3) and the related plastic strain path
e’ of (3.4). A field v satisfying the boundary conditions v = 0 on Sp represents
a collapse mechanism in the set M of all possible collapse mechanisms. For a
given collapse mechanism v € M, with related ratchet strain Ae? = AeP(v),
there is a set, A[AeP] say, of infinite plastic strain paths, €”(x,t), all of them
satisfying (3.3). For AeP = 0, the set Ay := A[0] collects all the cyclic plastic
strain paths.

Note that, if the compatible plastic strain cycle of Egs. (3.3) and (3.4) is
applied upon a stress-free strain-free elastic structure as an imposed plastic strain
history, the stress and displacement responses, o® and uf say, are such that
of(x,T) =0in V and u®(x,T) = v(x) in V U S7.

4. The shakedown limit load for assigned collapse mechanism

An elastic-perfectly plastic structure is subjected to a combined
cyclic/permanent load superposition of a periodic load q°(t), 0 < ¢ < T, and
a permanent (mechanical) load p. Let v € M be a specified collapse mechanism,
and let Ae” = Ae”(v) be the related ratchet strain. The following problem is
posed: find a cyclic load multiplier, # > 0, and a permanent (mechanical) load,
p, (suitably distributed over V U Sp) such that the structure subjected to the
combined load q(t) = p+ £q°(t), 0 <t < T, be able to reach a shakedown limit
state characterized by an impending inadaptation collapse mechanism complying
with the assigned mechanism, v € M. Later on in this section, the equations
governing the above problem will be established and shown to be capable of pro-
viding, besides the (shakedown) limit load q through the unknown pair {p, 3},
also the related plastic strain path é” € A[AeP(v)].

In order to solve the above problem, let the maximum plastic dissipation
theorem be cast in a time-space integral form as

T
(4.1) max [/0‘: e'dvdt s.t. f(o)<0inV x (0,T),
[

where £7(x,t), 0 <t < T, is a plastic strain-rate history specified in V x (0,7T').
In analogy to problem (2.1), it can be stated that problem (4.1) is equivalent
to the material plastic flow laws, Eqs. (2.2) and (2.3), enforced everywhere in V
and for every t, 0 <t < T. Let € be taken as a kinematically admissible plastic
strain cycle, say eP(x, ), associated with a given collapse mechanism v € M, that
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is €P(x,t) satisfies Eq. (3.4) with Ae? = AeP(v), hence &P € A[Ae?]. Also, let
the maximization operation of (4.1) be performed within the stress set given by

(4.2) o=s8+80°

where s is an unknown time-independent stress field, # > 0 an unknown scalar,
and 0° the elastic stress response of the structure to the cyclic load g°(t). Sub-
stituting (4.2) in (4.1) and using Egs. (3.3) and (3.4), we obtain

T
(4.3) //0': éPdth=/s;AePdv+ﬁb,
0 v v

where €7 = é” and b is a scalar parameter defined as

!
(4.4) b= /[ o : &P dV dt,
0 Vv

which represents a measure of the plastic strain path.

It results that, with the above choices for €’ and o, problem (4.1) requires
that the kinematically admissible plastic strain cycle, €7 = &P, should be specified
only through the related collapse mechanism v € M and (for § > 0) the scalar
parameter b of (4.4); furthermore, ignoring for the moment that # may take
zero values for certain v € M, the maximization operation should be done with
respect to the free variables s and B. In fact, problem (4.1) now reads, with
b=1:

(4.5) P[v] := ?;faé)}{ V/s : AeP(v)dV + 8

st. f(s+p0° <0inV x(0,7),

where the condition b = 1 amounts to normalizing Ae? and v. Problem (4.5)
is a static formulation of the structure shakedown limit load for a given collapse
mechanism, v € M. The following theorems can be proved.

4.1. Static theorem

For a given structure subjected to combined cyclic/permanent loads, say q =
p+84q°(t), 0 <t <T,and for a given mechanism v € M, the shakedown limit
load {p,/} corresponding to the latter mechanism is the load which produces
the maximum dissipation through the given mechanism, and thus the stress field
s = §, equilibrating p and B, solve problem (4.5); conversely, the solution to
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problem (4.5) provides the shakedown limit load, {f),B}, corresponding to the
given v e M.

This statement can be proved by investigating the mechanical implications
of problem (4.5), which is done by the Lagrange multiplier method. Writing the
relevant augmented Lagrangian functional as

(4.6) x:=~/s:Ae”dV—ﬁ+f/ff(s+ﬁﬁ‘°]dth

Vv 0 V

where f(x, t) > 0 is the Lagrange multiplier, the first variation of x reads

7 Iy
(4.7) dx=0p —1+// Idth [as —ed gftdt av
0 v
T
+//5£f ) dV dt,
0

where 0 := s+ 0°. Since x must take a minimum with respect to s and  and
a maximum with respect to | > 0, the Euler-Lagrange equations related to (4.5)
read as follows:

(438) fl@)<0, 120, If(6)=0 inVx(0,T),

(4.9) g:=s+p30° & := gi! in¥ % (0,7T),
24 T

(4.10) /é”dt = Aef(v) inV, f/ﬁ‘“:é”dthzb: 1.
0 LB

The following can be remarked in relation to Eqs. (4.8) to (4.10):

a) The Lagrange multiplier [ takes the meaning of a plastic coefficient for the
(fictitious) plastic strain rate é?, Eqgs. (4.8) and (4.9).

b) Due to the convexity of problem (4.5), Eqs. (4.8) to (4.10) are not only
necessary, but also sufficient conditions, i.e. the/a solution (s, 8,1) to Eqgs. (4.8)
to (4.10) is such that {s, 3} solves the problem (4.5).

c¢) The (fictitious) plastic strain rate history, é”(x,t), constitutes a kinemati-
cally admissible plastic strain cycle complying with the given collapse mechanism
v € M and the scalar parameter b = 1, Eq. (4.10).
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d) Denoting by s” the elastic stress response to p and thus by o = s¥+3 6¢
the analogous response to the load q = p + 3 @°, the equality

T i
(4.11) //D(é”)dth=f/aE:épdth
0 Vv ) 78

can be easily shown to hold, which means that the overall plastic work equals
the external work and thus, by Koiter’s theorem, the load q cannot be below the
shakedown limit. Since, on the other hand, g cannot exceed this limit by Melan’s
theorem, it follows that q is a shakedown limit load and that therefore Eqs. (4.8)
to (4.10) describe the related impending inadaptation collapse mechanism.

e) It can be proved that Eqs. (4.8) to (4.10) allow for a unique solution for all
except for s = s + p, where the selfstress p may be indeterminate in the region
Vo C V (if any) where the assigned ratchet strain Ae” = 0. The proof rests on
Drucker’s stability postulate and on the assumption that f(o) is smooth, but
here it is omitted for brevity.

f) Quite often in practice the load path which Eqs. (4.8) to (4.10) refer to
is piecewise linear, i.e. polygonal. In such a case, the load can be regarded
as one jumping from a corner to another on the polygonal path, i.e. qq) =
p + ﬁqfk}, (k = 1,2,...,m), and Egs. (4.8) to (4.10) can be enforced solely
at times &1y, t(9), ..., b(m) corresponding to the basic loads q(yy,q(2), ., A(m), and
take a time-discrete form.

g) Considered that for certain v € M it may result that B = 0, the constraint
B > 0 should be accounted for in problem (4.5), in which case Eqs. (4.8) to (4.10)
remain the same as long as B > 0, but the second equation of (4.10) vanishes
when 8 = 0. Since the condition 8 = 0 occurs when the structure’s limit state
is (equivalent to) an instantaneous plastic collapse, this condition is as a rule
excluded from the discussion.

Following the standard procedures (i.e. maximization of x of Eq. (4.6) under
the constraints (4.8) to (4.10), but the constraint of (4.5) being removed), the
following dual problem is obtained:

er

T
W[v] = min D(eP) dV dt
/]
(4.12)

i 7 i
s.t. /ép dt = Aef(v) in V, // of:ePdVdt=b=1,
0 oV

which contains only kinematic variables and e?(v) is still fixed. This problem is
the kinematic formulation of the structure’s shakedown limit load for the assigned

http://rcin.org.pl



AN APPROACH TO ELASTIC SHAKEDOWN BASED... 723

collapse mechanism, v € M. It provides the optimal plastic strain path associated
with Ae”(v), as well as the related shakedown limit load {p, 5}. The following
can be stated.

4.2. Kinematic theorem

For a given structure subjected to combined cyclic/permanent loads, say
q=p+6q(t),0 <t <T, and for a given collapse mechanism, v € M, the
optimal plastic strain path corresponding to the latter mechanism is that one
which minimizes the overall plastic dissipation and thus it is the solution to
problem (4.12); conversely, the solution to (4.12) provides the optimal plastic
strain path related to the given collapse mechanism.

Using again the Lagrangian multiplier method, the relevant augmented func-
tional reads:

f i g
(4.13) X1 =//D(ép)dth+/s: Aep—[épdt dv
0V 0

'l/
o
+B 1—/[&f:éﬂdwx :
0 Vv

where s and f are stress-like and scalar multipliers. With a procedure similar
to that used before, it can be easily realized that problem (4.12) is equivalent to
problem (4.5) and that the above kinematic theorem holds good, but the proof
will be omitted here for brevity.

On comparing problems (4.5) and (4.12) with each other, it is seen that they
admit the same optimal objective functionals, that is, on considering b as a free
parameter,

4 b
(4.14) (P, V) + b= W][v,b] :=//D(é")dv dt
0 Vv

where p and f are some functionals of v and b. For b = 1, since (p, v) +8 = y[v]
and W[v,1] = W([v], it is

(4.15) P[v] = Wiv, 1] = Wv].

5. The structure’s shakedown load boundary

For the purpose of this section, problems (4.5) and (4.12) are considered
with the scalar free parameter b such that the pair {v,b} constitutes a collapse
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mode, whereas the related shakedown limit load is referred to by the pair {p, 3},
(instead of {f),f)} used in Sec. 4).

Problem (4.5), or (4.12), can be used to generate, for every (noninstanta-
neous) collapse mode {v,b}, the corresponding shakedown limit load {p,3}. In
this way, at least in principle, a surface F[p, ] = 0 can be obtained in a suitable
load space; if, for instance, p is a n-parameter load, this surface belongs to an
(n + 1)-dimensional Euclidean space. Solving F = 0 with respect to 3 gives
the equation B = fBs[p] which represents the (shakedown) limit value of § (or
shakedown safety factor) for the assigned permanent load p.

Let W[v, b] be the functional resulting as the optimal objective value of prob-
lem (4.5) or (4.12), as expressed by (4.14). By assumption this functional exists.
The Fréchet derivatives

aw _{pv(x) VxeV aw
x

5.1 s —
ey v |~ lpst) vxes @ P

express the sensitivity of W[v,b] to the changes of v around x € V' U Sr, and
with respect to b. Equation (5.1) can be obtained from Eq. (4.6) written at the
optimum and by remarking that —xopt +(p, v) = W[v,b] = [(p, v)+8 blopt. Note
that Wv, b] is homogeneous of degree one, i.e. W[mv,mb] = mW([v,b] Ym >0,
as it can be easily proved using Eqgs. (4.8) to (4.10).

Let W*[p, 8] be the Legendre transform of W{v,b], i.e.

(5.2) W*[p, 8] = (p,v) + Bb— Wv,b],

where v and b are to be meant as functionals of p and 3 obtained from (5.1),
such that

(5.3) aw* ow

WKZV(X) VXEVUST, W=b

If {p, B} is a shakedown load, by Melan's theorem there exists a stress field
s in equilibrium with p such that the pair {s, 3} is a feasible solution to (4.5),
which implies that (p,v) + 8b < W[v,b], and thus W*[p,] < 0 by (5.2); but
W*[p, B] = 0if {s, 8} solves (4.5), i.e. if {p, B} is a shakedown limit load, provided
the collapse mode is not a trivial one. On the other hand, if v =0 and b =0, it
is W* = 0. It follows that the boundary of the shakedown load domain can be
represented as a set of points {p, 3} such that W* = u F[p, ] = 0, where u > 0
is a scalar. By Eq. (5.3) one then obtains
oF oF

(5.4) v(x)=p ). VxeVuSr, b=y 95

where g > 0 is indeterminate if F =0, but g = 0if F' <0, i.e. if the load {p, B}
is below the shakedown limit value.
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The above result means that the surface F[p,8] = 0 is the boundary of
the (convex) shakedown load domain and plays the role of yield surface for the
structure, in the sense that for any load {p, S} such that F[p,] < 0, hence
it = 0, no inadaptation collapse mechanism is produced and thus the shakedown
limit state is elastic (i.e. shakedown occurs), whereas if F[p,] = 0, there is a
nonvanishing inadaptation collapse mechanism {v, b}, given by (5.4) with p > 0,
which thus lies on the external normal to this surface at point {p, 8}, Fig. 1.

I\
B
- N
2
fiL ‘
OO '; N
F(p,B)=0 i | Ly
r————— A —
’ Q
F;"t’f*‘) ;/
,/d B T
//!
0 p P

F1G. 1. Geometrical sketch representing the shakedown load boundary F(p, ) = 0 (or
B = Ben(p) for a one-dimensional permanent load p with an arbitrarily fixed collapse
mechanism {v,b = 1} and related tangent plane 7.

If p is a n-parameter load, i.e. p = a1p1 + azp2 + ... + @, Py, the shakedown
boundary surface has the form F(ay, as, ..., an,3) = 0 and belongs to an (n+1)-
dimensional Euclidean space. This case was discussed in [3] with results analogous
to those previously expounded. In Fig. 1 the case n = 1 is sketched.

It is worth to note that the classical Melan’s and Koiter’s shakedown theorems
play the role of, respectively, static and kinematic criteria in order to assess whe-
ther a given combined load {p*, 8*} is within or outside the shakedown load boun-
dary. To show this point, let {p*,3*} be a shakedown load, i.e. F(p*,3*) < 0.
As the pair {p*,8*} is a feasible solution to (4.5) for any v, one can write the
inequality

(5.5) (p-p"Vv)+(B-5)b20

where (p,v) + b = W{v,b] is the optimal objective functional of (4.5), as speci-
fied by (4.14). Equation (5.5) holds for any load {p*, #*} such that F(p*,3*) <0,
with {v,b} being any fixed collapse mode, and {p, 3} the corresponding shake-
down limit load. Equation (5.5) is like the Drucker’s stability postulate for a
(fictitious) material endowed with a yield function F(p, ) < 0.
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By Melan’s theorem, a load {p*, 8*} for which there exist some s*, equilibrat-
ing p*, such that f(s*+£*0°) <0in V x (0,T), either is a safe shakedown load
and thus F(p*, 8*) < 0, or makes the structure capable of reaching a shakedown
limit state, in which case F(p*, 8*) = 0; otherwise, if such a stress s* cannot be
found, the load exceeds the shakedown limit, i.e. F(p*,3*) > 0. By Koiter's
theorem, a load {p*,5*} is a shakedown load, i.e. F(p*,B") < 0, if inequality
(5.5) is satisfied for any {v, b}, that is if

(5.6) (p,v) +Bb2 (p*,v) + 5%
hence, by Eq. (4.14), if

T

7
(5.6)' f/D(é”)dth > /p’ -vdV + " //('l‘c : ePdV dt;
v 0 Vv

0V

otherwise, if (5.5) is violated for some {v, b}, the load {p*, 3*} exceeds the shake-
down boundary, i.e. F(p*,5*) > 0.

Let the collapse mode {v,b} be given and let 7 be the plane tangent to the
shakedown boundary surface F[p, ] = 0 at the point {f)ﬁ} (Q in Fig. 1), from
where the collapse mechanism {v,b} departs along the (unit) external normal,
N. The distance d of 7 from the origin O, that is d = O_Qj - N, using (4.14) can
be expressed as

(5.7) d= [(6.v) +8b] = W,

where K := ((v,v) + 52)1’(2. This means that d is proportional to the common
optimal objective value of problems (4.5) and (4.12). Then, the abscissa of the
intersection point, H, of 7 with the § axis, i.e. 8, = OH, is given by

d 1
(5.8) Br = oK A\ bl
which for b = 1 reads
(5.9) Br = W[v,1] = ¢[v].

In other words, taking b = 1, the common optimal objective value of problems
(4.5) and (4.12), ¥[v], equals the abscissa 3, of point H on the g axis, Fig. 1.
Moreover, [v] is an upper bound to the shakedown safety factor, fgpno, of the
structure for zero permanet load, that is

(5.10) Bsho S Ylv] YveM

and thus
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(5.11) Bsho = géiﬁ P[v].

The latter equation means that, on changing v in all possible ways, the plane 7
changes correspondingly untill H coincides with @, the latter being the inter-
section point of the surface F[p,b] = 0 with the §-axis, (see Fig. 1).

6. The shakedown safety factor for combined cyclic/permanent loads

Coming back to Eq. (4.1), let the maximization operation be still performed
within the stress set (4.2), but s being in equilibrium with a fixed permanent
load, p say. Such a choice gives

o
(6.1) [/a:é?’dvmz/s:AepdV+ﬁb=(p,v)+ﬁb
0V

v

where b is still given by (4.4). Since the internal product (p,v) is constant with
respect to the maximum operation to be performed, Eq. (6.1) shows that the
kinematically admissible plastic strain, é”, must now be fixed only through the
scalar parameter b. Thus, taking b = 1, problem (4.1), and problem (4.5) as well,
become:

(6.2) max 3 s.t. {f(s o) = 05 Monil

{s,8} s in equilibrium with p,

while its dual reads

(6.3) st

5
[/f)'czéprilfdtz"):ft.
0V

Problems (6.2) and (6.3) are recognized as the classic continuum static and
kinematic formulations of the shakedown safety factor problem for a structure
subjected to combined loads q = p 4+ £q°(t), their common optimal objective
value, fe[p], being the shakedown safety factor in question. Therefore, it re-
sults that the maximum plastic dissipation theorem, suitably applied, enables
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the derivation of the static and kinematic approaches to the shakedowr limit
load.

The shakedown boundary surface, F(p, ) = 0, is again considered (Eg. 2),
with the tangent plane 7 at point Q where the given inadaptation mechnism
{v,b} departs along the external normal N. Let P be the point representiig the
permanent load p, R the intersection point of 7 with the straight line draw: from
P parallel to the 8 axis, and Ry the projection of R on the g axis; also, le'@Q be
the intersection point of the shakedown boundary surface with the straigit line
PR. Obviously, it is PQ = S [p] = shakedown safety factor for the asigned
permanent load, p. The segment PR, spanned by 7 over the axis parallel o the
B axis through P, has length PR = OH — RoH which is a functional of {v,b}
which |, for b = 1, is found to read:

(6.4) PR = Buix|p, v] := ¥[v] — (p, V).

F(p,B)=0

O p p &

FiG. 2. Geometrical sketch representing the shakedown load boundary: for & given

mechanism {v,b = 1}, the segment PR = fix spanned over a straight, p = cast by
the tangent plane 7 is an upper bound to Bs,(p).

In virtue of the convexity of F' = 0, it is geometrically clear that

(65) ﬁsh{p] S 5mix[p1 V} VveM.

This inequality shows that Bmix[p, v] is an upper bound (u.b.) to fe[p]. This
upper bound will be referred to as mized u.b. because [v] on the righthand
side of (6.4) can be computed either via the static approach (4.5), or va the
kinematic approach (4.12). Bmix[p,Vv] turns out to be more stringent thin the
classical kinematic u.b., say Pyi,. In fact, denoting by é”(v) an arbitrary jlastic
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strain nte cycle complying with v € M, one can write:

T

(6.6) Prin (P, €7 (V)] / D (éP(v)) dV dt — (p, V)
0 Vv

and ths, remembering (4.12) and (6.4),

(6.7) Bmix[P, V] = i ve«'?&‘:p ﬁk.n [p, &7].

Ancther formulation of the shakedown safety factor, alternative to (6.2) and
(6.3) can be derived as follows. Let the minimization operation of (6.3) be per-
formed by operating first on é” while taking v fixed, then by operating on v. In
this way, remembering (6.6), problem (6.3) takes the form:

(6.8) Asn[p] = min Biin [P, €7]

veM {ePEA(_\eP{ N}

which constitutes a two-stage kinematic formulation of the shakedown safety fac-
tor. By (6.7), one also can write

(69) Bsh [p] - ‘I;Iélal} Bmix [P'V] )

which means that structure’s shakedown safety factor is the smallest mixed upper
bound in the set of all collapse mechanisms, v € M. The geometric interpretation
of (6.9) is quite clear after Fig. 2; namely, changing v in all possible ways causes
7 to change correspondingly until point R € 7, with fixed abscissa p, coincides
with @ on the surface F' = 0. (Note that, due to the convexity of F' = 0, point
R is external to, or lies on, the surface F =0.)

Ancther alternative formulation to problems (6.2) and (6.3) is obtained by
making use of problem (4.5) to express fmix[p, v]. According to (4.15) and (6.4),
one can write

B . . AeP
(6.10) Bsu[p) :21;} I{I;?;:}( "/s : AeP(v)dV +

s.t. f(s+B6%) <0 in Vx(U,T)]—(p,v)}

what represents a mized static-kinematic formulation of the shakedown safety
factor. Such a mixed formulation is rather novel within the shakedown theory.
To anthors’ knowledge, formulations like (6.10) have only recently been proposed
in [1. 17, 18).

http://rcin.org.pl



730 C. PorizzoTrTo, G. BORINO, P. FUSCHI

Note that, if in (6.10) the stress s is assumed to be in equilibrium with p,
problem (6.10) transforms into (6.2).

7. Application

In this section problem (4.5) is solved for a two-bar structure under thermal
cyclic load. The aim is to illustrate the way the related shakedown load boundary
can be derived starting from collapse modes instead of loading modes.

Two (parallel) bars of equal length L and cross-sections £; = Q, Qs = yQ
(v > 1) are connected with a rigid block, Fig. 3(a). Bar 2 is maintained at a con-
stant temperature, 75 = T, and bar 1 undergoes cyclic temperature variations,
ie. T} =Ty —02(t), 0< 2(t) <1, 0 >0, Fig. 3(b).

An external permanent load p = ap is applied upon the rigid block, with
a > 0and p = (1+7) Qoy, = plastic limit load, o, being the material yield stress.
Denoting by s; and s; the bars’ stresses equilibrating p, it is (81 +vs2) @ = ap,
hence

(7.1) a = (s) +vs2)/(1 +7)oy.
9-0.9,-y0 ‘
o T 8 F B,
T, A B
-{ 2 | L2 . £ W
L 'r ¢ i T T | LS
T Ak B, 1Q
| , e 527l
! {4 o) R
ab by Yz=trAt/2 e 1 a
g b) pikn c}— ¥ =5
(1)
vl I | 2 _( (1)
/// Sc/ B_!- ﬂ/r \\’___-—’ T J_ {2) - -‘_
J_ (2) Vi ! l T (1) \‘-\ ! B 2/7 E’kil
B/r Psc (2) S J_ Yo~ 1 *
i i 2) 2 l
—_— B FLPREE—— X
d) e) f) (2!

FiG. 3. Two-bar structure subjected to cyclic temperature changes and permament

mechanical load: a) Geometrical configuration; b) Bar temperature histories; c¢) Inter-

action diagram; d) Elastic stress paths; e) and f) Typical locations of stress paths at the
shakedown limit.

http://rcin.org.pl



AN APPROACH TO ELASTIC SHAKEDOWN BASED... 731

The thermo-elastic stresses are: of = o z(t), of = —of/7y, where or =
yap E6(1+v) = max thermo-elastic stress, ar = thermal expansion coefficient
and E = Young’s modulus. On setting 8 := or/oy, the stress paths S{ and
SS of bars 1 and 2 are located as shown in Fig. 3(d), and the elastic stresses
at times #(;) (at which maximum temperature reduction in bar 1 occurs, hence
z(t(1y) = 1) and t(9) (at which temperature Ty occurs in bar 1, hence z(t(z)) = 0)
are: o) = Boy, of 1y = —Boy/7, Uf{g) = 03(2) =

The interaction diagram of the system under study is the diagram of the
(e, B) plane shown in Fig. 3(c), with the bilateral line ABC being the shakedown
load boundary with equations as: § =2 for 0 < a < ¥, where 5 := (y—1)/(v+1),
and B = (14+9)(1 — a) for ¥ < a < 1, (see [3] for more details).

Let v denote the ratchet displacement of the block, and Aef, Ae} the bars’
ratchet strains; obviously, Ae} = Ae} = v/L. Problem (4.5) takes the form
b =T

(7.2) max P := (s; +ys2) Qv+ B,
{51|82'ﬁ}

subject to # > 0, as well as to:

fif =81+ Boy -0y <0,

fi =—81—-0, <0
(7.2)’ - =it
f2 232_03330:
fy =—sa+ By loy—0,<0.

Here, the sign constraint g > 0 has been introduced in order for the analysis to
include also the instantaneous plastic collapse mode.

For a fixed v > 0 (incremental collapse mode), the maximum is reached when
81, 83 and 3 are such that the elastic stress paths in the bars assume the positions
shown in Fig. 3(e), with f;" = f; = 0. Thus, by (7.2)]_4 it follows:

(?BJ = O'y(l = ﬁ)! 52 = Oy,
(7.4) B<2, B<L2.
Since f > 0 and v > 1, the second inequality of (7.4) is certainly satisfied if

3 < 2, and can thus be disregarded. Using (7.3), problem (7.2) transforms to

(7.5) ¥(@) = max®1(8) =a + (1 s Tj‘:) B st B<2

where a := pv. Transforming (7.5) into an unconstrained problem, one can write

(7.6) Iglzir{}télggczq’z(ﬁ,q =-a+ (“1—_%;—1)5'5‘“5—2)
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under only sign constraints. The Kuhn-Tucker conditions of (7.6) read

a
=

a

L) 1449

=14+(20, B=20, ﬁ( 'Y"']-"I_C):U:

(7.8) B-2<0, (>0, ¢(B-2)=0.

The following three typical situations can be envisaged:

i) a>y+1: =0, =0, a=1, 1la)=uga,
(7.9) i) a=y+1: (=0, 0<f<2 a=1-:2; 4()=q
iii) a<y+l: £>0, =2, a=%, Ya)=2+%a.

A fourth typical situation is generated for v = 0 (alternating plasticity col-
lapse mode), hence @ = 0 and Aef = Ael = 0. The maximum in (7.2) is then
realized when the stress state is as that described in Fig. 3(f) with f;f = f;” = 0.
Thus, by (7.2)]_4, one has 8 = 2, hence %(0) = 2, and

7.10 $1 = —0y, 27'1-—1 Oy & 825 Oy.
u ] ]

As a > 0, by (7.1) and the first equation of (7.10), one has s; > 7_]%. Thus,

as 2y~ — 1 < 471, the continued inequality in (7.10) can be rewritten as
(7.11) 'Y_lay < 89 < 0y,

having in this way enforced its lower bound. Then, solving (7.1) for a and
substituting in (7.11) gives

(7.12) 0<a<?.
A :
g
LA BD/
E 1+7
i 1
I o ¥=l
| ¥ Y1
| ~
: c-1
(0] '5; 1 a

F1G. 4. Geometrical sketch representing the correspondence between collapse mechanism
(v,b) and points on the shakedown load boundary curve ABC.
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In the preceding considerations, the parameter a = pv has been used to
generate the collapse mechanisms v > 0. The correspondence between the a
values and the related limit loads is depicted in Fig. 4, where the limit load
locus, ABC, is recognized to coincide with the shakedown boundary of Fig. 3(c),
as expected.

8. Resumé comments and conclusions

In this paper, the maximum plastic dissipation theorem, suitably written
in a time-space integral form, has been used as analytical tool to approach the
shakedown theory. This enabled us not only to find the classical results of the
shakedown theory, but also to derive some apparently novel concepts within this
theory, such as the shakedown limit load associated with an assigned (noninstan-
taneous) collapse mode, the mixed upper bound to the shakedown safety factor,
and the mixed static-kinematic formulation of the shakedown safety factor prob-
lem.

The shakedown limit load for the assigned collapse mode is intended as the
particular combination of cyclic/permanent load under which the given structure
can reach the shakedown limit state characterized by an inadaptation collapse
mechanism complying with the assigned collapse mode. Dual static and kine-
matic problem formulations have been given to evaluate such a load. On chang-
ing the given collapse mode in all possible ways, these problem formulations can
be used to determine the shakedown load boundary surface in the load space.

As already pointed out in [3], where n-dimensional permanent loads were
considered, the shakedown load boundary plays the role of a yield function for
the structure, in the sense that the (noninstantaneous) collapse mechanism char-
acterizing the shakedown limit state to which the structure may report itself,
obeys a plasticity flow law similar to that obeyed by the plastic strain rate tensor
for the material. That is, the shakedown limit load associated with a given (non-
instantaneous) collapse mechanism is that load on the shakedown load boundary
surface, from where this mechanism departs along the external normal to that
surface. The latter geometrical property is a generalization to the shakedown
of an analogous property of plastic limit analysis, in which the (instantaneous)
collapse mechanism lies on the external normal to the load resistance surface;
indeed, in the absence of cyclic load, shakedown degenerates into limit plasticity
and the noninstantaneous collapse modes into instantaneous collapse ones.

Another interesting property of the shakedown load boundary surface is that
the tangent plane, orthogonal to the assigned collapse mode, intersects the axis
drawn from a fixed point on the permanent load hyperplane, parallel to the cyclic
load multiplier axis, at a point whose distance from the permanent load hyper-
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plane constitutes a mixed upper bound to the shakedown safety factor for the
structure under combined loads, i.e. superposition of cyclic loads with that fixed
permanent load. This mixed upper bound, which can be computed by static, or
kinematic, procedures (and for this reason it is called ‘mixed’), is more stringent
than the classical kinematic upper bound, since in fact it can be obtained by
minimizing the latter kinematic upper bound with respect to the set of plastic
strain paths complying with the given collapse mode. The above tangent plane
intersects the cyclic load multiplier axis at a point whose distance from the origin
equals the common optimal objective value of the two problems, afore-mentioned,
dual to each other and related to the shakedown limit load for assigned collpase
mode.

The shakedown safety factor can be obtained by minimizing the mixed upper
bound with respect to the set of collapse modes. This gives two possible com-
putational procedures, both being alternative to the classical static or kinematic
procedures, according to whether the mixed upper bound is obtained via static
or kinematic procedure. In the latter case, a two-stage kinematic formulation is
obtained for the shakedown safety factor, whereas in the former case a mixed
static-kinematic formulation is obtained. A notable feature of the latter formu-
lation is that, contrary to the classical static formulation, it makes use of free
stress variables and compatibility equations, and thus the equilibrium equations
- which in general cause some computational problems in the shakedown analysis
— are not needed. For this reason, a mixed formulation like the one given above,
is expected to be suitable for numerical shakedown analysis by the finite element
method. Mixed formulations for the shakedown safety factor have started to ap-
pear in the literature [1, 17, 18] only recently; they have not been fully exploited
vet and deserve further investigation. This is being done in the present research
work devoted to a better understanding of the matter, as well as to the applica-
tion methods with their computer implementation. Methods suggested by MROZ
and collaborators [16] may be helpful to this purpose.
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